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Abstract

Detection of speakers which have not been seen before is an
essential part of every online speaker diarization system. New
speaker detection accuracy has direct impact on the overall di-
arization performance. In our previous system, for novelty de-
tection we used global GMM likelihood ratio (LR) threshold.
However, as the system analysis showed, the optimal threshold
depends on the speaker gender as well as on the number of reg-
istered speakers. In this paper, we present the results of this
analysis and the approach we have taken to solve this problem.
First, we use different thresholds for male and female speakers,
and second, for each gender before the thresholding we apply
likelihood ratio mean and variance normalization. This greatly
reduced the threshold dependency on the number of speakers
and allowed to use fixed threshold for each gender. The LR dis-
tribution statistics are collected online and updated every time
new likelihood ratio is calculated. Experiments on the TC-
STAR database showed that compared with the previous global
threshold method, the new novelty detection approach reduces
the speaker diarization error rate up to 35%.

Index Terms: speaker diarization, novelty detection, never-
ending learning, likelihood ratio normalization.

1. Introduction

Identifying and labeling the sound sources within a spoken doc-
ument is the task of audio diarization. A main part of this pro-
cess is the speaker diarization where the goal is to find out “who
spoke when”.

In the speaker diarization task, the number of speakers, i.e.
classes, is not known in advance, and this requires automatic
systems to be capable of some form of unsupervised learning.
Agglomerative clustering is the method used by the wast ma-
jority of the current systems[1]. Initially, every speech segment
is assigned to a different cluster and then, at each iteration the
two closest clusters are merged into one. It is assumed that
speech segments belonging to the same speaker are closer to
each other than segments belonging to different speakers. After
some stopping criterion is met, the remaining clusters are sup-
posed to represent individual speakers. Widely used distance
measure and stopping criterion are the generalized likelihood
ratio (GLR) and the Bayesian information criterion (BIC) [2, 3].
Several variations of this method have also been proposed [4, 5],
but they are still based on the same bottom-up clustering tech-
nique. Although, quite successful, agglomerative clustering ap-
proach has several drawbacks that limit the potential use of the
speaker diarization systems in the real-world, real-time applica-
tions. First, it requires all the speech segments to be available
before the clustering starts and, therefore, makes on-line pro-
cessing impossible. Second, the computational load increases
almost exponentially with the number of segments[6]. Finally,

Copyright © 2008 ISCA
Accepted after peer review of full paper

363

satoshi.nakamura@atr. jp

the performance is greatly affected by the stopping criterion
which is considered as a critical part of the algorithm [1].

A sequential algorithm based on the leader-follower cluster-
ing [7] and suitable for on-line operation has been proposed sev-
eral years ago [6]. However, as in the agglomerative clustering
method, the speech segments are modeled by a single Gaussian
distribution and the GLR is used as a distance metric. This re-
duces the clustering accuracy for short segments and delays the
decision until the whole segment is received. In consequence,
the system latency becomes dependent on the segment’s length
which can be up to 30 sec. or even longer.

Recently, we proposed a new speaker diarization system
which operates on-line, in less than real time, and has low la-
tency of up to few seconds [8]. What makes it significantly
different from the other systems is the way the segment clus-
tering is performed as well as the overall operating algorithm,
which is based on the Never-Ending Learning (NEL) principle
[9]. In our system, when assigning speaker label to a given
segment, first, it is decided whether it belongs to one of the
known speakers or to a new speaker. Then, in the former case,
speaker identification is performed and the winning speaker la-
bel is assigned to the segment. In the latter case, new speaker
is registered to the system and his/her model is created. Each
speaker is represented by a GMM which is learned on-line ev-
ery time it has been a winner. New speaker’s GMM is created
by spawning speaker independent GMM trained in advance. In
addition, each speaker GMM has a time counter which is set to
zero whenever it wins the identification. Otherwise, the counter
is incremented by the current segment length. Models whose
counter reaches some threshold T, are deleted from the system.
This way, the system can operate indefinitely, adapting itself to
the environment changes, i.e. changes in the number of speak-
ers and their characteristics in an unsupervised manner, and this
makes it a NEL system. Essential part of the system is the nov-
elty detection which is based on hypothesis testing and is imple-
mented as likelihood ratio thresholding. In our previous exper-
iments, we used fixed global threshold tuned on held-out data
set. However, detailed performance analysis showed that the
optimal threshold depends on the number of registered speakers
as well as on the speaker gender.

In this paper we present the results of the performance anal-
ysis and the approach we have taken to reduce the threshold
dependency on the current speaker gender and the number of
known speakers.

The next section gives a formal definition of the speaker
diarization task as statistical pattern recognition problem where
we assume that the underlying probability density function is
in fact time-varying. In section 3 we provide brief description
of the system, followed by details about the novelty detection
algorithm. Section 5 summarizes the experiments and obtained
results. The conclusions are presented in the last section.
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2. Statistical task definition

Traditionally, most pattern recognition tasks are defined as a
maximization problem of the following form:

S = max P(S;|X) = max P(X|S;)P(S:) (1
where X is the input pattern, S = {S;} represents the classes
of interest, P(X|.S;) is an unknown pdf which we approximate
with some set of models (one for each S;) trained with data sam-
ples coming from this pdf, and P(S;) is the prior probability of
observing S;. In the speaker identification task, for example, .S;
corresponds to a speaker ID and the P(S;) is usually ignored. In
some more complicated tasks like speech recognition, .S; would
be a sequence of classes, i.e. words, X - the sequence of their
realizations, and P(S;) - the language model. The above defi-
nition, however, is based on several assumptions: 1) the pdf is
constant; 2) the number of classes is fixed and known; and 3)
the test patterns X come from the same pdf as the training data.

Given the specifics of the speaker diarization task, it is clear
that we cannot apply Eq.(1) because the number of speakers,
i.e. classes, is unknown, and furthermore, it changes from one
audio document to another. The way we solve this problem is
to assume that the pdf is time varying and to define the task as':

S = max P,(S{|X) = max P(X|S))P:(S)) ()
where S! is the " sequence of speakers from the set of speak-
ers S* at time ¢. Without any additional knowledge about speak-
ers it is reasonable to assume that all possible speaker sequences
are equally probable and therefore we can drop the term P;(S})
from the equation above. Obviously, to approximate time vary-
ing pdf we need time varying models. But such models cannot
be trained in advance as we usually do. The alternative is to
learn the models online and keep learning all the time track-
ing the pdf changes. To do this, the speaker diarization system
should be capable of:

e unsupervised adaptive learning - to automatically
learn variations in speakers voice characteristics.

e novelty detection - to detect previously unseen speakers.

e knowledge preservation - to preserve the knowledge
about the old speakers while learning a new speaker.

e gradual forgetting - to delete the knowledge about ir-
relevant speakers.

A system satisfying these four requirements is called Never-
Ending Learning system and is suitable not only for the speaker
diarization task, but for any other task involving unknown time
varying pdf. And since most of the natural processes evolve
and change in time, modeling them with varying pdfs might be
a key to many challenging real world problems.

3. System operation

In this section, we briefly describe the our system and how the
above four requirements are satisfied. More details are given in
[8]. The system works on-line and and its operation is schemat-
ically shown in Fig.1. The speech segments and their refer-
ence speaker labels are at the top of the figure. The bottom part
shows the speaker models and how they change in time. For
each speech segment, there is a winning model indicated by a

!Actually, X is also time dependent, but since its time index may
not be related to that of the pdf, we have dropped it for clarity.

364

thick border line. At the beginning, there are only three GMMs:
one for pause (not shown for clarity) and two for each speaker
gender. They are trained in advance from some labeled data.
For the first segment, the speaker gender is identified (male in
the figure) and a new GMM is created from the male GMM. It
is learned on-line with the segment’s data, and from this point it
becomes the GMM for Speaker 1 (SP1 in the figure). The next
segment is from the same speaker, so the SP1 GMM will be the
winner. It is again learned on-line with the second segment’s
data. The third segment comes from a female speaker and the
same procedure is repeated resulting in a set of two speaker
GMMs. This way, the system generates a set of speaker models
on the fly. If some GMM (SP1 in the figure) has not been a win-
ner for a long time, it is deleted from the system (indicated by
an “X” on the figure). Such operating mode allows the system
to work indefinitely.
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Figure 1: System operation. For each speech segment, the win-
ning GMM is denoted by bold border lines.

4. Novelty detection

The ability to detect new speakers is essential for the online
speaker diarization system. Ideally, the speaker independent
gender GMM would be a better match for every new speaker
(from the same gender) than any of the old speaker models and
when it gives the highest likelihood it can be considered that
current speech segment comes from an unseen speaker. In prac-
tice, however, likelihood ratio (LR) based hypothesis testing is
more robust and intelligent approach. It is formulated as fol-
wo, if LX) >0

lows:
Xe { w1, if LX) < 0 )

where X is the speech segment and wy is the class correspond-
ing to the hypothesis Hy, i.e. old speaker. Respectively, w1
corresponds to H1, i.e. new speaker. The likelihood ratio is:
| _ p(Xw0)

p(X|wr)
There are various ways to define p(X|w;). Considering the
available set of GMMs, a straightforward approach is to define
them as:

P(Xwo) = Pop = maxp(X|A;)

L(X C))

(&)

P(X|Am), if gen(sp) = M

P(Xw1) = Pyen = { P(X|Ar), if gen(sp) =F

where A = {\;} is the current set of speaker GMMs and
gen(sp) is the gender of the winning speaker. Another ap-
proach, often used in speaker verification is to define p(X |w1)
as:

1

p(X|W1):Pave: n—1

(Zp(X IA;) = Psp)  (6)



i.e. the average of all model likelihoods except for the winning
model. Here n = |A| is the size of the speaker set. We can also
combine the two approaches and in this case the likelihood ratio
is:

2
P,

L(X)=———F—
( ) PgenPave

@)

In practice, the optimal threshold 6 is determined on a held-
out data set and this was the approach we used in our previous
system. However, the analysis of the system performance pre-
sented in Section 5 showed that the optimal threshold is dif-
ferent for male and female speakers. Furthermore, it changes
with the number of registered speakers. In order to reduce the
threshold variability, this time, we applied mean and variance
normalization of the likelihood ratio values [10]. The normal-
ized LR value is calculated as:

LX) —pr

oL

Lnorm (X) — (8)

where 1, and o, are the mean and standart deviation of the LR
values. There are two ways of obtaining the LR statistics. One
is to estimate them on some development data and the other is
to do this online during the system operation. The first approach
gives reliable but fixed estimates which may not match the ac-
tual LR distribution of the evaluation data. The later is better,
but at the beginning, when there are only few LRs available,
the estimation error may be too big. As it usually turns out, the
combination of the two approaches is the best. Thus, we use the
mean and standart deviation obtained from the development set
as initial values for the incremental online statistics estimation.

5. Experiments
5.1. Database and pre-processing

For the system evaluation, we used the data released for the
TC-STAR 2007 evaluation campaign [11]. The data consists
of recordings of the European Parliament plenary speeches.
From the training part of the database, for the gender depen-
dent GMMs we used about 2 min. of speech from each of
20 male and 15 female speakers. The official development set
was used as development data (“dev”), and the evaluation set
(“eval”) from the TC-STAR 2006 campaign was used for the
final system evaluation.

All audio data were transformed into 26 dimensional fea-
ture vectors consisting of 12 MFCC coefficients, power and
their first derivatives. The frame length and rate were 20 and
10 ms. respectively.

5.2. Baseline agglomerative clustering system

A system based on the standard agglomerative clustering ap-
proach was built to provide a baseline performance for com-
parison. In this system, each cluster is represented by a single
Gaussian function with full covariance matrix and generalized
likelihood ratio (GLR) was used as intercluster distance mea-
sure. The clustering procedure is stopped when the change in
the Bayesian information criterion statistic (ABIC) turns posi-
tive. The GRL and ABIC are defined as follows:

D
|Sa|Ve/2[8y [N /2

A g,

GLR:y = 9)

ABIC =1ogGLR; y — (
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where x and y are the two clusters to be merged, N is the num-
ber of frames in the cluster, d is the feature vectors dimension,
and « is a free parameter tuned on the development data.

The baseline system uses the same voice activity detector
(VAD) and gender identification module as our online system
and therefore the difference in performance comes only from
the different speaker segmentation algorithms. For each seg-
ment detected by the VAD the speaker gender is identified and
agglomerative clustering is performed on the pool of male and
female speaker segments separately. Table 1 shows the speaker
diarization error rate (DER) for the baseline system when the
forgiveness collar around the reference segments boundaries is
set to 0.0 or 0.25 sec.

Table 1: DER (%) for the baseline system with « tuned on the
“dev” data set.

Collar = 0.0 Collar = 0.25
“dev” | “eval” | “dev” | “eval”
10.9 9.5 8.4 7.6

5.3. Online system with global threshold

Essential parameter of any online system is the system latency,
i.e. the time delay needed for making decision which in our
case is labeling the input segment with a speaker ID. In both
the “dev” and “eval” data sets the segments length varies from
less than a second to more than 10 sec. To achieve consistent
latency we force the system to make decision using only the
initial part of each segment long as much as the desired delay.
If the segment’s length is less, then the whole segment is used.
In our previous system [8], the optimal global threshold was
obtained on a separate data set. Now, we used the “dev” data
to tune it which resulted in small improvement for the “eval”
data. Table 2 shows the DER for both test sets when the system
latency is set in the range from 1 to 5 sec.

Table 2: DER (%) for the online system with fixed global
threshold tuned on the “dev” data set.

System Collar = 0.0 Collar = 0.25
latency | “dev” | “eval” | “dev” | “eval”
1 sec. 14.9 20.3 124 18.5
2 sec. 9.6 14.8 6.9 12.9
3 sec. 6.8 13.4 4.2 11.5
4 sec. 6.3 11.9 3.6 9.9
5 sec. 6.2 9.8 3.6 7.9

5.4. Optimal threshold variability analysis

In order to find out how the optimal threshold changes depend-
ing on the speaker gender and the number of registered speak-
ers, we did the following experiment. We assigned the correct
labels to each segment of the “dev” data and by random shuf-
fling the segments order 50 times, we obtained 50 sets of data.
Then the system was run on each of these sets and likelihood ra-
tio values were collected and split into different clusters depend-
ing on the number of registered speakers. Then from the data
in each cluster two gaussian distributions were estimated: one
using LR values when the input speaker was old and the other



when the input speaker was new. The optimal threshold value
was then calculated at the intersection point of the two gaus-
sians. These values for each number of registered speakers are
plotted in the upper part (the positive values) of Fig.2 when the
system latency was set to 3 seconds. For all other latency val-
ues we obtained very similar results. The square points show the
thresholds for male speakers and circle points correspond to fe-
male speakers. To show the general change tendency, a second
order polynomial fit lines are also plotted in the figure. It is clear
that the threshold varies depending on both the speaker gender
and the speaker number. The lower part (the negative values)
of Fig.2 shows the same thresholds obtained from normalized
likelihood ratio values as describes in Section 4. The mean and
standard deviation statistics were calculated from LR values in
each cluster separately. As can be seen from the plot, likeli-
hood ratio normalization greatly reduces the threshold variabil-
ity with respect to both speaker number and speaker gender.

Optimal threshold

gggiﬁgsngll..l-.ll.ll

2 H H H H H
0 5 10 15 20 25 30

Speaker number

Figure 2: Optimal threshold values (upper part) and normal-
ized optimal threshold values (lower part) given the number of
speakers for the “dev” data set. Square point correspond to male
speakers and circle points - to female speakers. System latency
is 3 seconds.

5.5. Online system using normalized likelihood ratio

Based on the findings above and practical considerations pre-
sented in Section 4, in our final system we applied the following
likelihood normalization scheme. The LR statistics for the case
of one speaker estimated in the previous experiment were used
as initial statistics values at the beginning of the system oper-
ation. Then, for each input segment the LR value was used to
update the statistics and then normalization was applied. Nor-
malized LR is compared with a fixed threshold and novelty de-
cision is made. We used separate thresholds for male and fe-
male speakers and fine tuned them on the “dev” set. However,
there was no big difference between them. Final DER results
are summarized in Table 3. Comparing the results with those
from Table 2 we can see that LR normalization is really effec-
tive and that the performance gain for the “eval” set is much
bigger than for the “dev”. This shows that the system perfor-
mance dependency on the test data is reduced by the new nov-
elty detection approach.
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Table 3: DER (%) for the online system with gender dependent
threshold and normalized likelihood ratio.

System Collar = 0.0 Collar = 0.25
latency | “dev” | “eval” | “dev” | “eval”
1 sec. 12.5 14.3 10.1 11.9
2 sec. 8.3 10.7 59 8.3
3 sec. 5.8 8.5 33 6.1
4 sec. 53 7.9 3.0 54
5 sec. 5.1 7.6 29 53

6. Conclusions

In this paper we presented our investigations on how to im-
prove the novelty detection performance of our online speaker
diarization system. Since the decision whether the input seg-
ment comes from a new speaker or not is based on hypothesys
testing implemented as likelihood ratio thresholding, it is im-
portant to ensure that the distributions of the LR values for each
hypothesis do not depend too much on the environment and in-
put data. This was achieved by using LR normalization and
the experimental results showed not only better performance but
also higher system stability with respect to different test sets.
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