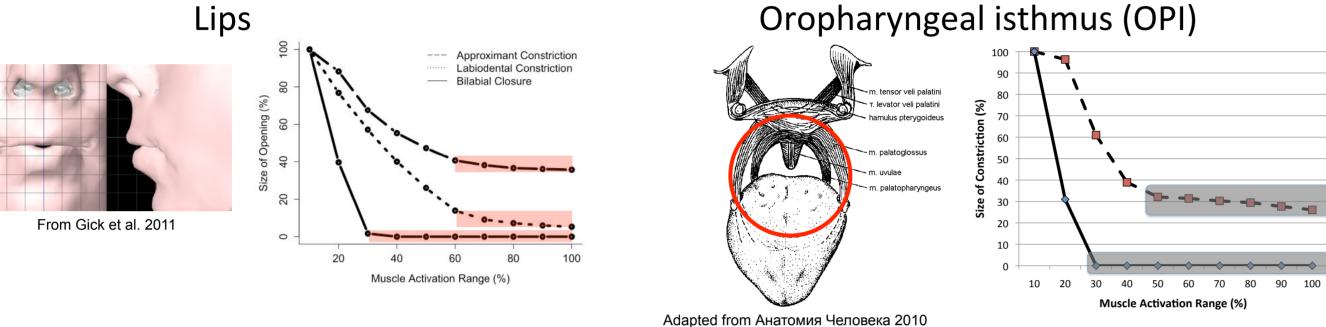

Speaking tongues are always braced Bryan Gick^{1,2}, Blake Allen¹, Ian Stavness³, Ian Wilson⁴

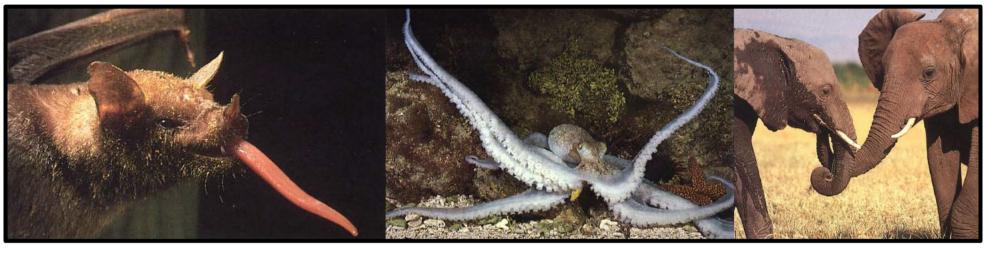
¹University of British Columbia, ²Haskins Laboratories, ³University of Saskatchewan, ⁴University of Aizu

Introduction: Neuromuscular modules in speech


- Bodies have too many degrees of dreedom (DOF) to cognitively control (Bernstein 1967)
 - Need to reduce DOFs = central problem in motor control
- Neurophysiology reveals fixed neuromuscular modules (functional groupings of muscles) reduce DOF

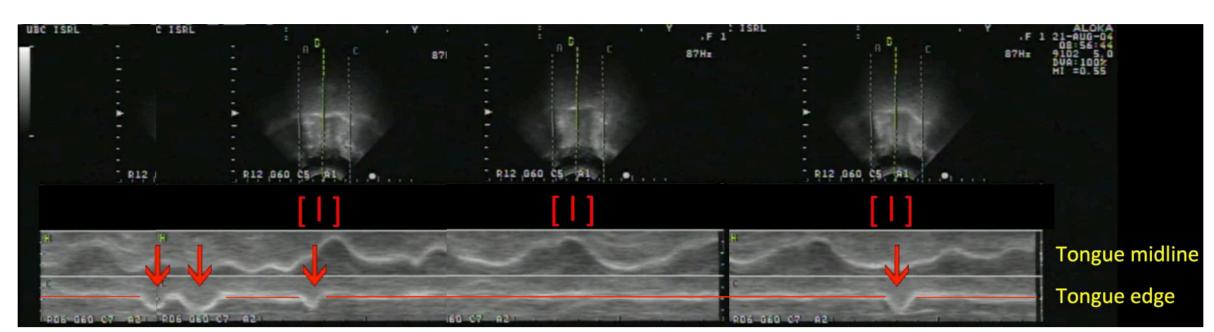
Bizzi et al's. (1991) "spinalized frogs"

Safavynia & Ting's (2012) "spatially fixed muscle synergies" (SFMSs)


• Gick et al. (2011, in press) describe sphincter-like "devices" in speech having these properties

What about the tongue?

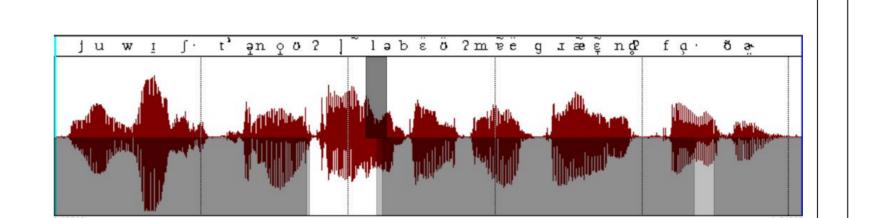
Gick et al. (in press)

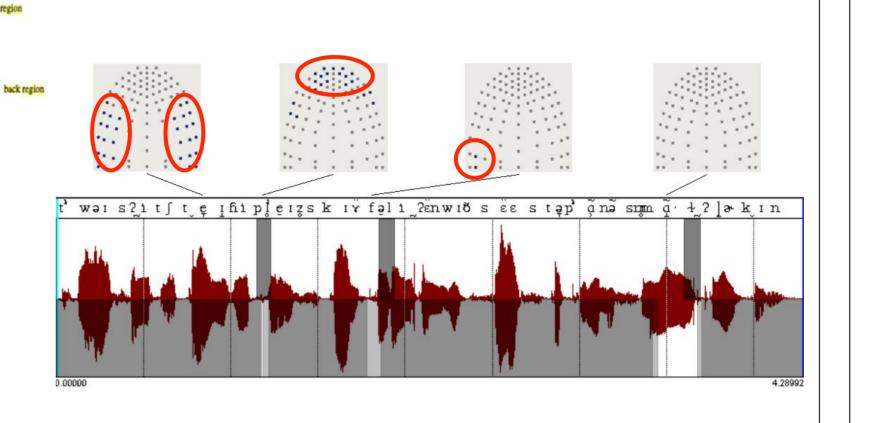

• Supposed to be "free", like a trunk or tentacle (Kier & Smith 1985, Smith & Kier 1989)

Methods & Results: EPG/ultrasound study

We used M-mode ultrasound imaging to pilot this study...

• Found constant lateral contact during running speech except during /l/




Mary had a little lamb, its fleece was white as snow. Everywhere that... Mary went, the lamb was sure to go.

- A follow-up EPG study revealed more detail...
- Kay EPG database study:
- electrodes on molars!
- 1 male, 1 female speaker
- Several long spoken passages
- Used Zsiga's (1995) EPG regions
- Results:

All sounds braced at all times, except: Bilateral bracing lost:

- [I]: 24.5% (n=110)
- [a]: 40.5% (n=20-30)
- less in diphthongs ([aʊ]:10%; [aɪ]: 4.5%)
- [ʌ]: 2.8% (n=36)

Discussion

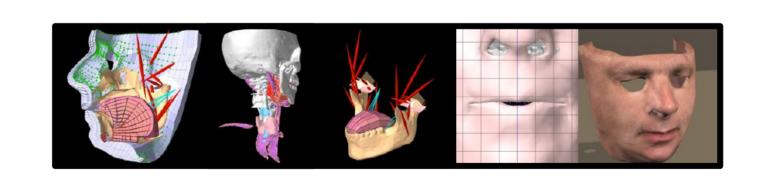
- Our results show that the tongue is effectively braced at all times during running speech in English
- Bracing is almost always against the rear molars, except:
- Consistently lost for onset /l/, where anterior bracing is maintained
- Occasionally lost for dark /l/ & low vowels, where posterior bracing is maintained against maxilla & lateral pharyngeal walls/arch
- Also: Each speaker consistently favors one side (L or R)
- Q: Why "bracing" and not just "contact"
 - consistent/predictable
 - constrains DOF!!
 - usually necessary for aeroacoustics (the "tube")
 - otherwise hard to explain consistent behavior of onset /l/

CONCLUSION:

Tongues are always braced

- at least for English
- also against tongue floor, mandible, lower teeth, etc.

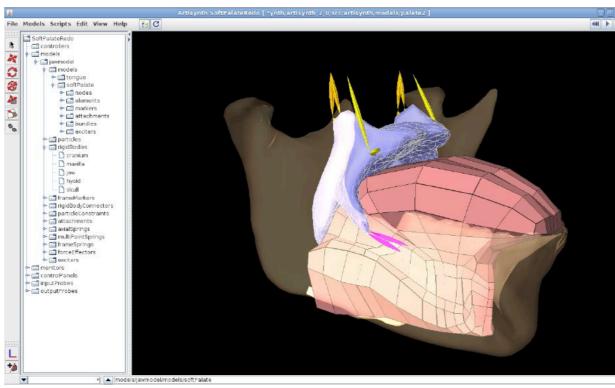
Implication:

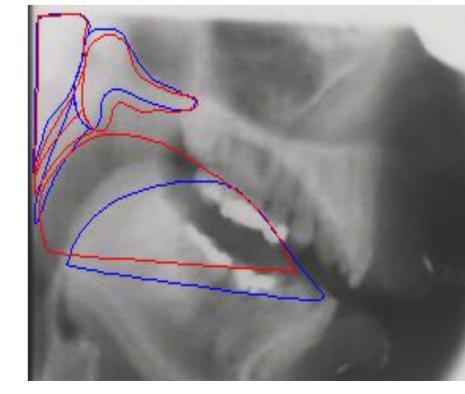

- Tongues are mechanically very different from existing models
- Use surrounding skeletal structure like a flexible "exoskeleton"
- Not like trunks, tentacles, etc.; more like lips

What happens when not braced: ArtiSynth/x-ray study (pharyngeal/palatopharyngeal bracing)

2) For ~25% of dark /l/ & low vowels, bracing appeared to "slide" behind rearmost electrodes ? Is bracing lost, or just too far back to measure?

Hard to image off-midline structures...




- Simulations used models in the ArtiSynth simulation toolkit (www.artisynth.org)
 - e.g., Fels, Gick, Jaeger, Vogt & Wilson (2003), etc.
 - 3D finite-element method (FEM) model with realistic collision detection & tissue compression
 - Used jaw-tongue-hyoid model described by, e.g., Stavness et al. (2011, 2012)

coupled with palate model as described in Gick et al. (in press)

Results: Tongue retracts to brace against maxilla, lateral pharyngeal walls, & palatopharyngeal arch

• Visible in x-rays of retracted variant of French uvular fricative (described in Gick et al. 2013)

Bizzi et al. 1991. Bizzi E, Giszter SF, Mussa-Ivaldi FA (1991) Computations underlying the execution of movement: a biological perspective. Science 253:287-291.

References

Bunderson, N.E., Bingham, J.T., Sohn, M.H., Ting, L.H., Burkholder, T.J. (2012). Neuromechanic: a computational platform for simulation and analysis of the neural control of movement. International J. of Numerical Methods in Biomed. Eng. DOI: 10.1002/cnm.2486.

Fels, S., B. Gick, C. Jaeger, F. Vogt and I. Wilson. User-centered design for an open source 3-D articulatory synthesizer. In M. J. Solé, D. Recasens & J. Romero (eds) Proceedings of the XVth International Congress of Phonetic Sciences, Barcelona, Spain. Barcelona: Universitat Autonoma de Barcelona. 179-184. 2003.

Gick, B, N. Francis, A. Klenin, E. Mizrahi, D. Tom. The velic traverse: An independent oral articulator? J. Acoust. Soc. America 133(3), EL208-EL213. 2013.

Gick, B., P. Anderson, H. Chen, C. Chiu, H. B. Kwon, I. Stavness, L. Tsou and S. Fels. (In press). Speech function of the oropharyngeal isthmus: A modeling study. Computer Meth. in Biomechanics & Biomed. Eng.: Imaging & Visualization.

Honda, K., Takano, S., Takemoto, H. (2010). Effects of side cavities and tongue stabilization: Possible extensions of the quantal theory. Journal of Phonetics 38: 33–43.

Kier, W. M., & Smith, K. K. (1985). Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society, 83(4), 307-324.

McLeod, S., Roberts, A., & Sita, J. (2006). Tongue/palate contact for the production of /s/ and /z/. Clinical Linguistics & Phonetics. 20(1): 51-66.

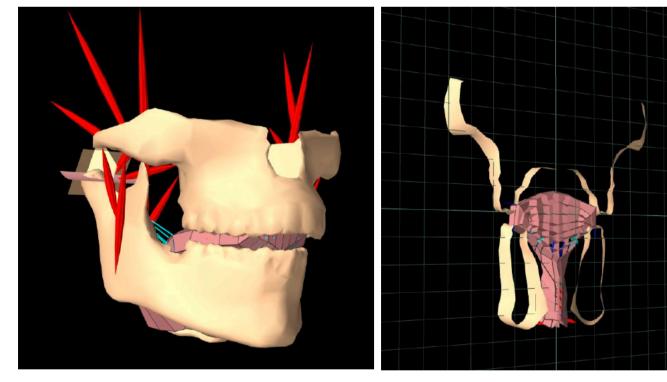
Safavynia, S.A., Ting, L.H. (2012) Task-level feedback can explain temporal recruitment of spatiallyfixed muscle synergies throughout postural perturbations. J. Neurophysiol., 107:159-177. Smith, K.K. and Kier, W.M. (1989). Trunks, tongues, and tentacles: Moving with skeletons of

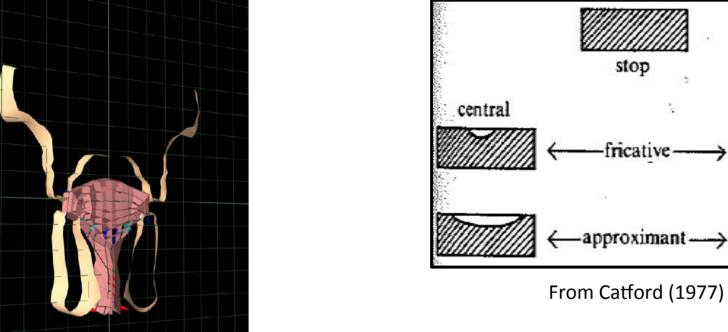
muscle. American Scientist 77: 28-35. Stavness, I., Gick, B., Derrick, D., and Fels, S.S. (2012). "Biomechanical modeling of English /r/

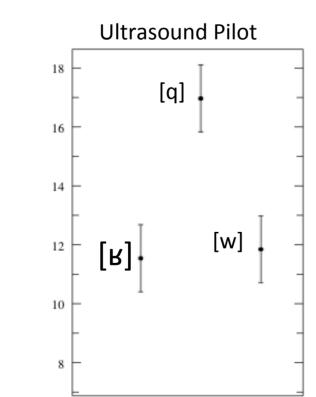
variants," J. Acoust. Soc. Am. Expr. Let. 131, 355-360. Stavness, I., Lloyd, J., Payan, Y., Fels, S. (2011). Coupled hard–soft tissue simulation with contact and

constraints applied to jaw-tongue-hyoid dynamics. Int. J. Num. Meth. Biomed. Eng. 27, 367-390.

Stavness, I., Lloyd, J.E., and Fels, S.S. (2012). "Automatic Prediction of Tongue Muscle Activations Using a Finite Element Model," J. Biomechanics, 45, 2841-2848.


Stone, M. 1990. A three-dimensional model of tongue movement based on ultrasound and x-ray microbeam data. J. Acoust. Society of America. 81(5):2207-2218.


Zsiga, E. C. (1995) An acoustic and electropalatographic study of lexical and post-lexical palatalization in American English. *In Phonology and phonetic evidence, Papers in Laboratory Phonology IV* (B. Connell & A. Arvaniti, eds.), pp. 282-302. Cambridge: Cambridge U. Press.


Acknowledgments

We acknowledge our many collaborators; in particular, Noriko Yamane helped with data analysis, Kate Radford helped with background research, and members of the TIMC-IMAG lab and GIPSAlab, Grenoble have contributed substantially in developing models in ArtiSynth. Funding from an NSERC Discovery Grant (B. Gick) and an NSERC Strategic Project Grant (S. Fels).

Bracing: Tongue as mechanical hemisphincter?

Peak Tongue Height (mm)

- OPI constrictions: tongue appears fixed for /w/ & /R/, ballistic for /q/? →
- Honikman (1964): Tongue "tethered" or "anchored"
- Stone, M. (1990): "assumption that consonants are braced tongue behaviors, and vowels are unbraced (2208)."
- Mechanics?: facilitate "rotation of the tongue about a lateral point" (2215)
- Lateral closure creates the aeroacoustic "tube" for speech always "braced" when we need this! - Honda et al. (2010) and citations (Honda 2004, Stevens, etc.): "side cavities" (observed w/MRI) created by tongue bracing
- Many previous studies have looked at bracing, but none during running speech
- Narayanan et al. (1997) found more variation in bracing for in-context vs. sustained speech sounds

Hypothesis: Tongues are *always* braced *somewhere* for biomechanics (reduces DOF)

- McLeod, Roberts, and Sita (2006): conjecture that adults may brace against "the teeth rather than the palate during consonant production" (384)