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Abstracting Images into Continuous Line Artistic Styles

Fernando J. Wong · Shigeo Takahashi

Abstract This paper focuses on the problem of design-

ing and generating illustrations that portray a given

scene with a single non-intersecting line. In this ap-
proach, users partition an image into regions, assigning

a type or style to each of them. Next, a grid is generated

over the drawing space, based on the parameters speci-
fied for each region. The illustration is then obtained in

the form of a path that covers most areas of the grid.

Contrary to previous works, our approach allows users

to control the overall flow of the line throughout any
given region, by providing the means to define tensor

fields per region which directly influence the line orien-

tation. We also extend this work for generating contin-
uous line paintings, a similar style consisting of a single

line that varies in color and thickness while covering the

entire drawing space. This is achieved by transforming
drawings obtained with the above mentioned approach

through a Voronoi-based strategy.

Keywords Continuous Line Art · Line Drawing ·

Image Abstraction · Non-Photorealistic Rendering

1 Introduction

Continuous line illustration (CLI) [29] is a drawing style

consisting of portraying a scene with a single line. Such
drawings are frequently seen in the media, in the form of

advertisements, logos, etc. Despite their restricted na-

ture, these illustrations surprisingly manage to convey

the most important details of a scene with only one line.
The works of contemporary artist J. Eric Morales [18],

for example, portray a single line that varies in density
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as necessary, portraying the features and overall shad-

ing of the scene in question. Apart from purely artistic

purposes, possible applications of CLIs include the gen-
eration of labyrinth patterns [22], digital watermarking

and steganography [8], among others.

Previous works addressed the generation of non-

intersecting CLIs from a purely automatic perspective,

by solving an instance of the traveling salesman prob-
lem (TSP), which is known to be NP-hard [2], on a set

of stippled points [4,15]. While their results are visu-

ally appealing, they often require a significant amount
of points to properly portray the shading of the im-

age, and may not succeed for images with low con-

trast. Moreover, their computation is expensive due to
the complexity of the TSP, even with state-of-the-art

heuristic TSP solvers [3]. The line orientation is also

random in these approaches, as the TSP computes a

tour of minimum length, disregarding any orientation
information. Thus, it is necessary to develop methods

that provide more precise control over the CLI, while

reducing the complexity of the problem.

This work presents a region-based framework for

aiding users in the creation of non-intersecting CLIs.
Users define regions in a given image (Figure 1(a)) and

assign a type to each of them (Figure 1(b)). An ori-

entation field is computed for each region based on its
type, and then a grid oriented according to the field

is generated (Figure 1(c)). All resulting grids are then

combined into a single one that spans across the draw-
ing space. A CLI is modeled as a path of grid cells cov-

ering most of this grid (Figures 1(d) and 1(e)), while

smoothing it prior to its rendering (Figure 1(f)). By

employing this type of region-based approach, we can
better control the orientation, spacing and smoothing

of the line illustration in any given region, which is dif-

ficult to achieve through purely automatic methods.
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CLIs have also evolved into other visual art styles,

such as continuous line paintings (CLP). Apart from
having only one line to depict a scene, the line place-

ment should be chosen carefully so as to match the

borders and colors of the objects represented in these
paintings. In particular, the style of Geoff Slater [26]

seems difficult to reproduce. His paintings consist in

covering the canvas with a line that changes in color
and thickness, while still conveying the borders, colors,

and other features of the scene. Our approach can be

extended to produce CLPs by obtaining a set of walls

that define the line in the painting based on a CLI, and
diffusing colors along both sides of each wall.

This paper is organized as follows: Related work rel-

evant to our research is presented in Section 2. Details
of our CLI design approach are provided in Section 3.

Our strategy for converting CLIs into CLPs is described

in Section 4. Results of our approach are discussed in
Section 5, while Section 6 presents concluding remarks

and possible extensions of our work.

2 Related Work

CLIs are fairly new to computer graphics, with the ear-

liest approaches being less than a decade old. The first

of these works addressed CLI generation as an instance
of the TSP over a set of points derived from the image

intensity as described earlier [4]. A later extension used

modern stippling techniques for improving the point

distribution [15]. These works produced lines that ap-
proximated the shading of the image, in a style similar

to that of Morales [18]. Due to the nature of the TSP,

the line orientation throughout the drawing space was
entirely random in these methods, an issue that is ad-

dressed in this paper. A recent work describes the gen-

eration of CLIs that focus on portraying the image con-
tours instead of its shading [29]. This approach models a

CLI as an Eulerian path in a graph derived from image

edges, and produces lines that contain self-intersections,

while portraying the object contours. However, this ap-
proach does not apply to our case, as we attempt to

produce CLIs that are free of intersections.

CLIs and CLPs also share a relationship with mazes.
For example, methods for evolving sets of curves into

maze-like structures through the iterative use of forces

can bear similar results to CLIs [22]. Also, these draw-
ings could be considered as mazes with no branches.

Maze enthusiast Walter Pullen [23] describes a method

for creating such mazes on square grids, by creating a

maze on the grid and splitting each passage through
the middle. The final maze has twice the dimensions of

the grid, and contains a non-branching path with end-

points adjacent to each other. A similar approach was

(a) Original image (b) User-specified regions

(c) Generated grid (d) Grown cycle

(e) Arbitrary endpoints (f) Final illustration

Fig. 1 Overview of our approach: (a) An input image is (b)
segmented into regions by the users. The strokes seen on some
of these regions define the orientation of the directional field
for the region. (c) A grid is then created based on the orien-
tation field of each region. (d) A cycle covering a majority of
the cells in the grid is generated and (e) optionally converted
into a path with arbitrary endpoints. (f) The CLI is finished
after smoothing the resulting path.

employed recently for the creation of mazes whose so-

lution path resembles a picture [20]. Although effective,

these methods are difficult to apply in our case, due to
the irregular nature of grids created in our approach.

Another work by Wong and Takahashi [28] proposes a

different strategy for generating image-based maze so-
lutions that can be applied to such grids. This approach

creates a solution path by growing and merging cycles

across grid areas corresponding to image features, and

also allows to specify arbitrary endpoints for it. This
paper employs these concepts for CLI generation, as

shown in Figure 10, where we have applied them for

automatically generating CLIs.
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(a) Directional (b) Boundary (c) Gradient (d) Combined

Fig. 2 Types of orientation fields supported by our system: (a) A directional field derived from user-specified strokes forming
an S-shape. (b) Boundary field inferred from the contours of a square region. (c) Gradient field obtained from the features of
an image. (d) The result of combining all three fields together with wRd

= wRb
= wRg

= 1.0.

3 Continuous Line Illustration Design

Our framework takes as input an arbitrary image and

a set of user-specified regions over the image domain.
Users define these regions by clicking and dragging the

mouse over the image, marking the pixels located at

region boundaries, and then specifying a region as an

area enclosed within the marked pixels.

We then compute an orientation field for each region
in order to guide the CLI direction. As it is difficult to

automatically infer fields that capture the region prop-

erties, we provide a variety of basic patterns or types

which can be applied by the users to each region. The
region types allowed by our system are:

– Directional: The field is generated according to the

orientation of user-specified strokes (Figure 2(a)).
– Boundary: The field is oriented according to the re-

gion boundaries (Figure 2(b)).

– Gradient: The field is created based on image fea-
tures in the region (Figure 2(c)).

– Blank: No processing is applied on these regions.

A similar variety of regions was used recently for
the interactive design of painterly animations [19]. This

approach makes use of different techniques for creating

fields for each of these region types, while in our case,
we use a simple unified strategy for computing tensor

fields based on sets of line segments for all region types.

3.1 Orientation Tensor Fields from Line Sets

We compute an orientation field based on a set of seg-

ments S. A tensor with orientation Θ is defined as [31]

O(Θ) =

(

cos(2Θ) sin(2Θ)

sin(2Θ) −cos(2Θ)

)

. (1)

The field defined by S at point p is then given by

T (p, S) =
∑

s∈S

ls

1 + r(p, s)2
× O(Θs), (2)

where ls and Θs are the length and orientation of s, re-
spectively, and r(p, s) is the point-line distance between

p and s. Thus, longer segments have more strength

over the field, while influence decays as the distance
increases.

3.2 Directional, Boundary, and Gradient Fields

For directional regions, we obtain a field from user-
specified strokes in a region R by first subdividing each

stroke into a set of straight line segments SRd
[24,9].

The directional tensor field TRd
is then defined as

TRd
(p) = T (p, SRd

). (3)

This results in smooth tensor fields oriented in the di-

rections specified by the user (Figure 2(a)).

Fields for boundary type regions are defined simi-

larly by computing tensor field

TRb
(p) = T (p, SRb

), (4)

where SRb
is the set of segments that constitute the

boundary of R (Figure 2(b)).

For gradient type fields, we first detect edges in
the image through a flow-based Difference of Gaussians

(FDoG) filter [14]. The FDoG outputs a binarized im-

age in which black regions correspond to edges detected
in the image, which are then processed through a line-

thinning algorithm [12] in order to convert them into a

set of segments SG. Let SRg
⊆ SG denote the subset of

edges detected within region R, then the gradient-type
tensor field TRg

is given by

TRg
(p) = T (p, SRg

). (5)
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This results in a field whose orientation is dictated by

the most important features in the region, while ignor-
ing its minor ones (Figure 2(c)). While the FDoG filter

employed earlier requires a field based on image gradi-

ents, which could be employed instead of this formula-
tion, this field often captures the orientation of a great

number of minor image details, which we would like to

avoid for the purpose of image abstraction.

3.3 Combined Fields

We allow users to perform simple combinations of re-

gion types, in order to provide a level of customization,

while keeping users from dealing with excessive degrees

of freedom in their design (Figure 2(d)). For example,
we can generate fields that are based on image features,

while having a slight bias towards a particular direction.

A combined field for a given region R is defined by:

TRc
(p) = wRd

TRd
(p)

λRd
(p)

+ wRb

TRb
(p)

λRb
(p)

+ wRg

TRg
(p)

λRg
(p)

, (6)

where wRt
is a user-specified weight in the range [0, 1]

that controls the strength of field type t ∈ {d, b, g} in

R, and λRt
(p) is the major eigenvalue of tensor TRt

(p).

Dividing TRt
(p) by λRt

(p) results in an orientation ten-
sor of the same form as Equation (1), which allows us

to linearly combine tensors of different types.

3.4 Grid Generation

We generate grids for each region by making use of
a conventional technique for quad-dominant remesh-

ing [1], which has been used with success in maze gen-

eration [30,28]. Streamlines are traced parallel and per-

pendicular to the orientation field in each region [13].
In order to approximate the shading of the image with

the CLI, during the streamline placement phase, we set

d, the distance between streamlines, as

d(p) = (dmax − dmin)I(p) + dmin, (7)

where dmin and dmax are the minimum and maximum

distance between streamlines, respectively, and I(p) is

the normalized image intensity at point p. We usually
set dmin = 3 pixels and dmax = 15 pixels in our exam-

ples, although these values can be modified per region

by the users. Also, we perform histogram equalization
on the image intensity prior to this step, in order to

have a higher contrast, resulting in a greater variation

in the distance between streamlines.

A grid of the entire image is then created by com-

bining all generated grids (Figure 1(c)). During the grid

creation process, we keep track of which segments cor-

respond to streamlines traced parallel and perpendic-
ular to the field. This information is used in the next

subsection in order to obtain a path in the grid.

3.5 A Path that Covers the Grid

The next step is to find a path of cells spanning all over

the grid (Figure 1(e)). Finding such a path is not triv-

ial, as this is equivalent to computing a Hamiltonian

path on the grid, a known NP-complete problem [10].
As a workaround, we adapt an algorithm for the gener-

ation of maze solution paths based on the growth and

merging of cycles in a grid [28].

3.5.1 Cycle Growth and Merging

The algorithm first computes the dual graph G = (V,E)
of the grid, for which each v ∈ V corresponds to a grid

cell and each e ∈ E to a grid wall. E is then divided

into sets E‖ and E⊥ of edges parallel and perpendicular
to the field, respectively. As G is the dual of the grid,

edges in E‖ correspond to grid walls perpendicular to

the field, while those in E⊥ to walls parallel to it. The

process then splits in two phases: a cycle growth phase
and a cycle merging phase.

(a) (b)

Fig. 3 Cycle growth: (a) Cycle C is grown from edge (c, d)
by (b) removing (c, d) and appending path P (c, d) to C.

(a) (b)

Fig. 4 Cycle merging: (a) Cycles C(u) and C(v) can be
merged from vertices u and v by (b) bridging them with paths
P (u, v) and P (u′, v′).
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During the growing phase, a cycle C is iteratively

grown from an edge (c, d) ∈ C (Figure 3(a)) by replac-
ing it with a shortest path P (c, d) with edges in E \ C

(Figure 3(b)). By applying this process, C grows to

cover as many vertices of G as possible. The algorithm
can be controlled so that cycles tend to grow more in a

particular direction. This is done by assigning a weight

w in range [w
‖
min, w

‖
max] to each edge (c, d) ∈ C ∩ E‖

and in [w⊥
min, w⊥

max] to each (c, d) ∈ C ∩ E⊥. C is then

grown at each step from the edge with lowest w. For the

purposes of CLI generation, we typically set w⊥
min = 0,

w⊥
max = w

‖
min = 1 and w

‖
max = 2, in order to grow cycles

mostly parallel to the field.

If C fails to cover different areas of G, several cycles

can be grown over G and merged into one. Two cycles
C(u) and C(v) (Figure 4(a)), for which C(u) 6= C(v),

can be merged by first finding a shortest path P (u, v)

between two vertices u and v belonging to cycles C(u)
and C(v), respectively. A second path P (u′, v′) between

vertices u′ and v′, for which C(u) = C(u′) and C(v) =

C(v′), is then computed. Cycles C(u) and C(v) are

merged together by opening and bridging them through
P (u, v) and P (u′, v′) accordingly (Figure 4(b)).

3.5.2 Growth and Merging Across Regions

We would like to avoid the cycle from unnecessarily

crossing over the region boundaries, as this lowers the
overall perception of region borders in the CLI. This is

done by restricting the growing phase to vertices within

a region Ri, obtaining a set of disjoint cycles in it. Cy-
cles are then merged within each Ri separately, result-

ing in one cycle per Ri. Finally, the cycles of all regions

are merged into a cycle CG spanning most of G.

We can also convert CG into a path with arbitrary
endpoints p and q, by splitting CG in two paths at p

and q, discarding the shorter one, and ending up with

a path PG(p, q). Cycles can be grown in the now empty

areas and merged with PG(p, q). This is also done per
Ri, by first growing cycles from vertices V \ PG(p, q)

within Ri and merging them with sections of PG(p, q)

crossing over Ri. PG(p, q) thus becomes a path with
endpoints p and q that covers most of G.

Since the process is designed to include as many ver-

tices as possible, PG(p, q) often presents sections resem-

bling square wave patterns, which disturb the line flow
as in the cycle in Figure 1(d). We remove these artifacts

in a post-processing phase. In some cases, the algorithm

fails to cover some areas due to the irregularity of the

grid. For those cases, we allow users to modify the path
by moving, inserting or removing vertices. Finally, the

path is smoothed through a cubic b-spline least squares

fitting algorithm [11]. In general, we smooth the path

more strongly across gradient and boundary type re-

gions, and also vary the thickness and opacity of the
line according to the image intensity. These properties,

however, can be adjusted per region. Readers can refer

to Figure 10 for examples of region-based CLIs gener-
ated using our approach.

4 From CLIs to CLPs

Our strategy for generating continuous line paintings

does not create the line itself, but rather computes the
“walls” defining the line in the CLP. This is a key dif-

ference from CLI approaches, as we cannot generate

(a) Generated CLI (b) CLI Samples

(c) Voronoi diagram (d) Edge removal step 1

(e) Edge removal step 2 (f) Edge removal step 3

Fig. 5 Creating walls for a CLP: (b) Samples are taken at
fixed intervals along (a) a CLI. (c) A Voronoi diagram for
each region is computed from the samples (blank-type regions
are marked in white). (d) Edges between faces of subsequent
samples are removed. (e) Edges whose length is below the
predefined threshold are removed. (f) Edges whose orienta-
tion greatly differs from that of the CLI are removed as well.
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aesthetic CLP styles by simply thickening a CLI, which

could incur in self-overlappings along the line.

A naive approach for obtaining these walls would be

to create a maze grid [30,27] of the drawing space, and

remove grid walls accordingly, until all cells are merged
into a non-branching path covering the grid. However,

finding such a path is NP-complete as stated earlier.

Instead, we devise a strategy for converting CLIs into
CLPs through a Voronoi-based approach.

4.1 Voronoi Diagrams

The first step towards obtaining a set of walls for our
CLPs involves the computation of a Voronoi diagram

for each region Ri. This is done by taking a set of sam-

ples P (Figure 5(b)) at small intervals h of a CLI (fur-

ther explanation is provided in Section 4.2). A diagram
is computed for each Ri, by using the set P ∩ Ri as its

seeds. Voronoi faces are then clipped against the bound-

aries of their respective region. After creating diagrams
for each Ri, we combine them all into one diagram of

the entire drawing space, while respecting the region

boundaries. This new Voronoi diagram VD = (V,E, F )
is a planar graph defined by a set of vertices V , a set

of edges E and a set of faces F (Figure 5(c)).

Although we could theoretically use any of our CLIs

for computing VD, in practice, we raise the values of
dmin and dmax in Equation (7) when generating CLIs

that are meant for creating CLPs, in order to avoid

faces that are too small in size.

4.2 Voronoi Edge Removal

Our goal now is to remove a set of edges in VD in order

to give the appearance of a single line. Edge removal is
performed in three steps.

On the first step, we remove edges separating faces

whose seeds correspond to subsequent sample points
(Figure 5(d)). Let fi ∈ F denote the face defined by

pi ∈ P , the i-th CLI sample taken from the CLI, and

let (fi, fj) ∈ E denote the edge between faces fi and fj .

Then, an edge (fi, fj) is removed from VD if |i− j| = 1.

The above process should merge all faces in VD if

performed correctly, except for those corresponding to

blank-type regions. In order to achieve the desired ef-
fect, the sampling distance h (Section 4.1) should be

chosen so that h < dmin (Equation 7). Otherwise, the

process could fail, as two faces fi, fi+1 ∈ F might be

located too far for an edge (fi, fi+1) ∈ E to exist be-
tween them (Figure 6(a)). In addition, as h becomes

smaller, the remaining edges attain a smoother appear-

ance as shown in Figures 6(b) and 6(c). This is a de-

(a) h = 20 pixels (b) h = 10 pixels (c) h = 3 pixels

Fig. 6 Effects of the CLI sampling distance h on CLPs: The
figure visualizes results of the first edge removal process on
Voronoi diagrams generated with different h values, by show-
ing the remaining edges (white), those removed (gray), the
CLI path (green), region boundaries (red), and CLI samples
(yellow). (a) If h is large, the process might fail to merge all
faces. (b) Reducing h allows all faces to be merged, but a
certain jaggedness is displayed in the remaining edges if h is
higher than the line spacing in the region. (c) These edges
present an increased smooth behavior as h becomes smaller.

sirable trait, as these edges will become the walls that

define the CLP. After testing with different values, we
have found that setting h = 3 pixels and dmin = 5 pix-

els results in smooth curves while avoiding the presence

of unmerged faces.

At this point, the face enclosed within the remain-
ing edges spans the entire space, but it still looks far

from being a line. In particular, there is a high amount

of short branches at points where the underlying CLI
bends. We remove most of these edges as follows: Let

deg(v) denote the degree of vertex v ∈ V , then all edges

(u, v) ∈ E for which deg(u) = 1 or deg(v) = 1, and
whose length is shorter than a given threshold (10 pix-

els in our implementation) are removed (Figure 5(e)).

The final removal step involves the computation of

a tensor field based on the CLI orientation. Let SCLI

denote the segments composing the CLI, then a tensor

field TCLI can be obtained by using Equation (2) as

TCLI(p) = T (p, SCLI). (8)

Let −−→eCLI(p) denote the major eigenvector of TCLI(p),

and −→o (u, v) denote the orientation of edge (u, v) ∈ E.
We remove (u, v) if |−−→eCLI(p)·−→o (u, v)| < cos(Θmax), and

deg(u) = 1 or deg(v) = 1 (Figure 5(f)). Here, Θmax is

the maximum angular difference between the orienta-

tions of the field and the edge in question (Θmax = π
6

in our implementation).

After these operations, the set E contains the edges

that will become walls for the CLP. Let P (u, v) denote
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a path between vertices u, v ∈ V , then the set of walls

is defined as

W = {P (u, v) | deg(u) 6= 2 and deg(v) 6= 2}. (9)

That is, walls are defined as paths between two inter-
sections (deg(v) > 2) or end vertices (deg(v) = 1).

4.3 Coloring the Line

After creating the walls, we apply color to the CLP

itself, i.e. the face within the walls. This is done by
computing left and right colors for each wall w ∈ W

(Figure 7(a)), and treating them as diffusion curves [21].

During the creation of the Voronoi diagram (Sec-
tion 4.1), we assign a color to each face fi ∈ F as

c(fi) = I(pi). That is, the color assigned to a face is

the same as the pixel located at the coordinates of the

sample pi ∈ P defining face fi. The left color at a vertex
v ∈ w is then computed as

Cl(v) =

∑

f∈Fl(v) area(f) × c(f)
∑

f∈Fl(v) area(f)
, (10)

where Fl(v) ⊆ F is the set of Voronoi faces located at

the left of w at vertex v and area(f) is the area of face

(a) Wall colors (b) Diffusion curves

(c) Walls traced on top (d) Final painting

Fig. 7 Rendering a CLP: (a) Left and right colors are defined
for each computed wall, and (b) rendered as diffusion curves.
(c) Wall segments are then traced over the diffused colors. (d)
Users can control the color of the CLP per region, change the
wall thickness, and smooth wall intersections. A blank type
region was specified for the white areas of the bird’s wing in
this example.

f ∈ F . The same formulation is employed for obtaining

the color Cr(v) at the right side of v.

After specifying colors for each wall, we render them

as diffusion curves by employing the GPU-based imple-

mentation described in [21] (Figure 7(b)).

4.4 Adding the Final Details

The painting is finished by tracing the walls on top

of the results obtained in the previous section (Fig-
ure 7(c)). Our system varies the thickness of these walls

so that they are thinner at their endpoints. Also, curved

concave polygons are rendered at wall intersections in
order to remove sharp corners in the CLP. Blank-type

regions are rendered in white, as is the case for the

clouds in Figure 10(c). Optionally, users can adjust the
color and intensity of the image as a whole, or on a per

region basis (Figure 7(d)). Examples of CLPs created

through this approach can be appreciated in Figure 10.

5 Results and Discussion

Our prototype system was implemented in C++ on an

Intel Core 2 Duo E6550 2.33 Ghz CPU with 2 GB of
RAM. The CGAL library was used for the exact com-

putation of grids and Voronoi diagrams [5]. Generating

a CLI from a 1024× 768 image took an average time of
45 seconds on this setup.

Several continuous line art results can be appreci-

ated in Figure 10, while their original images and user-

specified regions are shown in Figures 11 and 12, re-
spectively. All results were created to have endpoints

at the top-left and bottom-right corners. The house

walls and roof in Figures 10(b) and 10(c) are direc-
tional regions, while the grass and sky are combined

directional + gradient regions, giving them a mostly

horizontal orientation but without having a strictly di-

rectional pattern. Boundary regions were assigned to
the dish in Figures 10(e) and 10(f), and the sunflower

in Figures 10(h) and 10(i). Gradient regions were used

in parts where a more organic-like texture was required,
such as in the trees of Figure 10(b) and the background

of the sunflower in Figure 10(h). Blank regions can be

appreciated in the clouds of Figure 10(c), and in the
triangular-shaped structure at the center of the dish

in Figure 10(f). The colors of CLPs in Figure 10 were

adjusted in order to give them a more artistic look.

The proposed method does not assume any restric-

tions on the input image, while the quality of the final
result depends on the segmentation conducted by the

users and on the objects portrayed. If a user defines a

region that is too small or too narrow to grow a cycle, it
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might be excluded from the path, disconnecting it from

the rest of the line. In particular, objects such as trees,
which are difficult to partition into regions, are prone

to such problems. This imposes additional work on the

users, which would have to adjust the path in order to
cover such areas.

CLIs can also be generated automatically by com-

puting the path over a grid derived from edge detection

results. This is equivalent to assigning the entire canvas
as a gradient type region. In these cases, we modify the

cycle growth algorithm to avoid areas with a normalized

intensity over 0.9, in order to better approximate the
image intensity. Figures 10(a), 10(d), 10(g) and 10(j)

show CLI examples created through this approach. Al-

though object borders are often difficult to visualize,
these results are comparable to those of Kaplan and

Bosch [15], as shown in Figure 8. Figure 8(a) consists of

a polyline composed of 8403 points and took 19 seconds

to generate, while Figure 8(b) contains 10000 points
and took 75 seconds. In contrast, the line in Figure 8(c)

has a total of 10056 points and took 13 seconds to cre-

ate. This approach, however, can fail for images con-

(a) Bosch-Herman (b) Kaplan-Bosch (c) Ours

Fig. 8 Method comparison. Top row: Results of Bosch and
Herman [4], Kaplan and Bosch [15] and our approach. Bottom
row: The same CLIs after smoothing, modulating opacity and
varying the line thickness.

Fig. 9 CLI generation can fail with images containing too
many small details. The problem is worsened in this case as
many details are contained in areas of high intensity, for which
the line spacing is higher, and resulting in CLIs that are dif-
ficult to recognize.

taining many small details in areas of high intensity as

shown in Figure 9, resulting in CLIs with reduced aes-
thetic appeal that are also difficult to recognize. This

is due to the irregularity of the generated grid in such

areas, coupled with the increased line spacing assigned
to brighter sections of the image. However, this could

be addressed by making use of the region-based CLI

design approach described earlier.

6 Conclusions

We have introduced a user-guided approach for creating
CLIs. Users segment an image into regions, and a grid

is generated for each of them based on orientation ten-

sor fields derived from user-specified parameters. A CLI
is derived from a cycle obtained through the iterative

growth and merging of cycles in the grid. The process

is biased to encourage cycle growth in directions paral-

lel to the field, and the cycle can be transformed into
a path with arbitrary endpoints as well. Our approach

generates CLIs whose orientation is determined by user-

specified region types, as opposed to [4] and [15], where
the line orientation was random.

We have also extended this approach for creating
CLPs, by computing an appropriate set of walls that

define the line painting, based on a previously obtained

CLI. For this purpose, a Voronoi diagram is computed
according to the CLI, and the walls are obtained by re-

moving Voronoi edges accordingly. Coloring of the line

takes place by computing and diffusing colors from both
sides of each wall.

As future work, we would like to explore applica-
tions of our techniques for addressing similarly con-

strained artistic styles, for example, by placing text

along the CLI [17], mapping panoramas or image collec-

tions to the line, or creating optical illusions by placing
repeated asymmetric patterns along the curve [6]. The

user interface of our system is rather primitive, requir-

ing a lot of effort from the users for specifying regions
in the image. We plan to address this by implement-

ing more sophisticated interactive segmentation tech-

niques based on graph cuts [16,25]. We also seek to
improve our CLPs by developing better methods for

wall removal, as well as implementing additional fea-

tures such as automatic color correction and harmo-

nization for each region [7].
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Fig. 10 Continuous line art results. Left: Automatically generated CLIs. Center: Region-based CLIs. Right: CLP results.

References

1. Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Des-
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