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SUMMARY  Over the last decade, the Bayesian approach has increased
in popularity in many application areas. It uses a probabilistic framework
which encodes our beliefs or actions in situations of uncertainty. Infor-
mation from several models can also be combined based on the Bayesian
framework to achieve better inference and to better account for modeling
uncertainty. The approach we adopted here is to utilize the benefits of the
Bayesian framework to improve acoustic model precision in speech recog-
nition systems, which modeling a wider-than-triphone context by approxi-
mating it using several less context-dependent models. Such a composition
was developed in order to avoid the crucial problem of limited training data
and to reduce the model complexity. To enhance the model reliability due
to unseen contexts and limited training data, flooring and smoothing tech-
niques are applied. Experimental results show that the proposed Bayesian
pentaphone model improves word accuracy in comparison with the stan-
dard triphone model.

key words: Bayesian framework, wide phonetic context model, acoustic
rescoring

1. Introduction

Bayesian statistical method provides a complete paradigm
for both statistical inference and decision making under un-
certainty [1]. It uses a probabilistic framework which en-
codes our beliefs or actions in situations of uncertainty. In
its simplest form, if H denotes a hypothesis and D denotes
data, the Bayes’ theorem states that:

_ p(DIH)p(H)

H|D ,
p(H|D) (D)

ey
where p(H|D) is the probabilistic statement of belief about
H after obtaining D or the so-called posterior conditional
distribution, and p(H) is regarded as a probabilistic state-
ment of belief about H before obtaining data D or the so-
called prior distribution. Having specified p(D|H) and p(D),
the mechanism of the theorem provides a solution to the
problem of how to learn from data [2].

Based on the posterior distribution estimation, this en-
ables the selection of an appropriate model structure which
excludes over-trained models. It offers a robust classifica-
tion based on a predictive posterior distribution, which mit-
igates the effects of over-training [3]. Information from sev-
eral models can also be combined based on the Bayesian
framework to achieve better inference and to better account
for modeling uncertainty [4]. By utilizing these benefits, the
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Bayesian framework can help in many application areas, es-
pecially where the problem is uncertain and the available
data is limited.

In current automatic speech recognition (ASR) sys-
tems, there are still many challenges to overcome before
they can reach their full potential through widespread use
in everyday life. One of the shortcomings of the mainstream
acoustic modeling is its limited capability to handle the coar-
ticulation effects that exist in conversational speech. The
triphone acoustic unit, which includes the immediate pre-
ceding and following phonetic contexts, is the most widely
used in current acoustic models. Although such triphones
have proved to be an efficient choice, it is believed that
they are insufficient for capturing all of the coarticulation
effects. These effects may come not only from the first pre-
ceding/following contexts, but also from further neighbor-
ing contexts. In [5], it was found that a vowel may influ-
ence not only the preceding consonant but also the vowel
before the consonant. Other studies also found that English
consonants such as /l/ and /r/ exert long-distance coarticula-
tion effects across syllables, or “resonance” [6],[7]. Thus,
by incorporating something wider than the triphone context,
more than just one preceding and one following phonetic
contexts are taken into account. The performance of such
an acoustic model is expected to improve.

Many researchers have tried to improve acoustic mod-
els by incorporating a wider-than-triphone context, such as
a tetraphone, quinphone/pentaphone, or more [8],[9]. The
IBM, Philips/RWTH, and AT&T LVCSR systems have been
quite successful in using pentaphone models [10]-[12]. To
properly train the model parameters and use them in cross-
word decoding, a huge amount of training data and mem-
ory space are required. However, such resources are usu-
ally not available. If only limited training data is avail-
able, context resolution may be lost due to non-robust pa-
rameter estimation and an increased number of unseen con-
texts. If we also face a memory constraint, the use of the
cross-word wide-context model may become cumbersome
and sometimes even impossible [13]. For large-scale sys-
tems, a simple procedure to avoid decoding complexity is
to apply the wide context models in the rescoring pass. In
this case, the decoding will use knowledge sources of pro-
gressively increasing complexity to decrease the size of the
search space [14].

In essence, incorporating wider-than-triphone-context
units often leads to additional improvement, but it requires
a large amount of training data and makes the training and
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decoding difficult. On the other hand, the simpler model is
more reliable but less precise in capturing the coarticulation
effects. Therefore, an efficient modeling of the wide-context
unit, which can maintain the balance between the context
resolution and training data size, is an important problem
that needs to be addressed for a realistic application of an
ASR system.

The approach we adopted here is to utilize the bene-
fits of the Bayesian framework, which modeling a wider-
than-triphone context by approximating it using several less
context-dependent models. This approach is an extension of
the method proposed in [15], [16] where a triphone model
is constructed from monophone and biphone models. Such
a composition is developed in order to alleviate the cru-
cial issue of limited training data. This approach allows
us to model a wide phonetic context from less context-
dependent models, without training the whole large model
from scratch. With this composition technique, the loss of
context resolution can be considerably lowered since only
less context-dependent models need to be estimated. In this
work, we use the conventional HMM system to generate an
N-best hypothesis list. Then, we apply the Bayesian wide
context models to rescore the N-best list. During the rescor-
ing process, there might be some phonetic contexts which
have not been seen during the training process. To enhance
the model reliability with respect to the unseen contexts and
limited training data, flooring and smoothing techniques are
used.

In the next section, we briefly describe the Bayesian
framework for constructing a wide phonetic context. First,
we describe the original Bayesian triphone model, then the
Bayesian pentaphone model including a general represen-
tation of the Bayesian wide phonetic context model. In
Sect. 3, we describe approaches to enhance the model re-
liability with respect to unseen contexts and limited train-
ing data. A detailed explanation of deleted interpolation as
one of the enhancing techniques is given in Sect. 4. The use
of the Bayesian wide phonetic context model in the N-best
rescoring mechanism is described in Sect. 5. Details of the
experiments are presented in Sect. 6, including the results
and discussion. A conclusion is drawn in Sect. 7.

2. Bayesian Wide Phonetic Context
2.1 Bayesian Triphone Model

Following the theoretical framework of [15],[16], a phone-
level observation is denoted by X and a context-dependent
triphone model Q is denoted by /a~,a,a”/, with a being
some phone and a~ and a* being its preceding and following
phonemes, respectively. The problem of triphonic acoustic
modeling can be expressed as the estimation of the probabil-
ity density function (pdf) p(X|Q) = p(X|a™, a,a™) of X gen-
erated from triphone /a~, a, a” /. Using the Bayesian princi-
ple:

X’ _’ 9’ +
p(Xla",a,a*) = pX.a",a,a”)
pla=,a,a*)

947

_ pla~,a’la, X)p(a, X)

2
pla~,a*la)p(a) @

Assuming that a- and a* are independent given a
and X, p(a,a’la) ~ p(ala)pa’la), pla~,a’la,X) =~
p(a|a, X)p(a*|a, X), and Eq. (2) becomes:

_ pla’la, X)p(a*la, X)p(a, X)

Xla ,a,a") =~ . 3
pXla,aa’) p(a-layp(a*la)p(a) ©)

By multiplying both the numerator and denominator by
p(a, X)p(a), and applying the Bayes rule, Eq. (3) becomes:

p(Xla~,a,a")

_ plala,X)p(a,X) p(a*la, X)p(a,X) p(a)

" plalap@  platlap@  paX)

_ pXla”,a)p(a”,a) p(Xla,a*)p(a,a”) 1

b pla,a) pla,a*)  p(Xla)
p(Xla™, a)p(X|a,a*)

T (X @

This indicates a new way of representing a triphone
model by models of less context dependency, i.e.,
p(Xla~,a), p(X|a,a™) and p(X|a), which correspond to the
pdfs of the observation X given the preceding/following
context biphone and context-independent monophone units,
respectively.

This composition leads to a reduction of the number of
context units to be estimated from N3 to (N? + N), without
loss of context coverage, where N is the number of phones.
Since the derivation of Eq. (4) is closely related to Bayesian
statistics, it is called the Bayesian triphone model.

Graphically, the conventional triphone unit, where a
full triphone model is trained from scratch, is shown in
Fig. 1 (a), and the composition of the Bayesian triphone unit
is shown in Fig. 1 (b). In this paper, to distinguish different
context units and compositions, we use the following nam-
ing scheme. The conventional triphone context unit will
be called C3. The triphone by composition will be called
C1L2R2, since it is composed of the left/preceding biphone
context unit (L2), the right/following biphone context unit
(R2), and the center context independent monophone unit

(C1).

X
(b) | p(Xla',a,tf)

%@ " p(Xla‘;(l)?lrs’)(Ia,f)
4

(a

=

Fig.1  Bayesian triphone model composition. (a) is C3, the conventional
triphone unit and (b) is C1L2R2, the Bayesian triphone composed of the
preceding/following biphone-context unit and center-monophone unit.
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2.2 Bayesian Pentaphone Model

Here, we extend the approach from the previous section to
compose a wider context, the pentaphone model. It includes
not only the immediate preceding and following phonetic
contexts, but also the second preceding and following pho-
netic contexts. The pdf of X generated from the pentaphone
/a~",a ,a,a”,a’*/ context unit becomes:

pXla—",a",a,a",a""
_ pX,a",a",a,a",a")

pla~,a,a,a*,a*t)
pla—,a ,a*,a**|a, X)p(a, X)
pla—,a",a*,a**la)p(a)
_ pla,a’la,X)p(a*,a""|a,X)p(a,X)
T pla,ala)pa,atla)p(a)
_ pXla",a",a)p(Xla,a*,a"™)
- p(Xla)

The result indicates that a pentaphone model can be
composed of several less context dependent models,
ie., p(Xla—,a ,a),p(Xla,a",a*™) and p(X|a), which
correspond to the pdfs of the observation X given
the left/preceding-triphone-context (L3), right/following-
triphone-context (R3) and center monophone base unit (C1),
respectively. We call it composition C1L3R3 and the graph-
ical representation is shown in Fig.2 (b). If we treat the
monophone unit /a/ as one base unit A, and the preceding
context unit /a~~,a”/ and following context unit /a*,a**/
as A~ and A™, respectively, then we can derive Eq. (5) in the
following way:

(&)

P(X|A™,A, A7)
_ PXIAT,A)p(X|A, A™)
) p(XIA)
p(Xlla—,a"],@)p(Xla, [a*,a"™"])
p(Xla)
_ pXla",a”,a)p(Xla,a*,a"™)
h p(Xla) '

The result shows that p(X|A™,A,A*) can represent the
model composition in a more general way, where A can be
any context unit, and the A~ and the A* are its one or more
preceding and following contexts, respectively. Hereafter,
we will use this term as a general representation and to de-
rive other compositions of the Bayesian pentaphone model.
If we set A to be a triphone unit /a~,a,a*/, A~ to be
the second preceding context /a~~/, and A* to be the second
following context /a**/, then p(X|A~, A, A*) will become:

(6)

P(XIA™,A,AY)
_ p(XIA~, A)p(X|A,A*)
N p(X|A)
_ p(Xla—,[a",a,a*Dp(X|la”,a,a’],a*")
h pXlla~,a,a*])
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Fig.2  Bayesian pentaphone model composition. (a) is CS5, the conven-
tional pentaphone model, (b) is Bayesian C1L3R3, which is composed
of the preceding/following triphone-context unit and center-monophone
unit, (c) is Bayesian C3L4R4, which is composed of the preced-
ing/following tetraphone-context unit and center-triphone-context unit, (d)
is Bayesian C1Lsk3Rsk3, which is composed of the preceding/following
skip-triphone-context unit and center-monophone unit, and (e) is Bayesian
C1C3Csk3, which is composed of the center skip-triphone-context unit,
center triphone-context unit and center-monophone unit.

_ pXla",a",a,a")pXla",a,a",a™™)
h p(Xla~, a,a*) '

This indicates that a pentaphone model can also be
composed of p(X|la—",a ,a,a*), p(X|la~,a,a*,a™) and
p(Xla~,a,a") (see Fig. 2 (c)), which correspond to the pdfs
of the observation X given the the left/preceding-tetraphone-
context unit (L4), right/following-tetraphone-context unit
(R4) and center-triphone-context unit (C3). This composi-
tion is called composition C3L4R4.

By approximating the probability distribution of com-
position C3L4R4 with more reduced models, such as
pXla~",a",a,a*) with p(Xla~~, a,a”), p(X|a”,a,a*,a*")
with p(X|a~,a,a™), and p(X|a~,a,a”) with p(X|a),
Eq. (7) becomes:

P(X|A™,A,A")

. PXIAT, A)p(XIA, A™)
p(X|A)
_ pXla",a",a,a")pXla”,a,a",a"")
- p(Xla~,a,a*)
_ pXla",a,a")pXla”,a,a"™)
p(Xla)

)

®)
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This approximation gives another way of composing pen-
taphone models, where a pentaphone model is composed
of p(Xla—~,a,a"), p(Xla,a,a**) and p(X|a). These
correspond to the pdfs of the observation X given the
left/preceding-skip-triphone-context (Lsk3), right/following-
skip-triphone-context (Rsk3) and center monophone base
unit (C1), respectively. The composition in Eq. (8) is called
composition C1Lsk3Rsk3, which is shown in Fig. 2 (d).

The above algorithms, such as compositions C1L3R3,
C3L4R4, and C3Lsk3Rsk3, always follow the general rep-
resentation p(X|A~,A,A"), where the wide context model
J/A7,A, A"/ is composed of left context dependent /A~/,
right context dependent /A" /, and center base context unit
/A/. However, there can be some alternatives for compos-
ing wide context models other than those described above.
For example, a wide context model is composed of several
less context dependent models, where the center base unit
/A/ in each model is the center point of each phonetic con-
text. Then, the pdf of X generated from the pentaphone
/a~",a",a,a*,a**/ context unit can be approximated as fol-
lows:

pXla—",a",a,a*,a"™")
pX,a",a",a,a",a"")

pla—,a,a,a*,a*t)
pla—,a ,a*,a**|a, X)p(a, X)
pla—~,a",a*,a**|la)p(a)
pla,a""|a,X)p(a”,a"la, X)p(a, X)

pla=,a**la)p(a—,a*|a)p(a)
N pXla—,a,a*)p(Xl|a~, a,a*)

pXla)

The result indicates that a pentaphone model can be com-
posed of p(X|la—",a,a*"), p(Xla~,a,a") and p(X|a), which
correspond to the pdfs of the observation X given the center-
skip-triphone-context (Csk3), center-triphone-context (C3)
and center monophone base unit (C1), which is called com-
position C1C3Csk3 (Fig. 2 (e)).

In these compositions, the number of context units to
be estimated is reduced from N’ to (2N + N) for com-
position C1L3R3, ClLsk3Rsk3, and C1C3Csk3, and to
(2N*+N?) for composition C3L4R4, without loss of context
coverage, where N is the number of phones. If we use a 44-
phoneme set for English ASR, the total number of different
contexts that need to be estimated in the pentaphone model
is 44> =~ 165 million context units. Composition with
triphone-context-units reduces the complexity to about 170
thousand context units, but composition with tetraphone-
context-units reduces the complexity to only about 7.5 mil-
lion context units.

Q

©)

3. Enhancing Model Reliability

For some phonetic contexts that have not been seen dur-
ing training, the Bayesian wide context model is not able
to produce any output probability during recognition. To
handle this problem we simply assign a small numeric value

949

as an output probability. Since the Bayesian wide context
model score involves the output probability from several
less context-dependent models, this flooring mechanism is
applied for each model.

If the amount of training data is not large enough, the
parameter estimation of the Bayesian wide context model
p(X|A~, A, A") may become unreliable, and so will the state
output. The common approach to improve the model relia-
bility is to apply a smoothing technique, such as back-off or
interpolation smoothing. In this study, we try three different
approaches:

1. “No decision”:
In this case, no smoothing technique is applied. We al-
ways accept the output value from Bayesian wide con-
text model p(X|A~, A, A*) as the final output, so that

p(X|0) = p(X|A™,A,A7). (10)

2. “Hard decision™:
Here, we only accept the output value from Bayesian
wide context model p(X|A~,A,A*) when it is bigger
than the output from the base model p(X|A). Otherwise
we fall back or to p(X|A). It is similar to the back-off
technique, but in this case, the back-off weight is just O
or 1.

p(X1Q)
P(XIA™,A,AY),
it p(X|A=,A,A") > p(X|A)
p(X|A),
otherwise

(11)

3. “Soft decision’:
Here, we use deleted interpolation, which is described
in the next section.

4. Deleted Interpolation

Deleted interpolation (DI) is an efficient technique which
allows us to fall back to the more reliable model when the
supposedly more precise model is, in fact, unreliable [17].
The concept involves interpolating two (or more) separately
trained models, one of which is more reliably trained than
the other. So the interpolation model, p(X|Q), is obtained as

P(X|Q) = /lp(XlQprecixe) + (1 _/l)p(X|Qreliahle)a (12)

where A represents the weight of the precise model, and
(1 — A) represents the weight of the reduced, but more re-
liable, model. If the amount of training data is large enough,
P(X|Qprecise) becomes more reliable and A is expected to
tend to 1.0. But if it is not, 4 will tend to 0.0 so as to fall
back to the more reliable model p(X|Q;eiiapie)-

In our case, the Bayesian wide context model is the
precise one, while the base model is the more reliable one,
so Eq. (12) becomes:

p(X10) = Ap(XIA™, A, A") + (1 = Dp(X|A). 13)
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The optimal value of interpolation weights can be estimated
using a development set rather than training or using the
cross-validation method [17]. In this method, the training
data is divided into M parts, and models are trained from
each combination of M — 1 parts, with the deleted part
serving as development data to estimate the interpolation
weights. These M sets of interpolation weights are then av-
eraged to obtain the final weight.

5. The Use of the Bayesian Wide Phonetic
Context Model

To avoid decoding complexity, Bayesian wide context mod-
els are applied by rescoring an N-best list generated by a
standard decoding system without any modification. The
block diagram of the rescoring procedure is shown in Fig. 3.

For each utterance in the test data, an N-best recog-
nition (on word level) of the baseline system is performed
using a conventional HMM model and standard two-pass
Viterbi decoding. Each N-best hypothesis includes an
acoustic score, a language model (LM) score and a Viterbi
segmentation of each phoneme. Then every phoneme seg-
ment in each hypothesis is rescored using the wider context
model as shown in Fig.4. In each rescoring, we applied a
“no decision”, “hard decision” and “soft decision” mecha-
nism to enhance the model reliability (see Sect. 3).

At the beginning/end of the utterance, all left/right con-
texts will be filled by silence. Since we assume that there
is no long silence between adjacent words, the last phonetic
context from the previous word will also affect the beginning
phonetic context from the current word. Thus, this rescor-

3
Wav| | Standard two-
data pass decoding

New
hypothesis

Bayesian
AM-rescoring

Fig.3  Rescoring procedure.

UTTERANCE: " Good Night"

NBEST 1 S . G, UH D, N , AY T k6 SIL |

0.0000 se:: ' ' s ' s I1 7200 sec
NBEST 2 JSIL K UH D, N , AY T SIL |

0.0000 se:: ' ' s ' s I1 7200 sec

NBEST N pSL K AX N Ay VTS

) T T I‘ N
0.0000 sec X

1
1.7200 sec

New acoustic score for phoneN :
)z P(X | K, AX, N, AY )p(X | AX, N, AY, 1Y)
- P(X|AX, N, AV)

p(X | K, AX,N,AY, IV

Fig.4  N-best rescoring mechanism.
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ing mechanism is performed the same way for each segment
within and in-between words (cross word model). Then, the
new scores are combined with the LM score for this hypoth-
esis. The hypothesis achieving the highest total utterance
score among the N-best is selected as the new recognition
output.

6. Experimental Results and Discussion

As training data, we use more than 60 hours of native
English speech data from the Wall Street Journal (WSJO
and WSJ1) speech corpus[18]. A sampling frequency of
16 kHz, a frame length of a 20-ms Hamming window, a
frame shift of 10 ms, and 25 dimensional feature parameters
consisting of 12-order MFCC, A MFCC and A log power
are used as feature parameters. Three states were used as
initial HMM for each phoneme. Then, a shared state HM-
net topology was obtained using a successive state splitting
(SSS) training algorithm. Since the SSS training algorithm
used here based on the minimum description length (MDL)
optimization criterion, the number of shared HMM states is
determined automatically by the algorithm. Details about
MDL-SSS can be found in [19]. Each component model of
the Bayesian wide-phonetic context models is trained sep-
arately using the same SSS training algorithm, the same
amount of training data, and the same 15 Gaussian mixture
component numbers per state as our optimum choice.

The performance of the models was tested on the ATR
Basic Travel Expression Corpus (BTEC) [20], which is quite
different from the training corpus. The full BTEC test setl
consists of 4,080 read speech utterances spoken by 40 dif-
ferent speakers (20 Males, 20 Females). In this study, in
order to reduce the training time, we simply selected 1,000
utterances spoken by 20 different speakers (10 Males, 10
Females), and used them as a development set to find the
optimum A parameter of the deleted interpolation. Two hun-
dred randomly selected utterances spoken by 40 different
speakers (20 Males, 20 Females) were used as a test set.

In the first experiment, a context independent mono-
phone system with 132 total states was used as a baseline.
Rescoring was done with the Bayesian triphone C1L2R2
(with 2,700 states, sum of C1: 132 st., L.2: 1,313 st., and R2:
1,255 st.) as described in Sect. 5. For comparison, we also
rescored using conventional biphone C2 (with 1,313 states)
and triphone C3 (with 2,009 states) models. In each rescor-
ing, we applied a “no decision”, “hard decision” and “soft
decision” mechanism (see Sect.3). The recognition results
for all models, obtained by each decision mechanism, are
shown in Fig. 5. Bayesian C1L2R2 could achieve a signifi-
cant improvement of up to 5.6% relative to the baseline. Its
performance is better than just biphone C2, but still worse
than the triphone C3. According to our preliminary exper-
iments, the WSJ database is more or less suitable to train
a conventional triphone model without losing the context
resolution, and the optimum model was the one with about
2,000-3,000 total states and 15 Gaussian mixture compo-
nents. Thus, C3 with 2,009 states and 15 mixture compo-
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Fig.5 Recognition accuracy rates of the Bayesian triphone model.

nents per state is optimum in terms of parameter number and
context resolution. That might be the reason why it yields
the best result.

Their best performances were obtained using the “hard
decision” mechanism. They are better than the performance
using “no decision” and “soft decision” with the optimal
weight parameter A = 0.5. This might be due to the follow-
ing reasons. Considering the amount of training data and the
number of parameters, the triphone model is optimum and
much more precise than the monophone model. But it might
give an unreliable estimation if there are some unseen pho-
netic contexts in the testing data. Thus, the “hard decision”
or back-off smoothing became the optimum choice, since it
only falls back to the monophone model if the output from
the triphone model is unreliable. On the other hand, using
the “no decision” mechanism, which always accepts the out-
put value from the triphone model, may contain some unre-
liable outputs due to unseen contexts, and using the “soft de-
cision” mechanism always interpolating the triphone model
with the monophone model with equal weight (1 = 0.5) may
hurt the recognition accuracy of the triphone model.

Next, we experimented with wider context models,
where we used the context-dependent triphone system with
2,009 total states as the baseline to generate new N-best
lists for rescoring. We tested four types of Bayesian pen-
taphone models: CI1L3R3, C3L4R4, Cl1Lsk3Rsk3, and
C1C3Csk3, which have a symmetric composition and sim-
pler implementation than other possible Bayesian composi-
tions. Those models are composed as described in Sect. 2.2.
The C1L3R3 model has 3,175 states (sum of C1: 132 st.,
L3: 1,524 st., R3: 1,519 st.), the C3L4R4 model has 6,052
states (sum of C3: 2,009 st., L4: 2,021 st., R4: 2,022 st.),
the C1Lsk3Rsk3 model has 3,333 states (sum of C1: 132
st., Lsk3: 1,587 st., Rsk3: 1,614 st.), and the C1C3Csk3
model has 3,250 states (sum of Cl1: 132 st.,, C3: 2,009
st., Csk3: 1,109 st.). As a comparison, we also rescored
with a conventional full pentaphone model C5 with 2,040
total states, trained from scratch. The recognition results
for all models, obtained by each decision mechanism, are
shown in Fig. 6. The result shows that all pentaphone mod-
els could also achieve improvement relative to the baseline.
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Fig.6  Recognition accuracy rates of the Bayesian pentaphone models.

Here, the conventional pentaphone C5 gives a worse perfor-
mance than the Bayesian pentaphone models. This might
be because of the following reason. Given the amount of
WSJ training data, the optimum pentaphone model achieved
with the MDL-SSS algorithm has 2,040 total states, which
is not so different from the total number of states in tri-
phone C3. It seems that there are many different pentaphone
contexts sharing the same Gaussian components, so that the
context resolution is reduced. Thus approximating a penta-
phone model using the Bayesian composition of several less
context-dependent models such as triphone models could
help to reduce the loss of context resolution and improve
the performance.

Of the Bayesian pentaphone models, the CI1L3R3
model gives the best result and the worst is the C3L4R4
model. The reason for this might be that the WSJ training
data is also not enough to properly train the model param-
eters of the tetraphone components L4 and R4. Their to-
tal number of states are only slightly different than the total
number of states of triphone C3. So, as it happened in pen-
taphone C5, there might be many tetraphone contexts which
share the same Gaussian components and the context res-
olution is reduced. Another reason might be that the triple
phoneme overlap between the L4 and R4 component models
is too big, so developing a composition among them could
not give an optimum solution. So these might be the reasons
why the C3L4R4 became the worst. But the other Bayesian
C1L3R3, C1Lsk3Rsk3, C1C3Csk3 models basically have
a similar number of total states and the total amount of
training data would be enough to train the triphone con-
texts. All of them also only have a single phoneme over-
lap between the model components. However, consider-
ing the context phonetic dependency, the dependency be-
tween adjacent phonetic contexts may have much stronger
effects than the dependency between skipped phonetic con-
texts. This mean that the more adjacent phonetic contexts
they have, the better the model. Thus, C1C3Csk3 is better
than C1Lsk3Rsk3, and the C1L3R3 model is the best among
all models.

In this case, the best performance was obtained by the
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Fig.7 A word error rate (WER) relative reduction of the Bayesian tri-
phone C1L2R2 model with respect to the monophone baseline and a WER
relative reduction of Bayesian pentaphone C1L3R3 model with respect to
the triphone baseline.

“soft decision” mechanism using deleted interpolation. This
shows that, when the estimation of the pentaphone model is
less reliable, it is useful to interpolate the pentaphone model
and the triphone model estimations, because the triphone
model can often provide useful information. The optimal
weight parameter A was about 0.3. Having a weight factor
of 0.3 means that the contribution of the pentaphone model
is only about 30% of the total score.

Figure 7 shows a comparison between a word error rate
(WER) relative reduction of the Bayesian triphone C1L2R2
model with respect to the monophone baseline and a WER
relative reduction of the Bayesian pentaphone C1L3R3
model with respect to the triphone baseline. The error
rate reduction of the Bayesian pentaphone model is smaller
(about half of the error rate reduction of the Bayesian tri-
phone model), probably due to the following reasons. First,
the coarticulation effect from the second preceding and fol-
lowing contexts is less than the coarticulation effect from
the first preceding and following contexts. Second, the vari-
ations in the read speech data due to longer coarticulation
effects might be less than in conversational speech. This can
also be seen from the weight factor of the deleted interpo-
lation, which can be interpreted as a confidence factor with
30% only. However, with this relatively small contribution,
the results show that it still can help to improve the recogni-
tion performance.

To show the consistency of the effect of using the
Bayesian composition, we did another evaluation of exper-
iments on fewer training data. Here, we chose the TIMIT
acoustic-phonetic continuous speech corpus [21] as another
American-English, phonetically-rich corpus, but smaller
than the WSJ database corpus. It contains only about seven
hours of read speech (6,300 utterances in total). Each com-
ponent acoustic model was trained using the SSS algorithm
as before. In this case, the triphone baseline has 434 states,
the conventional pentaphone C5 has 440 states, and the pro-
posed Bayesian pentaphone C1L3R3 has 850 states (sum
of Cl: 132 st., L3: 369 st., R3: 349 st.). These models
were tested using the same BTEC test set with “soft deci-
sion” only. The optimal weight parameter A was also 0.3.
The results are shown in Fig. 8. As can be seen, with fewer
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Fig.8 Recognition accuracy rates of the conventional pentaphone C5
and the proposed Bayesian pentaphone C1L3R3 models with different
amounts of training data.

training data, the performance difference between the pro-
posed C1L3R3 model and the conventional pentaphone C5
model became more significant.

7. Conclusion

We have demonstrated the possibility of improving acous-
tic model performance by incorporating a wide phonetic
context based on the Bayesian framework. This method
allows us to construct wider context models from several
other models that have a narrower context. This composi-
tion technique leads to a reduction of the number of context
units to be estimated, so the loss of context resolution can
be considerably reduced since only less context-dependent
models need to be estimated. We apply these wide-context-
model compositions at the post-processing stage with N-
best rescoring, so we can use the standard decoding system
without any modification. The recognition results showed
that ASR system performance can be improved by rescor-
ing with Bayesian wide-phonetic-context models.
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