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Abstract

Current automatic speech recognition systems have two distinc-
tive modes of operation: training and recognition. After the
training, system parameters are fixed, and if a mismatch be-
tween training and testing conditions occurs, an adaptation pro-
cedure is commonly applied. However, the adaptation meth-
ods change the system parameters in such a way that previously
learned knowledge is irrecoverably destroyed. In searching for
a solution to this problem and motivated by the results of recent
neuro-biological studies, we have developed a network of hid-
den Markov states that is capable of unsupervised on-line adap-
tive learning while preserving the previously acquired knowl-
edge. Speech patterns are represented by state sequences or
paths through the network. The network can detect previously
unseen patterns, and if such a new pattern is encountered, it
is learned by adding new states and transitions to the network.
Paths and states corresponding to spurious events or “noises”
and, therefore, rarely visited, are gradually removed. Thus, the
network can grow and shrink when needed, i.e. it dynamically
changes its structure. The learning process continues as long as
the network lasts, i.e. theoretically forever, so it is called never-
ending learning. The output of the network is the best state se-
quence and the decoding is done concurrently with the learning.
Thus the network always operates in a single learning/decoding
mode. Initial experiments with a small database of isolated
spelled letters showed that the Dynamic Hidden Markov net-
work is indeed capable of never-ending learning and can per-
fectly recognize previously learned speech patterns.

Index Terms: never-ending learning, life-long learning, dy-
namic hidden markov network, self-organization, topology rep-
resentation.

1. Introduction

From a biological, as well as a technical, viewpoint, the arti-
ficial separation of a lifespan into a learning and recognition
phase is a shortcoming of current automatic speech recognition
(ASR) systems. While this approach is possible for systems that
operate in a matched environment, it fails if the environment
changes. To avoid costly retraining, recent research has focused
on fast adaptation and on-line adaptive learning. However, such
methods inevitably destroy previously well-learned patterns, a
phenomenon known as catastrophic forgetting in cognitive sci-
ence [1]. Besides only adapting to a changing environment,
an intelligent system should also be able to preserve its knowl-
edge. This suggests a life-long or never-ending learning capa-
bility without catastrophic forgetting [2]. Of course, gradual
interference (knowledge erasure) is unavoidable and even de-
sirable, since otherwise, soon or later such a system would ex-
haust its memory resources. In real applications, we rarely have
control over the environments or prior knowledge about their
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characteristics. This leads to another requirement for the sys-
tem: It should be able to perform unsupervised adaptive learn-
ing, which is called self-organization in neural network litera-
ture [3].

The main goal of current ASR systems is to find the most
probable word sequence given the speech signal. In other
words, we are interested only in the lexical information con-
veyed by the signal and any other existing information such as
speaker identity (ID), speaking style, emotional state, etc. is
considered as "noise” that causes unwanted variations in the sig-
nal characteristics. This requires a system that is robust against
such variations. A lot of research has been done on improving
the robustness of ASR systems and numerous methods and al-
gorithms have been proposed. Still, there is no efficient solution
to this problem that works consistently in all possible situations.
When it comes to building machines capable of natural commu-
nication with humans, not only the speech lexical content, but
also the speaker (ID, accent, emotions) and environment (of-
fice, street, etc.) information becomes important. Currently, to
get such information, we build separate systems that can usually
recognize or identify only a single factor, for example, only the
speaker ID or the spoken language. In this case, the variability
coming from the linguistic content is “unwanted” and has to be
dealt with. The alternative is to design a system that instead of
trying to normalize or reduce the speech signal variability is ca-
pable of learning it and outputting simultaneously not only the
lexical but any other information we are interested in. Such a
system should be able to learn continuously in an unsupervised
manner, since it is impossible to have prior knowledge about the
all possible variability sources. This again leads to the idea of
having a self-organizing never-ending learning system.

In trying to bridge the gap between the learning abilities of
human and machines, many researchers have turned to studies
of human capabilities as a source of ideas for designing such
systems [4]. Based on our everyday experience, we can say that
humans are capable of learning throughout their life and that the
acquisition of new knowledge does not wash away memories of
prior learning. While much of how the human brain works is
still not well understood, some basic principles of learning at
the neuronal level, such as the Hebbian rule [5], have been for-
mulated. Brain studies have shown that the nervous system has
a topological structure - similar stimuli activate topologically
close areas in the brain, and this observation has inspired the
development of several neural network architectures [6, 7].

The never-ending or life-long learning principle gives rise
to the so-called stability-plasticity dilemma [8] - How can a sys-
tem preserve its previously learned knowledge while continuing
to learn new things? Several solutions to this problem have
been proposed in the neural networks research field, includ-
ing Adaptive Resonance Theory (ART) [9], Life-long Learn-
ing Cell Structures [2] and Self-Organizing Incremental Neu-
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ral Network [10]. Commonly, network plasticity is ensured by
adding new nodes to accommodate the new knowledge, while
decreasing learning rates for the connection weights provides
the necessary network stability. Unfortunately, such neural net-
works do not work with spatio-temporal data such as speech
patterns. A system that can simultaneously learn and recog-
nize spatio-temporal patterns as well as recall them was pro-
posed in [11]. The system is a combination of a self-organizing
map (SOM) and an ART network that only takes input patterns
of similar finite length. In addition, an off-line pre-processing
step is required to learn the first SOM layer, which determines
the system operating range in the input space. A never-ending
learning system based on the so-called Guided Propagation Net-
works (GPNs) was demonstrated in [12]. Various possible ap-
plications of this system, including speech and natural language
processing, were presented, but major shortcoming of the GPN
is the need to transform the spatio-temporal input data into bi-
nary patterns.

In designing the Dynamic Hidden Markov network (DHM-
net), which is the subject in this paper, we tried to implement the
never-ending learning principle and avoid the limitations of the
existing life-long learning structures. In doing so, our goal was
to create a self-organizing, topology representing, never-ending
learning speech model. We have to note that the DHMnet is far
from being a full recognition system. It is intended to be the ba-
sic building block of a new type speech recognition system that
is entirely based on the never-ending learning principle. In such
system, the DHMnet would play a role similar to the HMM’s
role in the current generation of ASR systems.

2. The Dynamic Hidden Markov Network

2.1. General structure

The DHMnet consists of hidden Markov states with self-loops
and transitions between them. Additionally, neighboring states
are connected with lateral connections (more details are given
in Section 2.4). Each state represents a part of the input fea-
ture space modeled by a multivariate Gaussian function. State
sequences or paths through the network correspond to learned
speech patterns or classes of patterns. Similarly to other ap-
proaches, network plasticity is ensured by adding new states
and transitions whenever a new pattern is encountered. The
practical problem is to define what should be considered as a
“new” pattern and how to detect it. Inevitably, spurious events
and noises would allocate states that may never be visited again.
Such states (and paths) are considered “dead” and will be grad-
ually removed from the network. The schematic structure of the
DHMnet is shown in Fig.1, where transitions of a learned path
are represented by directed solid lines, new paths with directed
short dashed lines, and ”dead” paths with directed long dashed
lines. Undirected dashed lines represent lateral connections be-
tween states.

2.2. ”Novelty” detection

Generally, any pattern that is sufficiently different from those
that have been already learned can be considered a new pat-
tern. To decide what is sufficiently different, we again turn
to studies on the human auditory system. It is known that a
human’s sensitivity to changes in sound pressure level is lim-
ited. It has been found that for wide-band noise the smallest de-
tectable change in intensity A7 is approximately proportional
to the intensity of the stimulus I. That is, AI/I, is constant
(the Weber’s law)[13]. In the logarithmic domain, the small-
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Figure 1: Schematic structure of a Dynamic Hidden Markov
network.

est detectable change becomes AL = log(1 + AI/I) which
is constant for all intensity values. Assuming that Weber’s law
roughly holds for speech sounds as well, and that the speech
spectrum power estimated at the ASR system front-end is pro-
portional to the speech intensity, this means that, conceptually,
all speech patterns that ”sound” the same can be modeled with
Gaussian functions with fixed variance equal to AL?. Thus, any
pattern whose log power spectrum lies farther than AL from
any of the Gaussian means (that represent all patterns learned
so far) can be considered a new, i.e. different, speech pattern.
This makes AL suitable for a novelty detection criterion.

Guided by the above consideration, we use a single multi-
variate Gaussian function with a fixed diagonal covariance ma-
trix for the DHMnet state PDF and apply a threshold to the like-
lihood function for “novelty” detection. Since the DHMnet is
a first-order Markov chain where input vectors are presumed
conditionally independent, the pattern-level novelty detection
can be substituted by multiple frame-level novelty detections.
Thus, any given input vector & will be considered “new” if
P(x|up) < 60, where i is the mean of the best matching state
and the @ is the so-called vigilance threshold.

2.3. Stable learning

For the types of neural networks that we discussed in Section 1,
the weights’ update AW, at each learning iteration is generally
set to:

M

where X, is the input vector and «, is the learning rate at the
n'" iteration. Stable learning is ensured when o, is subject to
the following constraints [10]:
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For the DHMnet state PDF learning, we consider the sequential
version of the Maximum Likelihood estimation algorithm. In
this case, the Gaussian mean update Ay, after input vector x,,
will be:
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which is exactly the same as Eq.(1). The learning rate is o, =
1/n and it obviously satisfies the constraints of Eq.(2).



2.4. Topology representation

Since the DHMnet states represent different regions of the input
feature space, it is important that neighboring states correspond
to neighboring regions. That is, the state network should be a
topology representing network. It has been shown that if lateral
connections between neural network nodes (states in the DHM-
net case) are built using the competitive Hebbian rule [7], the
resulting network is a perfect topology representing network.
The competitive Hebbian rule can be described as: for each in-
put vector, connect the two closest nodes by an edge. Such
networks have two very useful properties: 1) vectors that are
neighbors in the input space will be represented by neighbor-
ing nodes; 2) if there is a path in the input space between two
vectors, there will be a path connecting the two nodes that rep-
resent those vectors. These properties are often referred to as
the neighborhood path preservation properties.

2.5. Removing ”dead” states

When a network dynamically changes its structure, the state
neighborhood relations also change. To account for these
changes, each lateral connection is given an age that is set to
zero when a connection is made or refreshed. Otherwise, the
connection age is increased every time one of the connection’s
states is visited. This way, connections that reach a certain age,
i.e. ones that have not been refreshed for some time, are re-
moved. The DHMnet states can have many lateral connections
and if for some state all connections are removed, this state is
pronounced “dead” and is removed along with all transitions to
and from it.

2.6. Time-Synchronous Decoding

For any input speech pattern represented by a sequence of fea-
ture vectors we are interested in finding the best state sequence
or path through the network. Formally, this can be stated as
follows:

S=max P(S|X), X ={z}/, S={s}1 &
The neighborhood and path preserving properties of the net-
work ensure that each current state s; is the best state given the
current vector x;. The best state sequence can be found by us-

ing a recursive procedure. Suppose that S? is the best path until
time ¢. Then

P(STHXTT) =

max  P(s;51|e11X7)
s CSucc(st)

max  P(s;|Size11X1)P(St|zi1X7)
s CSucc(st)

max P(Sj|5txt+1)P(Si|Xf)
Sj CSuce(st)

(&)

P(sj|st)P(zey1]s;) | P(S1IXT)

max
s;CSuce(st)

where S ucc(st) is the set of succeeding states for state s, i.e.
states that have incoming transitions from state s;. This set in-
cludes s; itself (because of the self-loop) and possibly a newly
added state. The above recursion shows that the best state se-
quence can be obtained in a sequential time-synchronous man-
ner by finding the best next state for each next input vector. Note
that no backtracking is necessary as in the conventional Viterbi
decoding algorithm.
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2.7. Recognition with DHMnet

The DHMnet is designed to be the first processing block of a
new kind of recognition system based entirely on the never-
ending learning framework. Development of such system is
currently underway, but is out of the scope of this paper. Here,
we describe just the general principle of the DHMnet usage for
recognition.

Recognition with DHMnet can be done by appropriate in-
terpretation of the decoded best state sequence. In a similar
manner to the way humans perform such task, paths through the
network are associated with the characteristics of the patterns
they represent. At first approximation, this means that each
path and the corresponding states are labeled with all the in-
formation we had when this path was created or revisited. This
can include the lexical content, speaker information, environ-
ment information, etc. When a speech utterance is presented to
the network, in general, two cases can occur: 1) The decoded
state sequence consists of only ”old” states. This means that the
whole speech pattern or all its segments have been already seen
and learned. Then, we can recognize the input utterance from
the path and state labels; 2) The decoded state sequence con-
sists only or partly of newly added states. In this case, for each
new state we can take the labels of its closest neighbor state and
interpret the new states as ’sounding like” their neighbors.

2.8. The DHMnet algorithm
We summarize the complete DHMnet algorithm as follows:
(1) Start with an empty network.

(2) For the next input vector x;, given the current state Scurr,
find the best matching succeeding state s.. If it passes
the vigilance test, set it as the next state, i.e. Spext = Sc,
and go to (5).

3

Find the best state, s,, from all other states. If it passes
the vigilance test, Spext = Sa, and go to (5).

“

Add a new state, s¢, i.€. Snext = St, and set its mean to
Tt.

(&)

Make (update) the transition from the current state Scyrr
tos next-

(6)
)

Update the means of scq+ and all its neighbors (Eq.3).

Make (refresh) the connection between Sper: and the
second best state. Increase the ages of all Spext con-
nections.

(8) If any connection age has reached the age threshold, re-
move this connection. Remove states with no connec-

tions.

©)

Add snezt to the best state sequence. Set the current state
Scurr = Sneat, and go to (2).

3. Experiments

For never-ending learning system such as the DHMnet, tradi-
tional evaluation schemes, i.e. dividing the available data into
training, development and testing sets, model training, tuning
and testing, do not make much sense. Furthermore, since this
was the first time we experimented with a DHMnet, we were
more interested in confirming that the network works as it is
supposed to, than in obtaining recognition accuracy numbers.
For the experiments, we chose a small database of spelled
letters utterances consisting of single samples of 22 English
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Figure 2: Likelihood change during 20 iterations of learning.
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Figure 3: Likelihood change during alternating speaker data
learning.

letters uttered by 20 (10 male and 10 female) Japanese speak-
ers. In total, we had 440 utterances. Each utterance was trans-
formed into a sequence of feature vectors consisting of 24 log
filter-bank energies computed at a 10-ms. rate from 20-ms
sliding windows. All DHMnet states’ covariances were set to
identity matrix and, respectively, the vigilance threshold was
Inf = —121n(27e).

In the first experiment, we tested the learning abilities of
the network. Twenty learning iterations with all the data were
performed (Fig.2 shows the observed data likelihood change).
The increasing saturating curve clearly shows that the DHM-
net is capable of stable learning. Next, to confirm that the net-
work can learn new things without forgetting previously learned
knowledge, we did the following experiment. First, we did 10
learning iterations with the data from only one speaker (MAU).
Then, data from another speaker (MMS) were used for the next
10 iterations. After that, the data from MAU were given again
to the network for another 10 iterations. Finally, the same pro-
cedure was repeated with MMS’s data. Figure 3 shows the data
likelihood during such learning. As can be seen, at the 20" and
30" iteration, when data changes to patterns that have been al-
ready seen, their likelihood continues increasing from the point
where they were last seen. That means the learning with dif-
ferent speaker data did not destroy the previously stored knowl-
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edge, that is, the network can learn without catastrophic forget-
ting.

The last experiment was designed to check the recognition
abilities of the network after each learning iteration. For each
utterance, the decoded state sequence was stored and labeled
with the speaker and letter ID. After each learning iteration, ob-
tained state sequences were compared with those from the pre-
vious iteration to find the best matching sequence. If the labels
matched, it was considered a hit. After only the second itera-
tion, the recognition rate was 97.44%, and after the third and
later iterations, it was 100%. Note that this means simultaneous
speech and speaker recognition with no errors.

4. Conclusions

In this paper, we presented the Dynamic Hidden Markov net-
work that in contrast to current speech models, is capable
of never-ending unsupervised adaptive learning without catas-
trophic forgetting. We consider this network as a first process-
ing block of a hierarchical system for full-scale speech recogni-
tion built according to the same learning principle. The DHM-
net works in a single learning/decoding mode, but it can be eas-
ily extended with a pattern recall mode where sampling from
the PDFs of the states along given path would reconstruct the
corresponding speech pattern. A DHMnet that has these two
modes of operation can be used not only for speech recogni-
tion, but also for speech synthesis, voice conversion, speech en-
hancement, etc.
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