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ABSTRACT
Transformer has dominated the field of natural language process-

ing because of its strong capability in learning from sequential

input data. In recent years, various computing and networking op-

timizations have been proposed for improving transformer training

efficiency. However, transformer inference, as the core of many AI

services, has been seldom studied. A key challenge of transformer

inference is variable-length input. In order to align these input,

existing work has proposed batching schemes by padding zeros,

which unfortunately introduces significant computational redun-

dancy. Moreover, existing transformer inference studies are sepa-

rated from the whole serving system, where both request batching

and request scheduling are critical and they have complex inter-

action. To fill the research gap, we propose TCB, a Transformer

inference system with a novel ConcatBatching scheme as well as

a jointly designed online scheduling algorithm. ConcatBatching

minimizes computational redundancy by concatenating multiple

requests, so that batch rows can be aligned with reduced padded

zeros. Moreover, we conduct a systemic study by designing an on-

line request scheduling algorithm aware of ConcatBatching. This

scheduling algorithm needs no future request information and has

provable theoretical guarantee. Experimental results show that TCB

can significantly outperform state-of-the-art.
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1 INTRODUCTION
Transformer, as a kind of emerging deep learning models [12, 20,

27, 32, 35], has shown great power in applications related to nat-

ural language processing (NLP). It overwhelms competitors, e.g.,

Recurrent Neural Networks (RNNs) [7, 17], in both accuracy and

training efficiency, thanks to its unique self-attention mechanism.

Transformer ignites not only the machine learning community but
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also system research. There has been many existing work that im-

proves transformer’s training efficiency by exploiting its unique

computation and communication patterns. For example, Zhang et

al. [37] propose to reduce training overhead by adaptively dropping

some unimportant layers. Chen et al. [6] find that a significant com-

putation cost of the transformer comes from attention operations

and propose an attention-aware pruning design to remove some

weights. The communication efficiency of transformer training

has been studied by [18], which points out that a key bottleneck

of transformer’s training is the data movement and proposes an

optimization based on dataflow analysis.

Despite great efforts at optimizing transformer training, little

attention is devoted to accelerating transformer inference, which

plays a critical role in NLP-related serving systems. These serv-

ing systems, which usually reside in cloud, receive inference re-

quests from end users and should make responses with low latency.

However, existing transformer inference methods are not efficient,

mainly because of input of variable lengths. The variable-length in-

put is very common in NLP-related services. For example, language

translation services receive requests in the form of sentences, and

obviously these sentences are with different lengths. A common

optimization to increase inference efficiency is to batch several

requests, which are further described as multi-dimensional tensors

that can be processed by GPUs with high efficiency. When batch-

ing, short requests need to be zero-padded so that they can align

with long ones in the same batch. An example is shown in Fig. 1(a),

where the batch row length is fixed and shorter requests are padded

with zeros.

This is the default batching scheme adopted by popular machine

learning platforms (e.g., PyTorch), and it is referred to as Naive-

Batching in this paper. Zero-padding wastes GPU memory and

brings extra computation. To reduce the overhead incurred by zero-

padding, Fang et al. [14] have proposed a length-aware batching

scheme, called TurboBatching, which reorders requests according

to their lengths and batches the ones of similar length, as shown in

Fig. 1(b). Such a length-aware batching scheme can significantly

reduce padded zeros, only if it is fed by a sufficient number of

requests with similar length. However, the requests received by

serving systems could be quite different in length, which makes the

length-aware batching scheme cannot always play its full power.

For example, TurboBatching has low GPU utilization on several

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Different batching schemes.

datasets, e.g., ParaCrawl [3] and DIA [33], whose workloads are

highly variable in length.

Another issue of existing work is the lack of request schedul-

ing policies, with tight integration with request batching schemes.

Request scheduling policies determine which requests should be

served first, while batching schemes decide how they can be served.

They are separately studied in [11, 24, 38] and [8, 10, 14], respec-

tively. Request scheduling and batching have complex interaction,

which unfortunately has not been well exploited by existing work.

In this paper, we propose TCB, a fast Transformer inference sys-

tem that integrates a novel batching scheme called ConcatBatching
and an online request scheduling algorithmwith theoretical guaran-

tee. As illustrated in Fig. 1(c), the proposed ConcatBatching scheme

concatenates several requests so that they can be accommodated

within a single batch with less padded zeros. Compared to other

two batching schemes, ConcatBatching is more flexible and is able

to handle requests with arbitrary length distributions.

Although ConcatBatching is promising, we need to address two

challenges to make it work correctly and efficiently in practice.

First, existing transformer inference systems do not support re-

quest concatenation, so we need to modify the inference algorithm

to distinguish requests concatenated in the batch row, so that we

can get correct inference results. Second, serving system efficiency

is also affected by request scheduling algorithms, which determine

when and which requests should be batched and sent to GPU. We

desire an algorithm that can fully exploit the potential capacity of

ConcatBatching, while being aware of request deadlines to guaran-

tee a certain level of service quality.

TCB conquers both challenges with a modular design that con-

sists of a runtime supporting ConcatBatching and a plugable sched-

uler module. Different from traditional transformer inference, TCB

runtime customizes the positional encoding and the self-attention

operation to guarantee the correctness of inference results. More-

over, by carefully examining the inference process, we find that

there exists some redundant computation brought by ConcatBatch-

ing. Thus, we propose an enhancement to eliminate the redundancy,

so that the inference can be further speed up. Based on this run-

time, we study a request scheduling problem with the objective of

maximizing the number of requests responded by their deadlines.

An online algorithm has been designed and implemented in the

scheduler module. We also derive its theoretical bound. Thanks to

the joint design of ConcatBatching runtime and the scheduler, TCB

can significantly outperform existing works, as demonstrated by

our experimental results .

The rest of this paper are organized as follows. We introduce the

background and related work in Section 2. TCB system overview is

Figure 2: Transformer-based language model computation
process.

given in Section 3, followed by inference engine design and sched-

uling algorithm in Section 4 and Section 5, respectively. Finally, we

evaluate TCB system in Section 6 and conclude our work in Section

7.

2 BACKGROUND AND RELATEDWORK
2.1 Transformer Model
Transformer has beenwidely studied for language processing [5, 28–

30]. It adopts an encoder-decoder architecture, which takes a sen-

tence of multiple words (also called tokens) as input and generates

a task-related result, such as a translated sentence, as output. Typi-

cally, transformer inference is conducted in a mini-batch manner,

which feeds multiple sentences to the transformer model for in-

ference simultaneously. A typical transformer inference process is

illustrated in Fig. 2. In the preprocessing stage, a mini-batch of sen-

tences, denoted by 𝐼 , are first transferred into feature embeddings

𝑋 , where each word is represented by a feature vector. The word

position information can also embeded via positional encoding [32]

as

𝑃𝐸 (𝑝𝑜𝑠, 2𝑒) = sin(𝑝𝑜𝑠/10000
2𝑒/𝑑𝑚𝑜𝑑𝑒𝑙 ) (1)

𝑃𝐸 (𝑝𝑜𝑠, 2𝑒 + 1) = cos(𝑝𝑜𝑠/10000
(2𝑒+1)/𝑑𝑚𝑜𝑑𝑒𝑙 ) (2)

where 𝑝𝑜𝑠 is the position of the word in the sentence, 𝑒−th dimen-

sion of sinusoidal positional encoding corresponds to a sinusoid,

and 𝑑𝑚𝑜𝑑𝑒𝑙 is the dimension of the feature embeddings. In the

inference stage, these embeddings are sent to the encoder and de-

coder, each of which contains 𝑆 layers. Each encoder or decoder

layer includes the self-attention computation, followed by a feed-

forward network to enhance model performance. Decoder outputs

go through a final linear layer and activation function to generate

final results.

The core of transformer is the self-attention computation. Given

feature embeddings 𝑋 , the first step of self-attention computation

is to create the query matrix 𝑄 , the key matrix 𝐾 , and the value

matrix 𝑉 as follows.

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉 , (3)
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Figure 3: System overview

where𝑊𝑄
,𝑊𝐾

and𝑊𝑉
are weight matrices. The second step is

to compute the self-attention as:

Att(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇
√
𝑑

)
𝑉 , (4)

where

√
𝑑 is a scaled parameter.

A plethora of works [16, 23, 25, 31, 34] have been proposed

to improve transformer computation efficiency. At the hardware

level, ELSA [16] has been proposed as a specialized accelerator

for approximate self-attention computing. Moreover, Softermax,

proposed by [31], is an accelerator that is able to reduce computa-

tional cost of the softmax operation. At the software level, Yan et

al. [34] reconstruct self-attention computation to avoid the linear

conversion of keys and values, which brings a significant speedup.

Li et al. [23] propose a token-level pipeline algorithm to improve

the efficiency of the training transformer-based language models.

Meanwhile, Narayanan et al. [25] introduce a novel interleaved

pipelining mechanism to improve the throughput for training large-

scale transformer-based models. A unique feature of transformer

for language processing is variable-length input. Fang et al. [14]

have proposed TurboTransformer, an online serving system that

adopts a length-aware dynamic programming batching mechanism

to mitigate the redundant computations. Despite the improvement

brought by TurboTransformer, it heavily relies on the assumption

that arrived requests have similar lengths and and it does not in-

volve a dedicated scheduling algorithm for online services.

2.2 Online Request Scheduling
In practical serving systems, inference requests arrive in an online

manner. Therefore, designing online scheduling mechanisms has a

profound implication for guaranteeing the system performance and

quality of service. Many online scheduling algorithms have been

proposed to solve various problems in machine learning systems

[8–10, 13, 15, 19, 21, 22, 36]. For example, Li et al. [22] introduce

AutoDeep, which strategically decides the device placements and

cloud configurations for online inference tasks through Bayesian

Optimization and deep reinforcement learning. RIBBON is intro-

duced by [21], which also adopts a Bayesian Optimization-driven

strategy to employ heterogeneous cloud computing instances to

minimize inference costs. A novel ahead-of-time (AoT) scheduling

has been proposed to improve inference speed [19]. Prema [9] pur-

suits to balance multiple serving metrics, such as latency, fairness,

and service level agreement (SLA), through a predictive scheduling

algorithm under the preemptive NPUs environment. Choi et al.

[8] propose LazyBatching, an SLA-aware DNN inference system

that adopts fine-grained scheduling and batching. However, these

works are inefficient for transformer-based inference tasks since

they ignore properties of transformers with variable-length input.

3 SYSTEM OVERVIEW
A system overview of TCB is shown in Figure 3. TCB resides be-

tween machine learning frameworks (e.g., TensorFlow [2] or Py-

Torch [26]) and user applications. It receives inference requests,

usually in the form of sentences, from user applications and process

them using two core modules: a request scheduler and a customized

inference engine. Each request contains a sentence to be processed,

associated with an arriving time and a desired response deadline.

When GPU is idle, the scheduler packs some received requests into

a batch and sends it to the inference engine. A request scheduling

algorithm is designed to decide which requests should be batched

together, by jointly considering request concatenation, request dead-

lines and running speed of inference engine. The inference engine

is responsible for running the transformer inference computation

in GPUs. Since multiple requests are concatenated, the default infer-

ence algorithm adopted by PyTorch or TensorFlow would generate

wrong results. Therefore, we customize the self-attention compu-

tation process to guarantee inference correctness. In addition, we

have examined and identified the computation redundancy due

to request concatenation and proposed a “slotted” design that is

able to reduce such redundancy to further accelerate the inference

computation. The design details of inference engine and request

scheduler are given in the following sections.

4 CONCATBATCHING INFERENCE ENGINE
In this section, we first present a customized inference engine design

that supports arbitrary concatenation of requests in a batch, which

is referred to as pure ConcatBatching. Then, we further reduce

computation redundancy by proposing a slotted ConcatBatching
scheme, where a batch is divided into several slots and requests

can be concatenated within each slot. Conceptually, the difference

between two schemes can be illustrated by Fig. 4.

4.1 Pure ConcatBatching
The TCB inference engine enabling pure ConcatBatching follows

traditional transformer inference process, as shown in Fig. 2, but it

customizes the following two key components, which are crucial

for generating correct inference results.
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Figure 4: The difference between pure ConcatBatching and
slotted ConcatBatching.

4.1.1 Separate positional encoding. Position or order of words (or

tokens) in a sentence is critical for transformer to understand the

language. Positional encoding (PE) [32] has been proposed to in-

corporate word order into the transformer model. The default posi-

tional encoding scheme in traditional transformer treats all words

in a batch row as a single sentence and encodes them accordingly, as

shown in Fig. 5(a). This default scheme cannot be directly applied

in TCB, because words of different sentences concatenated in a

batch row have no order relationship. Therefore, we customize the

positional encoding in TCB by encoding these sentences separately.

The separate positional encoding can be illustrated in Fig. 5(b).

4.1.2 Customized self-attention. Self-attention is the most critical

computation in the transformer inference. TCB customizes self-

attention computation to guarantee correct inference results. For

easy understanding, we use a single batch row to present the self-

attention computation process, which is illustrated in Fig. 6. We

suppose that𝑚 requests are concatenated in this row, and corre-

sponding feature embeddings are denoted by X = [𝑋1, 𝑋2, ..., 𝑋𝑚].
Similar with traditional self-attention computation, we transfer X
into query, key and valuematrices asQ = X·𝑊𝑄 = [𝑄1, 𝑄2, ..., 𝑄𝑚],
K = X ·𝑊𝐾 = [𝐾1, 𝐾2, ..., 𝐾𝑚] andV = X ·𝑊𝑉 = [𝑉1,𝑉2, ...,𝑉𝑚],
respectively.

Note that X contains several parts and 𝑋𝑖 corresponds to a re-

quest. Accordingly, matrices Q, K andV have similar structures.

After that, we compute the self-attention as follows.

Att_CB(Q,K,V) = softmax

(
QK𝑇
√
𝑑
+M

)
V (5)

whereM is a mask matrix defined as follows:

M =

{
0, ∀entries at 𝑄𝑖𝐾𝑇𝑖 , 1 ≤ 𝑖 ≤ 𝑚;

−∞, otherwise.
(6)

The major difference between the customized self-attention (5)

and the original one (4) is that we use a special matrixM to mask

redundant parts introduced by request concatenation. This masking

operation is necessary to guarantee correct inference. We explain

the reason by showing the details of score matrix
QK𝑇
√
𝑑

as follows.

QK𝑇
√
𝑑

=

©­­­«
𝑄1𝐾

𝑇
1

𝑄1𝐾
𝑇
2
· · · 𝑄1𝐾

𝑇
𝑚

𝑄2𝐾
𝑇
1

𝑄2𝐾
𝑇
2
· · · 𝑄2𝐾

𝑇
𝑚

· · · · · · · · · · · ·
𝑄𝑚𝐾

𝑇
1

𝑄𝑚𝐾
𝑇
2
· · · 𝑄𝑚𝐾

𝑇
𝑚

ª®®®¬ /
√
𝑑 (7)

(a) Traditional positional encoding.

(b) TCB’s separate positional encoding.

Figure 5: TCB’s separate positional encoding for a batch row.

Since we care about intra-sentence attention, not the inter-sentence

one, only the main diagonal entries, e.g.,𝑄𝑖𝐾
𝑇
𝑖
, in the above matrix

is useful for generating final results. Therefore, we conduct a mask

operation that changes all off-diagonal entries to −∞, so that they

are eliminated from the next softmax operation.

4.2 Slotted ConcatBatching
To motivate the design of slotted ConcatBatching, we first take a

look at the final step of the self-attention computation in Fig. 6,

where the matrixA is multiplied by the value matrixV . We notice

that many entries in matrix A are redundant, but they are still

involved in the subsequent softmax and multiplication operations.

Although our maskmatrixM can eliminate their negative influence

on the final result, they occupy extra GPUmemory spaces andwaste

GPU computing resources.

4.2.1 A new self-attention operation aware of slots. To further im-

prove the inference efficiency, we propose a new self-attention

operation that divides matrices Q,K , andV into several slots, each

of which represents a sentence or a group of sentences. We let Q𝑖 ,
K𝑖 , andV𝑖 to denote each slot. The new self-attention operation

can be formally described as

Att_CB_S(Q,K,V) = Concat

{
softmax

(
Q𝑖K𝑇𝑖√

𝑑
+M𝑖

)
V𝑖 ,∀𝑖

}
.

(8)

The corresponding computing process is illustrated in Fig. 7.

We omit the generation of Q, K , andV because it is similar with

that in Fig. 6. These slots can be computed by GPU in parallel,

with reduced redundancy compared with Fig. 6. Finally, we use a

Concat() function to combine results to generate a single output.

Note that multiple short requests can be concatenated in each slot

if they do not exceed the slot length limit, just like what we have
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Figure 6: Customized self-attention for request concatena-
tion. Step 1: The input feature matrix X is transferred into
Q, K , andV matrices; Step 2: A score matrix is calculated by
taking the dot product of Q and K𝑇 ; Step 3: The redundant
parts of the score matrix are masked; Step 4: A softmax oper-
ation is conducted, followed by the multiplication withV.

done for pure request concatenation. The benefit of slotted request

concatenation is to remove the redundancy among slots, which

suggests that the redundancy may exist within each slot.

Slotted request concatenation brings additional challenge about

slot length, which constrains the longest requests we can deal with

in each batch. Moreover, slot length affects request scheduling and

we will study it in the next section.

4.2.2 Early memory cleaning. During inference, a batch, no matter

with or without request concatenation, and its intermediate data

are kept in GPUmemory until inference results are generated. After

obtaining all results, we clean the GPU memory by removing data

related to the current batch and load the next batch.

An important observation in our experiments is that inference

results of requests in a batch are generated at different time because

the decoder is an auto-regressive model. A straightforward idea to

improve GPU memory efficiency is to remove the data of requests

whose results are generated, instead of waiting the completion

of whole batch inference. In such a way, GPU memory cleaning

overlaps with inference process, bringing additional performance

improvement.

Unfortunately, this idea does not work under ConcatBatching.

The memory management operations, e.g., allocating or deleting,

Figure 7: Slotted self-attention for request concatenation.
The generation of Q, K , andV matrices is similar with that
in Fig. 6 and we omit it for space saving. Different slots can
run self-attention computation in parallel.

should be conducted in units of tensors. In ConcatBatching, request

data do not aligned and we cannot separate the ones whose results

are generated.

Slotted ConcatBatching provides the chances of early memory

cleaning. Slots are independent and they can be easily separated

into different tensors. We remove data of slots after generating

their inference results. Meanwhile, released GPU memory can be

allocated to the next batch, so that its data loading can overlap with

the current batch’s inference.

5 REQUEST SCHEDULING
The scheduler receives requests from user applications, packs them

into batches and sends batches to the inference engine. The core of

this module is a scheduling algorithm that decides which requests

should be packed into a batch. In this section, we first formulate a

scheduling problem and then present an algorithm with theoretical

performance guarantee. Note that this is a pluggable module and

the algorithm can be flexibly replaced with other ones with different

goals.

5.1 Problem Statement
We consider a set 𝑁 of requests that arrive in different time. Each

request 𝑛 ∈ 𝑁 is associated with an arriving time 𝑎𝑛 , a deadline

𝑑𝑛 , and a sentence of length 𝑙𝑛 . Each request can only be scheduled

after its arrival and before its deadline. The TCB’s running time can

be divided into slots, each of which corresponds the inference time

of a batch. Each batch has 𝐵 rows and each row can accommodate

at most 𝐿 words. Note that 𝐵 and 𝐿 are system parameters that can

be adjusted. By fixing 𝐵 and 𝐿, all batches have the same workloads

and their inference time is similar.

We define a variable 𝑥𝑡𝑘𝑛 to denote whether request 𝑛 ∈ 𝑁 is

put into the 𝑘-th row of the batch scheduled at time 𝑡 . We define

the utility value of request 𝑛 as 𝑣𝑛 ≜
1

𝑙𝑛
. A request fails if it is not

scheduled before its deadline, and its utility value is zero. With the

objective of maximizing the total utility of scheduled requests, we
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Algorithm 1 Online Deadline-Aware Scheduling Algorithm (DAS)

1: function DAS(𝑁𝑡 , 𝐿)

2: 𝐻𝑡𝑘 ← ∅, for 𝑘 = 0, 1, ..., 𝐵 − 1

3: for each batch row 𝑘 = 0, 1, ..., 𝐵 − 1 do
4: if

∑
𝑛∈𝑁𝑡

𝑙𝑛 ≤ 𝐿 then
5: Put 𝑁𝑡 into the current batch row;

6: else
7: Sort requests in 𝑁𝑡 according to their utility in a non-

increasing order to generate a sequence 𝑁𝑡 ;

8: Compute 𝑠𝑡𝑘 , so that the first 𝑠𝑡𝑘 request in sequence 𝑁𝑡
can saturate the current batch row;

9: 𝑁𝑈𝑡 ← the first 𝑝𝑡𝑘 tasks in 𝑁𝑡 , where 𝑝𝑡𝑘 ≤ 𝑠𝑡𝑘 ;
10: Put 𝑁𝑈𝑡 into the current batch row;

11: 𝑁𝐷𝑡 ← tasks in 𝑁𝑡 − 𝑁𝑈𝑡 whose utility is no less than

𝑞𝑣 (𝑁𝑈𝑡 );
12: Sort requests in 𝑁𝐷𝑡 according to deadlines and greedily

put them into the current batch;

13: if 𝑁𝐷𝑡 cannot saturate the current batch then
14: Greedily put rest requests in 𝑁𝑡 − 𝑁𝑈𝑡 − 𝑁𝐷𝑡 ;

15: end if
16: end if
17: end for

formulate a scheduling problem as follows.

max

∑︁
𝑛∈𝑁

𝑣𝑛 (
∑︁
𝑡 ∈𝑇

𝐵−1∑︁
𝑘=0

𝑥𝑡𝑘𝑛 ) (9)

s.t.

∑︁
𝑡

∑︁
𝑘

𝑥𝑡𝑘𝑛 ≤ 1,∀𝑛 ∈ 𝑁, (10)∑︁
𝑛

𝑙𝑛𝑥
𝑡𝑘
𝑛 ≤ 𝐿,∀𝑘 ∈ [0, 𝐵 − 1], 𝑡 ∈ 𝑇, (11)

𝑥𝑡𝑘𝑛 = 0,∀𝑛 ∈ 𝑁 and 𝑡 ∉ [𝑎𝑛, 𝑑𝑛], (12)

𝑥𝑡𝑘𝑛 ∈ {0, 1},∀𝑘 ∈ [0, 𝐵 − 1], 𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 . (13)

Constraint (10) indicates that each request can be processed once

at most. Constraint (11) means that the total length of requests

concatenated in each row cannot exceed the limit 𝐿. The final

constraint (12) represents that task 𝑛 can not be scheduled out of its

available time interval [𝑎𝑛, 𝑑𝑛]. The above formulation is a mixed-

integer linear programming, which is in general NP-hard, even with

information of all requests. In practice, we have no knowledge about

future requests, which motivates us to design an online heuristic

algorithm.

5.2 Scheduling Algorithm for Pure
ConcatBatching

A straightforward idea to maximize total utility is to always sched-

ule requests with higher utility. However, requests are also con-

strained by their deadlines, and some urgent ones with lower utility

may loss scheduling chances. Therefore, we are motivated to design

an algorithm by jointly considering utility values and deadlines.

The proposed scheduling algorithm, called DAS, is described as

a function whose pseudo codes are shown in Algorithm 1. This

function is invoked at the beginning of each time slot 𝑡 . Fed by a

set 𝑁𝑡 of waiting tasks, this function returns a batch 𝐻𝑡 of requests

that are sent to GPU for inference in time slot 𝑡 . Note that requests

that have arrived but been not scheduled by their deadlines are

excluded from 𝑁𝑡 .

For each batch row 𝑘 , this function initializes 𝐻𝑡𝑘 as an empty

set and then chooses requests. If all requests in 𝑁𝑡 can be accom-

modated into the current batch row, i.e.,

∑
𝑛∈𝑁𝑡

𝑙𝑛 ≤ 𝐿, we put

them into 𝐻𝑡𝑘 and return it to finish this function. Otherwise, we

need to select a subset of requests from 𝑁𝑡 , which could be more

challenging since we need to jointly consider request utility and

deadlines, as motivated above. We sort requests in 𝑁𝑡 according to

their utility values in a non-increasing order to generate a sequence

𝑁𝑡 . The first 𝑠𝑡𝑘 requests in 𝑁𝑡 can be accommodated in the current

batch row. We divide 𝑁𝑡 into three parts, each of which represents

different preference on utility or deadlines, as illustrated in Fig. 8.

The first part, denoted by 𝑁𝑈𝑡 , consists of the first 𝑝𝑡𝑘 tasks in 𝑁𝑡 ,

where 𝑝𝑡𝑘 = 𝜂𝑠𝑡𝑘 and 𝜂 ∈ (0, 1) is a system parameter. We also call

𝑁𝑈𝑡 a utility-dominant set since we choose them because of their

high utility values. Note that 𝜂 is a tunable system parameter and

𝑝𝑡𝑘 ≤ 𝑠𝑡𝑘 .
The second part, which is denoted by 𝑁𝐷𝑡 , includes rest requests

whose utility is no less than 𝑞𝑣 , where 𝑣 is the average utility of

requests in 𝑁𝑈𝑡 and 𝑞 ∈ (0, 1) is another tunable system param-

eter. The 𝑁𝐷𝑡 is referred to deadline-aware set, since we choose

requests from it by a deadline-preference strategy. To guarantee

the total utility, we let 𝜂 + 𝑞 = 1. Specifically, we sort requests in

𝑁𝐷𝑡 according to their deadlines and greedily choose the ones with

closer deadlines. If𝑁𝐷𝑡 can saturate the current batch, the algorithm

returns. Otherwise, we continue to pick requests from the rest set,

i.e., 𝑁𝑡 − 𝑁𝑈𝑡 − 𝑁𝐷𝑡 .

Theorem 5.1. Algorithm 1 is 𝜂𝑞
𝜂𝑞+1 -competitive.

Proof. Some key steps of proving this theorem are as follows.

Due to the space limitation, we put the complete proof in our

technical report [1].

Step 1: Dual problem setup. According to Fenchel duality [4],

we can write the dual problem of the primal problem (9) as follows:

D(𝜆) = max

𝑥 ∈X

∑︁
𝑛,𝑡,𝑘

𝑥𝑡𝑘𝑛 𝜆
𝑡𝑘
𝑛 −min

𝑥 ∈X

{ ∑︁
𝑛,𝑡,𝑘

𝑥𝑡𝑘𝑛 𝜆
𝑡𝑘
𝑛 −

∑︁
𝑛

𝑣𝑛 (
∑︁
𝑡,𝑘

𝑥𝑡𝑘𝑛 )
}

= max

𝑥 ∈X

{∑︁
𝑛,𝑡,𝑘

𝑣𝑛𝑥
𝑡𝑘
𝑛 −

∑︁
𝑛,𝑡,𝑘

𝑥𝑡𝑘𝑛 𝜆
𝑡𝑘
𝑛

}
+max

𝑥 ∈X

∑︁
𝑛,𝑡,𝑘

𝑥𝑡𝑘𝑛 𝜆
𝑡𝑘
𝑛 (14)

≤
∑︁

𝑛:𝑣𝑛≥𝜆𝑛
(𝑣𝑛 − 𝜆𝑛) +max

𝑥 ∈X

∑︁
𝑛,𝑡,𝑘

𝑥𝑡𝑘𝑛 𝜆𝑛 (15)

where 𝑣𝑛 = 1

𝑙𝑛
, as defined in Section 5.1,X is the domain of 𝑥 limited

by constraints (10)-(12), and 𝜆 is the dual variable. Since 𝑥𝑡𝑘𝑛 is a

binary variable and

∑
𝑡,𝑘 𝑥

𝑡𝑘
𝑛 ≤ 1, we can set 𝜆𝑡𝑘𝑛 = 𝜆𝑛 for all 𝑡 and

𝑘 .

We have (15) since

∑
𝑛:𝑣𝑛<𝜆𝑛 (𝑣𝑛−𝜆𝑛)

∑
𝑡,𝑘 𝑥

𝑡𝑘
𝑛 ≤ 0 and

∑
𝑡,𝑘 𝑥

𝑡𝑘
𝑛 ≤

1.

Step 2: Problem conversion. To obtain the competitive ratio 𝛼 ,

we need to prove:

𝐴𝐿𝐺 ≥ 𝛼𝑂𝑃𝑇, (16)
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where 𝐴𝐿𝐺 is the solution of DAS and 𝑂𝑃𝑇 is the optimal solution.

However, its hard to obtain the optimal solution due to the NP-

hardness of primal problem. Thanks to the dual property that each

feasible solution 𝜆 of the dual problem gives an upper bound of

the optimal solution, i.e., 𝑂𝑃𝑇 ≤ D(𝜆), we can converse the above

problem to find the 𝛼 as:

D(𝜆) ≤ 1

𝛼
𝐴𝐿𝐺 (17)

Thereby, we converse the proof problem to find the 𝛼 to satisfy (17).

Step 3: Scaling proof. Now we introduce how to find the relation-

ship between D(𝜆) and 𝐴𝐿𝐺 . The key idea is setting the suitable

dual parameter 𝜆 to build the relationship between D(𝜆) and 𝐴𝐿𝐺 .
Concisely, we set 𝜆𝑛 ≤ 𝑣𝑛 for each task 𝑛 in 𝐻 and 𝜆𝑛 ≥ 𝑣𝑛 for

tasks not in𝐻 , where𝐻 is chosen task set by Algorithm 1. By doing

this, we can replace

∑
𝑛:𝑣𝑛≥𝜆𝑛 (𝑣𝑛−𝜆𝑛) by

∑
𝑛∈𝐻 (𝑣𝑛−𝜆𝑛) and build

the relationship between D(𝜆) and 𝐴𝐿𝐺 . Before introducing the

specific settings of 𝜆, we first give some necessary definitions.

As defined in Algorithm 1, we denote the the utility-dominant

task set and deadline-aware task set in 𝑘-th row at time slot 𝑡 by

𝑁̃𝑈
𝑡𝑘

and 𝑁̃𝐷
𝑡𝑘
, respectively. Given a solution 𝐻𝑡𝑘 from Algorithm 1,

we define 𝐻𝑡𝑘 [1] = 𝑁̃𝑈𝑡𝑘 ∩𝐻𝑡𝑘 and 𝐻𝑡𝑘 [2] = 𝐻𝑡𝑘 −𝐻𝑡𝑘 [1], for all 𝑘
and 𝑡 . We have 𝑝𝑡𝑘 = |𝐻𝑡𝑘 [1] |, and we define 𝑗𝑡𝑘 = |𝐻𝑡𝑘 [2] |. Then,
we set the dual variables 𝜆 according to three cases as follows:

(1) For 𝑛 ∈ 𝐻𝑡𝑘 [1],∀𝑡, 𝑘 , we set 𝜆𝑛 = 0;

(2) For 𝑛 ∈ 𝐻𝑡𝑘 [2],∀𝑡, 𝑘 , we set 𝜆𝑛 = min{𝑣𝑛, ˆ𝜆}, where ˆ𝜆 =

max{𝜆𝑛 |𝑛 ∈ 𝑁̃𝐷𝑡𝑘 and 𝑛 ∉ 𝐻𝑡𝑘 };
(3) For 𝑛 ∉ ∪𝑡,𝑘𝐻𝑡𝑘 , we set 𝜆𝑛 = 𝑣𝑛 .

Note that for each task 𝑛 ∈ ∪𝑡,𝑘𝐻𝑡𝑘 , it has 𝑣𝑛 ≥ 𝜆𝑛 . For task 𝑛

in 𝐻𝑡𝑘 [2], it has 𝜆𝑛 = 0 when 𝑁̃𝐷
𝑡𝑘
− 𝐻𝑡𝑘 = ∅, i.e., all tasks in

deadline-aware set have been chosen. Moreover, we denote 𝜆𝑡𝑘
max

=

max𝑛{𝜆𝑛 |𝑛 ∈ 𝑁̃𝑡𝑘 } to represent the maximum of 𝜆 for available

tasks for time slot 𝑡 and row 𝑘 , where 𝑁̃𝑡𝑘 is the sorted available

tasks set in 𝑘-th row at time slot 𝑡 . Based on the given 𝜆, the dual

problem (15) can be rewritten as:

D(𝜆) ≤
∑︁

𝑛:𝑣𝑛≥𝜆𝑛
(𝑣𝑛 − 𝜆𝑛) +max

𝑥 ∈X

∑︁
𝑛,𝑡,𝑘

𝑥𝑡𝑘𝑛 𝜆𝑛

= 𝑉 −
∑︁
𝑛∈𝐻

𝜆𝑛 +
∑︁
𝑡,𝑘

𝑠𝑡𝑘

|𝐻𝑡𝑘 |
|𝐻𝑡𝑘 |𝜆𝑡𝑘max

= 𝑉 +
∑︁
𝑡,𝑘

∑︁
𝑛∈𝐻𝑡𝑘

( 𝑠𝑡𝑘|𝐻𝑡𝑘 |
𝜆𝑡𝑘

max
− 𝜆𝑛) (18)

where 𝑠𝑡𝑘 represents the first 𝑠𝑡𝑘 tasks in 𝑁̃𝑡𝑘 can be accommo-

dated in the current batch row. Since 𝑁̃𝑡𝑘 is sorted by 𝑣𝑛 = 1

𝑙𝑛
non-increasingly, 𝑠𝑡𝑘 means the maximum number of tasks in

𝑁̃𝑡𝑘 can be accommodated. Moreover, 𝑉 =
∑
𝑛∈𝐻 𝑣𝑛 is the to-

tal utility obtained from Algorithm 1. Then we let 𝛽𝑡𝑘 =
𝑠𝑡𝑘
|𝐻𝑡𝑘 |

and 𝐺𝑡𝑘 =
∑
𝑛∈𝐻𝑡𝑘

(𝛽𝑡𝑘𝜆𝑡𝑘max
− 𝜆𝑛) for analyzing the relationship

between 𝐺𝑡𝑘 and 𝑉𝑡𝑘 , where 𝑉𝑡𝑘 =
∑
𝑛∈𝐻𝑡𝑘

𝑣𝑛 . According to the

setting of 𝜆, we can prove 𝜆𝑡𝑘
max
≤ 𝑣 ( ˜

𝑁𝑈
𝑡𝑘
). The proof details can be

found in our technical report [1].

According to the relationship between 𝑠𝑡𝑘 and |𝑁̃𝑈
𝑡𝑘
| + |𝑁̃𝐷

𝑡𝑘
|,

we have
𝐺𝑡𝑘

𝑉𝑡𝑘
≤ 𝑠𝑡𝑘

𝑝𝑡𝑘𝑞
= 1

𝜂𝑞 , where 𝜂 =
𝑝𝑡𝑘
𝑠𝑡𝑘

is the tunable system

Figure 8: Three cases when scheduling tasks in Algorithm 1

parameter. Then we have:

D(𝜆) ≤ 𝑉 +
∑︁
𝑡,𝑘

∑︁
𝑛∈𝐻𝑡𝑘

( 𝑠𝑡𝑘|𝐻𝑡𝑘 |
𝜆𝑡𝑘

max
− 𝜆𝑛)

= (1 + 1

𝜂𝑞
)𝑉 = (𝜂𝑞 + 1

𝜂𝑞
)𝐴𝐿𝐺 (19)

which completes the proof. □

Note that 𝜂 and 𝑞 are two tunable system parameters. When

𝜂 = 𝑞 = 1

2
, we get the

1

5
-competitive ratio.

5.3 Scheduling Algorithm for Slotted
ConcatBatching

Compared to pure request concatenation, the algorithm design for

slotted request concatenation is more challenging because batching

decisions are affected by slot size, which becomes a new optimiza-

tion dimension. The pure request concatenation can be treated

as a special case whose slot size is equal to the batch length 𝐿. A

smaller slot can eliminate more computational redundancy, but

can accommodate less requests since the ones larger than the slot

would be discarded. In this section, we propose a simple but effec-

tive heuristic algorithm for slotted request concatenation, whose

pseudo codes are shown in Algorithm 2. We first invoke Algorithm

1 to obtain a set of candidate tasks, i.e., {𝐻𝑡𝑘 }, for each batch row.

The slot size is defined as the largest length of requests in the

utility-dominant set 𝐻𝑈 , as shown in lines 3 - 4. Therefore, no

request in 𝑁𝑈𝑡 would be discarded because of slot size limit. After

deciding the slot size, we greedily put requests into slots.

6 PERFORMANCE EVALUATION
In this section, we first introduce our experimental settings. We

then study overall performance and the influence of critical system

modules and parameters.
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Algorithm 2 Slotted Online Deadline-Aware Scheduling Algorithm

1: Function Slotted_DAS(𝑁𝑡 , 𝐿)

2: {𝐻𝑡𝑘 } ← Invoke DAS(𝑁𝑡 , 𝐿);

3: Generate the utility-dominant set 𝐻𝑈 by selecting the first 𝑝𝑡𝑘
tasks in {𝐻𝑡𝑘 };

4: Compute the slot size𝑚 according to the largest length of tasks

in 𝐻𝑈 ;

5: Divide each row of the batch into multiple slots based on the

slot size 𝑧;

6: for each batch row 𝑘 = 0, 1, ..., 𝐵 − 1 do
7: Put tasks in 𝐻𝑡𝑘 into slots greedily;

8: end for

6.1 Experimental Settings
We conduct performance evaluation on an AWS instance p3.2xlarge

with an NVIDIA Tesla V100 GPU, a Intel Xeon E5-2686v4 CPU, and

61 GiB memory. We use a Seq2Seq encoder-decoder model [32],

which uses 3 encoders and 3 decoders with a hidden dimension of

3072 (𝑑𝑚𝑜𝑑𝑒𝑙 = 3072). The number of self-attention heads is 8. The

maximum sentence length that can be processed is 400 words. We

compare TCB with two baselines.

• TNB (Transformer with NaiveBatching): TNB uses the de-

fault setting of PyTorch [26]. Requests of different lengths

are batched together. Each batch line is dedicated to a re-

quest, and short requests are padded with zeros to aligned

with the longest one in the batch, as illustrated in Fig. 1(a).

• TTB (Transformer with TurboBatching): TTB uses the batch-

ing scheme adopted by TurboTransformer [14], which batches

requests of similar length to reduce padded zeros, as shown

in Fig. 1(b). Note that a complete implementation of Tur-

boTransformer contains many computational and memory

optimization schemes, which are orthogonal to our work.

They can be also applied in TCB for further performance

improvement. Here we mainly focus on studying request

batching schemes and its influence to inference efficiency.

Note that both TNB and TTB are not associated with any scheduling

algorithms for online services in existing work. For fair comparison,

we feed them with the same scheduling results generated by the

DAS algorithm proposed in Section 5.2.

6.2 Results
6.2.1 Performance under different request rates. We randomly gen-

erate requests with 3−100 tokens according to a normal distribution

and they arrive as a Possion process. The batch size is set to 64

for TNB and TCB. We follow [14] to use a dynamic programming

method to determine the batch size for TTB. As shown in Fig. 9,

system utility increases as arriving rate grows for all systems. The

utility of TNB and TTB has no big change when there are more

than 350 requests/second, which means that both systems have

achieved their maximum processing capability. This phenomenon

is also called system saturation. TCB has shown larger capacity

by handling 450 requests/second. After saturation, total utility of

TCB is higher than TNB and TTB by 2.20x and 1.29x, respectively.
We also show system throughput in Fig. 10, where we have similar

observation that TCB always outperforms other two systems. The
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Figure 9: Utility under different request rates (input length
3-100, average 20, variance 20, batch size 64).
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Figure 10: Serving throughput under different request rates
(input length 3-100, average 20, variance 20, batch size 64).

maximum performance gaps with TNB and TTB are about 2.22x
and 1.48x, respectively.

6.2.2 Study of inference engine efficiency. We then study system

performance under a simple first-come-first-served (FCFS) sched-

uling policy. This set of experiments eliminate the influence of

our designed scheduling algorithm, so that we can better show

the benefits of request concatenation adopted by TCB’s inference

engine. We first set the variance of request length to 20 and show

results in Fig. 11. Thanks to request concatenation, the maximum

throughput of TCB is higher than TNB and TTB by 3.33x and 1.52x,
respectively. We then change the request length variance to 100 and

show results in Fig. 12. The maximum performance gap between

TCB and TTB increases to 1.72x. That is because higher variance
means that incoming requests show more variability in length and

it would be harder for TTB to find sufficient number of requests

with similar lengths. Moreover, in both figures, all systems are sat-

urated at lower request arriving rates, compared to Fig. 10 using

our DAS algorithm. It demonstrates the benefits of our scheduling

algorithms, which will be further studied in later experiments.

6.2.3 Speedup of slotted ConcatBatching. We first set the batch size

as 10 and measure the average batch inference time of TCB with

pure and slotted ConcatBatching, respectively. The speedup under

different number of slots is shown in Fig. 13. Note that pure Concat-

Batching can be treated as a special case of the slotted scheme with

a single slot and the corresponding speedup is 1. As we use more

slots, we can obtain at most about 1.18x speedup. We then increase

batch size to 32 and show results in Fig. 14. The maximum speedup

is 2.31x when there are 7 slots. There is no big performance growth
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Figure 11: Serving throughput under different request rates
when using FCFS (input length 3-100, average 20, variance
20, batch size 64).
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Figure 12: Serving throughput under different request rates
when using FCFS (input length 3-100, average 20, variance
100, batch size 64).

when we further increase the number of slots. The results demon-

strate that slotted ConcatBatching can reduce more redundancy

under larger batch size.

6.2.4 Influence of different scheduling algorithms. To show the su-

periority of our proposed DAS algorithm, we equip TCB with three

popular scheduling algorithms, i.e., short-job-first (SJF), first-come-

first-served (FCFS) and deadline-early-first (DEF). The results under

different batch sizes are shown in Fig. 15(a). Note that we use the

same TCB inference engine for all algorithms. The utility increases

as the batch size grows for all algorithms because larger batch size

can accommodate more requests. DAS-TCB outperforms others at

all batch sizes. We then fix the batch size to 16 and study the affect

of request length variances. As shown in Fig. 15(b), DAS-TCB has

obvious improvement in utility compared with other scheduling

algorithms, which demonstrates that DAS-TCB is aware of requests

of variable lengths and makes better scheduling. We finally change

the batch row length, i.e., the parameter 𝐿, and show results of

different scheduling algorithms in Fig. 15(c). DAS-TCB has about

40% higher utility than SJF-TCB and more than others.

6.2.5 Overhead of DAS algorithm. Wefinally evaluate the overhead

of DAS algorithm by measuring its running time and show the ratio

to a single batch inference time in Fig. 16. As request arriving rate

increases, the ratio grows because DAS needs to sort and schedule

more requests. However, the ratio is only 2% when there are 400

requests/seconds, which already saturate the GPU.
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Figure 13: Speedup of slotted ConcatBatching. (batch size 10,
length 400)
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Figure 14: Speedup of slotted ConcatBatching. (batch size 32,
length 400)

7 CONCLUSION
This paper targets on improving the efficiency of transformer infer-

ence systems. We have identified two major weaknesses of existing

work. First, there exists high computation redundancy in existing

request batching schemes. Second, request scheduling and batch-

ing is separate, missing the joint optimization chances. This paper

fills this gap by developing TCB, a transformer inference system

that integrates two novel techniques. We propose ConcatBatching,

as a new batching scheme that concatenates requests in a batch

to reduce computation redundancy. A online request scheduling

algorithm aware of the ConcatBatching is designed to maximize

the utility of TCB and its theoretical bound is derived. Extensive

experiments have been conducted to evaluate TCB and show its

superiority over state-of-the-art.
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(a) Utility under different batch sizes.
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Figure 15: Utility under different batch sizes, variances, and
input lengths.

100 200 300 400
Request arriving rate(req/sec)

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
 (%

)

Figure 16: The ratio of DAS running time and single batch
inference time.

[3] Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth Heafield, Hieu Hoang,

Miquel Esplà-Gomis, Mikel L Forcada, Amir Kamran, Faheem Kirefu, Philipp

Koehn, et al. 2020. ParaCrawl: Web-scale acquisition of parallel corpora. In

Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 4555–4567.

[4] Dimitri P. Bertsekas. 1999. Nonlinear Programming, 2nd Edition. Athna Scientific,
1 Chestnut St, Ste 222, Nashua NH 03060, USA.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] Shiyang Chen, Shaoyi Huang, Santosh Pandey, Bingbing Li, Guang R Gao, Long

Zheng, Caiwen Ding, and Hang Liu. 2021. ET: re-thinking self-attention for

transformer models on GPUs. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–18.

[7] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv:1409.1259 (2014).
[8] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. 2021. Lazy Batching: An SLA-

aware batching system for cloud machine learning inference. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
493–506.

[9] Yujeong Choi and Minsoo Rhu. 2020. Prema: A predictive multi-task scheduling

algorithm for preemptible neural processing units. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 220–233.

[10] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,

and Ion Stoica. 2017. Clipper: A {Low-Latency}Online Prediction Serving System.

In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). 613–627.

[11] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang, Jingwen Leng, Li Li, and

Mingyi Guo. 2019. Ebird: Elastic batch for improving responsiveness and through-

put of deep learning services. In 2019 IEEE 37th International Conference on Com-
puter Design (ICCD). IEEE, 497–505.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[13] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020. Gslice: con-

trolled spatial sharing of gpus for a scalable inference platform. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 492–506.

[14] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTransformers: an

efficient GPU serving system for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
389–402.

[15] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir

Vigfusson, and Jonathan Mace. 2020. Serving DNNs like clockwork: Performance

predictability from the bottom up. In 14th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 20). 443–462.

[16] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun

Jung, and Jae W Lee. 2021. ELSA: Hardware-Software co-design for efficient,

lightweight self-attention mechanism in neural networks. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 692–705.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[18] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.

2021. Data movement is all you need: A case study on optimizing transformers.

Proceedings of Machine Learning and Systems 3 (2021), 711–732.
[19] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and Byung-Gon Chun. 2020. Nimble:

Lightweight and parallel gpu task scheduling for deep learning. Advances in
Neural Information Processing Systems 33 (2020), 8343–8354.

[20] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning

of language representations. arXiv preprint arXiv:1909.11942 (2019).
[21] Baolin Li, Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, Karen Gettings, and

Devesh Tiwari. 2021. RIBBON: cost-effective and qos-aware deep learning model

inference using a diverse pool of cloud computing instances. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–13.

[22] Yang Li, Zhenhua Han, Quanlu Zhang, Zhenhua Li, and Haisheng Tan. 2020.

Automating cloud deployment for deep learning inference of real-time online

services. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 1668–1677.

[23] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn

Song, and Ion Stoica. 2021. Terapipe: Token-level pipeline parallelism for training

large-scale language models. In International Conference on Machine Learning.
PMLR, 6543–6552.

[24] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Chris-

tos Kozyrakis. 2021. Interference-aware scheduling for inference serving. In

Proceedings of the 1st Workshop on Machine Learning and Systems. 80–88.
[25] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,

Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,

Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model

training on GPU clusters using megatron-LM. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.



TCB: Accelerating Transformer Inference Services with Request Concatenation Conference’17, July 2017, Washington, DC, USA

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[27] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-

its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[29] EF Tjong Kim Sang and F De Meulder. 2003. Introduction to the CoNLL-2003

Shared Task: Language-Independent Named Entity Recognition. In Proceedings
of CoNLL-2003, Edmonton, Canada. Morgan Kaufman Publishers, 142–145.

[30] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,

Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[31] Jacob R Stevens, Rangharajan Venkatesan, Steve Dai, Brucek Khailany, and Anand

Raghunathan. 2021. Softermax: Hardware/Software Co-Design of an Efficient

Softmax for Transformers. In 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 469–474.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[33] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R

Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural

language understanding. arXiv preprint arXiv:1804.07461 (2018).
[34] Yu Yan, Jiusheng Chen, Weizhen Qi, Nikhil Bhendawade, Yeyun Gong, Nan Duan,

and Ruofei Zhang. 2021. El-attention: Memory efficient lossless attention for

generation. In International Conference onMachine Learning. PMLR, 11648–11658.

[35] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language

understanding. Advances in neural information processing systems 32 (2019).
[36] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. {MArk}:

Exploiting Cloud Services for {Cost-Effective},{SLO-Aware} Machine Learning

Inference Serving. In 2019 USENIX Annual Technical Conference (USENIX ATC
19). 1049–1062.

[37] Minjia Zhang and Yuxiong He. 2020. Accelerating training of transformer-based

language models with progressive layer dropping. Advances in Neural Information
Processing Systems 33 (2020), 14011–14023.

[38] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping Long, Kai Zhu, Feiwen Zhu,

Wenyi Zhao, Xiaoyong Liu, Jun Yang, Jidong Zhai, et al. 2022. AStitch: enabling

a new multi-dimensional optimization space for memory-intensive ML training

and inference on modern SIMT architectures. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 359–373.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Transformer Model
	2.2 Online Request Scheduling

	3 System Overview
	4 ConcatBatching Inference Engine
	4.1 Pure ConcatBatching
	4.2 Slotted ConcatBatching

	5 Request Scheduling
	5.1 Problem Statement
	5.2 Scheduling Algorithm for Pure ConcatBatching
	5.3 Scheduling Algorithm for Slotted ConcatBatching

	6 Performance Evaluation
	6.1 Experimental Settings
	6.2 Results

	7 Conclusion
	Acknowledgments
	References

