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Abstract—Modeling emotions is an important part of text-to-
speech (TTS) research since its goal is to develop a technology for
synthesizing naturally sounding speech. In this study, we aimed
to build an end-to-end TTS system for the Japanese language
that can synthesize emotional speech taking the FastSpeech2 as
a base model. Most of the existing approaches use some form of
conditioning the generation process on the emotion class label
through a corresponding embedding. What separates such meth-
ods is the way this conditioning is implemented. Our approach is
to add two new blocks which are essentially transformer multi-
head self-attention blocks having an input combined with emotion
embedding. They are inserted before and after FastSpeech2’s
variance adaptor and share parameters to ensure robust emo-
tion conditioning when the amount of training data is small.
The proposed model was objectively and subjectively evaluated
using Mel-Cepstrum Distortion (MCD) and Mean Opinion Score
(MOS) criteria respectively. The obtained results show that our
approach performs better than a collection of emotion-specific
models obtained by fine-tuning the base FastSpeech2.
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I. INTRODUCTION

Speech is the most primitive, modern, and common method
of communication established by human evolution. The tech-
nology that can generate speech artificially is called speech
synthesis and has become an important part of Al-powered
applications. For example, it is used in Al assistants such
as Apple’s Siri or Amazon’s smart speaker, the voices of
video game characters, public announcements transportation,
etc. Especially in Japan, where people tend to respect privacy
and value anonymity, the use of VOCALOID [1], Softalk [2],
and VOICEVOX [3], which are often utilized for commentary
voices in streaming videos, is very active. Many users favor
these tools because they can obtain natural speech easily
without the need to record an individual’s speech. In particular,
there is a strong need for a synthetic speech that is not the
speech of a specific person and is fluent and has natural
inflection.

In recent years, Text-to-Speech (TTS) systems have made
significant progress in the quality of synthesized speech thanks
to deep learning methods such as Normalising Flows [4] [5],
diffusion process [6], Transformer architecture [7] and others.
While Transformer-based models, such as FastSpeech2 [8],
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have been outperformed by the latest diffusion models in terms
of quality metrics [6], they are faster during the inference and
thus more practical.

To synthesize naturally sounding speech, TTS models must
account for some factors absent from simple text input, such as
rhythm, intonation, and emotion [9]. Emotional speech is eas-
ier to perceive by the listeners and enriches the informational
content of the spoken message.

Methods to enable emotions in synthesized speech have
been studied since long ago first by introducing the style con-
trol vectors in the Hidden Markov Model (HMM) based TTS
models [10]. Later, an emotion embedding was implemented
in Recurrent Neural Network (RNN) based TTS [11] as well
as in the hidden state of the Tacotron’s decoder [12]. Such
approaches are based on categorical labels to represent one
or more emotions and various datasets have been collected to
support those studies. Another way to control the synthesized
speech’s overall style including emotion is to use a reference
utterance with the desired emotional state [13]. This method
allows unlabeled training data to be used [14]. Embedding
vectors for each emotion from reference speech and text are
learned and their weighted sum is used to obtain utterance-
level embedding. Some studies even attempt to introduce
fine-grained emotional intensity control [15] [16]. However,
estimating the intensity is challenging especially when it varies
within a single utterance. Recently, following the growing
popularity of prompt-based interaction with large language
models (LLMs), some works have investigated and applied
emotion control by a textual description of the desired emotion
[17].

Research on Japanese emotional TTS has also been active
with approaches to achieving affective synthesis by upgrading
classical systems [18] or DNN-based solutions later on [19].
Our method is close to those applied when labeled data
are available as it involves conditioning by emotion class
embedding and is simple to implement.

II. APPROACH
A. FastSpeech2 baseline TTS system

Most TTS systems have three main blocks: text analysis, an
acoustic model, and vocoder. Text analysis converts text into
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Fig. 1. The FastSpeech2 architecture [8]

linguistic features such as phonemes. Based on the linguistic
features, the acoustic model produces acoustic features such
as mel-spectrogram. Finally, the vocoder generates speech
waveform from the mel-spectrogram.

We build our emotional TTS system using FastSpeech2
[8] as a base which is a non-autoregressive model for fast
and high-quality speech synthesis. Its key components are
the encoder, variance adaptor, and mel-spectrogram decoder
as shown in Fig.1. The encoder extracts features from the
input text converted into phonemes, the variance adaptor adds
acoustic and duration information to the sequence, and the
decoder generates the output mel-spectrogram features. Both
the encoder and decoder consist of multiple feed-forward
transformer (FFT) blocks each of which is a stack of multi-
head attention layer and 1D-convolutional layer. The variance
adaptor includes three predictors and a length regulator (LR).
Predictors estimate phoneme duration, pitch, and energy for
each token. LR adjusts the length of the phoneme sequence
to the length of the mel-spectrogram by using the output of
the duration predictor. Compared to conventional TTS, Fast-
Speech2’s advantage is that it allows for parallel computation.
Furthermore, it can synthesize high-quality speech faster by
adding prosodic information from the pitch and energy pre-
dictors. Conventional autoregressive TTS models sometimes
synthesize unsuitable speech by skipping and repeating text,
but FastSpeech2 does not have such a problem because of the
non-autoregressive nature of the model.

B. Model modification for emotional speech synthesis

Modifying model structure is the predominant approach
not only to achieve emotional speech synthesis [11] [20] but
also to generate multi-speaker [21] or custom voices [22].
Conditioning on a discrete parameter such as speaker ID or
emotion type is usually implemented by learning a parameter
embedding and inserting it in the processing pipeline. It can be
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Fig. 2. The architecture of proposed model

included in the Layer Normalization [22], in the self-attention
mechanism [23], or combined with the token representations
in the encoder and decoder [24].

In a way similar to how the speaker conditioning is im-
plemented in Transformer TTS [25], we modify our baseline
FastSpeech2 model by inserting two new emotion blocks
before and after the variance adaptor as shown in Fig.2. To
achieve more stable and reliable output, we force these two
blocks to share parameters. The architecture of each emotion
block is shown in Fig. 3. It is inspired both by the way
emotional factors are combined with LSTM models [26] and
the transformer blocks used in the FastSpeech2 encoder and
decoder. The embedding vector is added to the input token
sequence representation effectively changing it in a different
way for each emotion category.

III. EXPERIMENT
A. Dataset

In this research, we use the basic5000 part of the JSUT
corpus [27] for model pre-training and the ITA part of the
STUDIES corpus of emotional speech [28] for fine-tuning.
Both datasets contain recorded human speech, text, and full-
context labels. Full-context labels consist of linguistic features
extracted from the text, such as phonemes, accents, and
phoneme duration.

The basic5000 dataset includes 5000 pairs of texts and
speech utterances recorded in neutral style by a single female
speaker, designed to include readings of all commonly used
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Fig. 3. The architecture of our emotion block

Japanese Kanji characters. This corpus is highly beneficial
for training models, as a Japanese TTS system must be able
to handle text containing a wide variety of Kanji characters.
In contrast, the ITA dataset includes 400 pairs of texts and
speech utterances recorded by a single female speaker, with
each of the 100 sentences recorded in four different emotional
states: neutral, angry, sad, and happy. It is designed to ensure
a balanced inclusion of all Japanese phonemes.

As reference test data we selected two sentences uttered
with four emotions: neutral, angry, sad, and happy. They were
not used in the model training and served as ground truth for
the evaluation.

B. Data pre-processing

Seven types of data are required to train our model:
phonemes, prosodic symbols, phoneme duration, pitch, energy,
mel-spectrogram, and emotion ID. All data except for emotion
ID were prepared according to [29]. Emotion ID was extracted
directly from the dataset emotion labels. Phonemes, prosodic
symbols, and emotion ID are used as input to the model, and
the mel-spectrogram, phoneme duration, pitch, and energy are
used as targets during the supervised model training.

C. Evaluation metrics

All the models we created are tested using two commonly
used evaluation metrics: objective Mel-Cepstrum Distortion
(MCD) and subjective Mean Opinion Score (MOS).

MCD is a measure to evaluate the quality of synthesized
speech. It quantitatively measures the difference between two
utterances. Specifically, this metric is used to evaluate the
similarity of the speech spectral features. The MCD is defined
as:
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where

X :  output mel-cepstrum

Y target mel-cepstrum

T :  mel-cepstrum length

D : mel-cepstrum dimension

x¢(d) :dy, output me-cepstrum coefficient in ¢, frame

y+(d) : dy, target mel-cepstrum coefficient in ¢, frame

The smaller the MCD is, the more similar the two mel-
spectrograms are. One drawback of this metric is that it
is not correlated with human sound perception in terms of
intelligibility and clarity of the synthesized speech.

The Mean Opinion Score is a subjective evaluation metric
that doesn’t have MCD’s problems but is time-consuming
and expensive to perform. It is a numerical value of speech
quality obtained by averaging scores that listeners assign to
each utterance. In our MOS evaluation, listeners are asked
to evaluate the test utterances by four criteria. The first is
clarity, in which listeners answer how easy is to understand
the utterance; the second is naturalness, where they evaluate
how human-like the speech is; the third is emotion recognition,
in which they are asked to recognize the emotion in the
utterance; and the fourth is emotion intensity, in which they
need to determine the emotion intensity in the utterance. All
the listeners were native Japanese speakers.

D. Baseline models

In our experiments, we trained two additional FastSpeech2
models for performance comparison. The first model is pre-
trained with basic5000 dataset and then fine-tuned with the
emotional ITA data without any emotion labels. This model
is further referred to as “Baseline”. The second model is
a collection of emotion-specific models obtained by fine-
tuning the pre-trained FastSpeech2 on each emotion type data
separately. This model we call "Emo-FT”. To synthesize an
utterance in this case, we just select the model corresponding
to the required emotion type. In contrast to our proposed
model, these don’t have emotion blocks in their structure.

IV. RESULTS
A. MCD evaluation

Since we fine-tuned each of the Emo-FT models with
emotion-dependent data, the amount available for training
was 4 times less than we used for the proposed model fine-
tuning. Therefore, it was possible to overtrain the Emo-TF
models using the same number of training steps. Thus, we
did an ablation experiment where we changed the training
step number to assess its effect on the model’s generalization
ability. The result in terms of MCD is shown in Fig.4.
It is clear that more fine-tuning only worsens the model’s
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Fig. 4. Average Mel-Cepstrum Distortion (MCD) of the test utterances for
Emo-FT model fine-tuned with a different number of steps.

performance. For further comparisons, we selected the model
fine-tuned with 30k steps.

Fig.5 summarizes the MCD results of the three types of
models we have built. As we anticipated, the baseline model
showed the worst result because it does not support emotional
conditioning. The Emo-FT model performs much better since
for the speech synthesis always the correct emotion model was
selected. However, our proposed model achieved the smallest
MCD score beating the Emo-FT. We believe that the modified
architecture of our proposed model, the larger amount of fine-
tuning data, and the bigger number of training steps have
contributed to its good performance.
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Fig. 5. Average mel-cepstrum distortion of the test utterances for each model

B. MOS evaluation

For the MOS evaluation, we recruited 10 native speakers of
Japanese in their 20s. Two listening sessions were held with
every listener and the results were averaged over sessions and
listeners.

The MOS scores were obtained using clarity, naturalness,
and emotion intensity criteria. The listeners’ task was to assign

a score between 1 and 5 for each utterance they listened to
and for each of the three criteria. The synthesized utterances
from all the models were pooled together with the ground truth
(GT) and presented randomly to each listener. The scores mean
and standard deviation are shown in Table 1. Naturally, the
GT scores were better than the other models in all criteria.
The proposed model scores are the second best and exceed
four points in emotion intensity. Furthermore, the standard
deviation is also smaller than that of the other models.

TABLE I
THE RESULTS OF CLARITY, NATURALNESS AND EMOTION INTENSITY

GT / model Clarity Naturalness | Emotion intensity
GT 469 £ 023 | 445+ 0.24 4.61 £ 0.27
Proposed 3.52 £ 0.35 | 3.20 + 0.39 4.01 £ 0.27
Emo-FT 324 £ 0.5 | 2.58 £ 0.57 3.76 + 0.76
Baseline 342 + 041 | 2.78 £ 0.29 2.38 £ 0.89

We also did an experiment asking the listeners to identify
the emotion in a given utterance. The averaged subjective
emotion recognition accuracy for the synthesized speech and
the ground truth utterances is given in Fig.6. It was not a
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Fig. 6. Emotion recognition accuracy (%) by listeners for ground truth and
test utterances synthesized by different models.

surprise that the listeners were able to determine the emotion
in ground truth utterances perfectly. The proposed model got
more than 90% accuracy, again slightly better than the Emo-
FT. Overall, our model achieved the best performance among
all the TTS models we evaluated and in most cases was close
to the ground truth results.

V. CONCLUSION

In this study, taking the FastSpeech2 as basis we developed
an emotional TTS model for the Japanese language. The
modifications we introduced include the insertion of two new
blocks after the encoder and before the decoder respectively.
For stability and robustness, they share parameters. In each
block, the emotion class conditioning is implemented through
embedding which is combined with the token representations.



Evaluation experiments using objective MCD and subjective
MOS metrics showed that our model can synthesize speech
close to natural and can convey emotions to such an extent
that they are correctly identified in more than 90% of the
cases. It performed better than the other models including
the baseline FastSpeech2 as well as a collection of emotion-
specific models.
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