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Abstract—Many studies have shown that articulatory features
can significantly improve the performance of automatic speech
recognition systems. Unfortunately, such features are not avail-
able at recognition time. There are two main approaches to solve
this problem: a feature-based approach, the most popular exam-
ple of which is the acoustic-to-articulatory inversion, where the
missing articulatory features are generated from the speech signal,
and a model-based approach, where articulatory information is
embedded in the model structure and parameters in a way that
allows recognition using only acoustic features. In this paper, we
propose two new methods to integrate articulatory information
into a phoneme recognition system. One of them is feature based,
and the other is model based. In both cases, the underlying acous-
tic model (AM) is a deep neural networks-hidden Markov model
(DNN-HMM) hybrid. In the feature-based method, the articula-
tory inversion DNN and the acoustic model DNN are trained jointly
using a linear combination of their loss functions. In the model-
based method, we utilize the generalized distillation framework to
train the AM DNN. In this case, first, a teacher DNN is trained
on both the acoustic and articulatory features, and then its out-
puts are used as additional targets during the AM DNN training
with acoustic features only. A 7-fold cross-validation experiments
using 42 speakers from the XRMB database showed that both the
proposed methods provide about 22% to 25% performance im-
provement with respect to the DNN acoustic model trained with
acoustic features only.

Index Terms—Automatic speech recognition, deep recurrent
neural networks, articulatory information, distillation training.

I. INTRODUCTION

AUTOMATIC Speech Recognition technology is becoming
good enough to enable many exciting applications, yet

current ASR systems still suffer from acoustic variabilities such
as background noises, speakers, accents, recording conditions,
etc.

In order to make the systems more reliable and robust, re-
searchers have been trying to utilize additional information such
as articulatory organs (lips, tongue, velum, etc.) movements,
which is more suitable to model the coarticulation effects [1].
Many studies [2]–[5] have shown that articulatory information
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can improve the ASR performance and increase the robustness
against noise contamination and speaker variation. However,
incorporating such information is challenging since it is im-
practical to obtain observations of articulators movements in
real-life speech recognition scenarios. This constraint requires
ASR systems to utilize articulatory data for training only, i.e. to
be able to recognize without them.

One approach to incorporate the articulatory information is
to utilize it at the feature level, which we call feature based
approach.

The most straightforward and widely used implementation
of this approach is the articulatory-to-acoustic inversion, where
the missing articulatory features are generated from the acoustic
signal. This, however, is not a simple task since the mapping
between acoustic and articulatory data spaces is non-linear and
not unique [6]. Various machine-learning methods haven been
applied to model this mapping, for example, Hidden Markov
Model (HMM) [7], Gaussian Mixture Model (GMM) [8], and
Mixture Density Networks (MDN) [9]. The Canonical Correla-
tion Analysis (CCA) used in [10] and its deep learning extension
DCCA [11] are also the feature based approaches where trans-
formations of the acoustic features are learned such that they
become maximally correlated with the articulatory data. Since
the Deep Neural Networks (DNN) have become the new state-
of-the-art tool in a wide range of application domains, multiple
studies [12]–[14] have shown that DNNs’ ability to learn highly
non-linear and complex functions results in better prediction of
articulatory trajectories from acoustic speech data. Several Deep
Autoencoder (DAE) architectures for articulatory inversion are
also investigated in [15].

In this work, we use a bidirectional Deep Recurrent Network
(biRNN) to approximate the acoustic-to-articulatory mapping.
RNNs are better suited to model temporal processes such as
speech and have been successfully used in acoustic models [16].
Our phoneme recognition system is also built with biRNN based
DNN-HMM acoustic model. In contrast to other studies, how-
ever, we learn the articulatory inversion biRNN and the acoustic
model biRNN jointly by combining their loss functions. This
leads to training with a common goal and results in better per-
formance. Further performance boost can be achieved if the
networks are initialized with separately trained biRNNs.

Another way to integrate articulatory information in the ASR
systems is the model based approach, where the articulatory data
are used to adjust the parameters and optionally the structure of
the acoustic model in a way that does not require articulatory ob-
servations during testing. Obviously, in this case no articulatory
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inversion is necessary. In [2], a hybrid Bayesian network/HMM
acoustic model incorporates the articulatory data. A relatively
new way to incorporate knowledge into neural networks is the
so called Distillation Training, where an additional loss func-
tion with soft targets is also being minimized during training.
In [17], Hinton et al. have shown that soft targets from complex
models can transfer knowledge to small models that are easy to
deploy. Recently, the learning using privileged information [18]
and the distillation methods have been combined into a Gener-
alized Distillation framework [19] which utilizes the strengths
of both methods. Knowledge is transferred through soft targets
from a “teacher” model trained with additional features to a “stu-
dent” model with no access to those features. In our previous
work [20], we applied Generalized Distillation in a feedforward
DNN-HMM system. The results showed that soft targets can
transfer knowledge from the teacher trained with both articula-
tory and acoustic data to the student model learned from acoustic
data only. In [21], the effectiveness of RNN models pretrained
with soft targets was also investigated and compared with the
distillation method. Both approaches lead to models that have
higher generalization abilities.

In this paper, we apply the Generalized Distillation training
framework to our biRNN based acoustic model in a way similar
to our previous work with feedforward DNN [20]. This time,
however, distillation training consistently reduced the Phoneme
Error Rates (PER) in wide range of temperature parameter (T )
setting, while we previously observed diverse performance im-
provement depending on this parameter.

The rest of the paper is organized as follows. Next Sec-
tion describes several closely related studies. Section III briefly
introduces the hybrid DNN-HMM acoustic models and in
Section IV, we describe our methods for articulatory data fu-
sion. In Section V, we present our experiments and the obtained
results are summarized in Section VI. An analysis of the results
with respect to the phoneme language model’s influence as well
as the lexical content of the utterances is given in Section VII.
Finally, Section VIII includes our conclusions.

II. RELATED STUDIES

Most of the methods utilizing articulatory information are
feature based and have to solve the difficult task of articula-
tory inversion. For example, in [22], a joint probability density
of an articulatory and acoustic parameters is modeled using a
GMM to provide articulatory inversion mapping. A Support
Vector Regression (SVR) was applied in [23] to the task of
transforming the acoustic speech signal onto EMA trajectories.
In [24], an HMM-based speech production model was presented
which consists of the articulatory HMM for each phoneme and
an articulatory-to-acoustic mapping for each HMM state. All
these studies use shallow models which have limited abilities
to learn highly non-linear transformations such as articulatory
information.

In [12], a deep belief network was implemented and obtained
an average Root Mean Square Error (RMSE) of 0.95 on the
MNGU0 test dataset and in [13], the result was improved to
0.885 by a mixture density network.

Although a feedforward NN with large input window size
gives better predictions, it also requires more data to train and
the dimension of the input vector, as well as the weight ma-
trix of the first layer, may become very large even though most
weights are redundant. Instead of concatenating a window of
frames together, an RNN can learn to store useful information
from the time series data fed to it one by one. In [25] and [26],
bidirectional LSTMs were used for speaker dependent artic-
ulatory inversion and have boosted the articulatory inversion
performance on the MNGU0 test set. RNNs are good at learn-
ing the inversion mapping. A drawback of RNN-based inversion
method for ASR is that when the acoustic model and inversion
model are both based on RNNs, the computational cost may
become prohibitive for practical real-time deployment. Another
example of speaker dependent articulatory inversion method is
described in [15] where multiple deep autoencoder architectures
are investigated for the acoustic-acticulatory mapping. In addi-
tion to the MNGU0 dataset, the MSAK0 male voice from the
MOCHA-TIMIT database is used. Speech recognition perfor-
mance is evaluated in terms of frame level phone classification
error (flPCE) as well as phone error rate (PER). The best re-
sults obtained for MNGU0 and MSAK0 are 11.6% and 27.5%
PER respectively. Only few studies approach the the problem
in a speaker independent way, such as [11] and [27], where
the XRMB corpus is used. However, due to the specifics of the
DCCA method they use, the number of test speakers is still
rather small, only 12, which hardly makes the result of 24.5%
PER truly speaker-independent.

In contrast to the feature based methods, model based meth-
ods introduce less or no extra computational cost during recogni-
tion since no estimation of the articulatory movements is neces-
sary. For example, in [2], a hybrid HMM/BN model is adopted to
embed the articulatory information inside the model. Not only
the articulator position but also velocity and acceleration are
taken into account and a latent discrete variable is used for each
of them within a Bayesian Network that substitutes the tradi-
tional GMM state probability distribution. Similarly, the works
[28]–[30] use Dynamic Bayesian Network to treat articulatory
information as hidden variable.

III. DNNS AS ACOUSTIC MODELS IN ASR

DNNs have gratly changed the pipeline of the current ASR
systems. In the so-called DNN-HMM hybrid systems [31], [32],
big performance boosts were achieved by replacing Gaussian
Mixture Models (GMMs) by a feedforward Neural Network
(FNN) which takes a window of several frames as input and
produces posterior probabilities over HMM states as illustrated
in Fig. 1.

The DNN-HMM training procedure can be summarized as
follows:

1) Train a standard GMM-HMM based recognizer.
2) Use forced alignment to get the DNN target labels, i.e.

state ID for each observation vector.
3) Count the occurrences of hidden states in the train-

ing set to compute the prior probabilities of HMM
states.
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Fig. 1. GMM-HMM vs DNN-HMM acoustic models.

4) Train a DNN classifier that maps observations to HMM
states.

5) Compute scaled observation likelihoods based on Bayes’
rule and feed them to the HMM decoder.

The HMM state probabilities can also be obtained by RNNs
instead of FNNs, where the current output does not only depend
on the current input but also on previous hidden states. Instead
of concatenating frames into a big vector, a typical RNN maps
arbitrary length sequence to a fixed length vector by applying
the same transition function f with the same parameters at every
time step [33].

A natural extension of RNN based on the idea that the out-
put at time t may not depend only on the previous inputs but
also on the future inputs is called bidirectional RNN. It is im-
plemented by processing the data sequence in both directions
with two separate hidden layers. However, standard RNNs can-
not learn long-term dependency due to the vanishing gradient
problem [34].

Long short term memory (LSTM) [35] is a particular imple-
mentation of RNNs that uses input, output and forget gates to
prevent the vanishing gradient problem. Gated Recurrent Unit
(GRU) [36] is an LSTM variation that merges the forget and
input gates into a single update gate resulting in a less complex
structure, yet the performance is similar to that of the LSTM.
The GRUs used in our experiments are specified by Eq. (1).

rt = σr (xtWxr + ht−1Whr + br )

ut = σu (xtWxu + ht−1Whu + bu )

ct = σc(xtWxc + rt � (ht−1Whc) + bc)

ht = (1 − ut) � ht−1 + ut � ct

(1)

Our biGRU is implemented by stacking two GRUs together
and the biGRU hidden state is the sum of the forward GRU
hidden state hf

t and the backward GRU hidden state hb
t .

IV. ARTICULATORY AND SPECTRUM FUSION METHODS

A. Standard Articulatory Inversion

In the conventional feature based approach, the articulatory
inversion model and the acoustic model are trained separately.
Articulatory features are first generated using the inversion
model and then combined with the acoustic features for acoustic
model training. The same procedure is applied during recogni-
tion.

1) Training Procedure: Given the training data {(xi, ai)}n
i=1 ,

we would like to learn a mapping fIN V from the acoustic space
to the articulatory space by minimizing a mean squared error
(MSE) loss function L with some form of regularization

fIN V =arg min
fi n v ∈FI N V

1
n

n∑

i=1

L(finv (xi), ai) + Ω(||finv ||) (2)

L(finv (xi), ai) =
1
q

q∑

j=1

(finv (xi)j − aij )2 . (3)

Here, xi ∈ Rp and ai ∈ Rq are the acoustic and articulatory
feature vectors, FIN V is a space of mapping functions from Rp

to Rq and Ω is L2 norm regularizer.
The acoustic model fAC maps concatenated feature vec-

tors into HMM state probabilities through a softmax function
and is trained by minimizing the categorical cross entropy loss
function H:

fAC = arg min
fa c ∈FA C

1
n

n∑

i=1

H(σ(fac(x∗
i )), yi) + Ω(||fac ||)

(4)

H(yi, σ(fac(x∗
i ))) = −

c∑

j=1

yij log σ(fac(x∗
i )j ) (5)

where, x∗
i = concat(xi, fIN V (xi)) ∈ Rp+q is the concatenated

vector of acoustic and reconstructed articulatory features, yi ∈
Δc is a vector representing target HMM states, Δc is the c-
dimensional space of probability vectors, FAC is a class of
functions from Rd to Rc , σ : Rc → Δc is the softmax function.

2) Testing Procedure: During testing, the inversion model is
used to generate the articulatory features which are concatenated
with the acoustic features and used as input to the acoustic
model.

B. Joint Articulatory Inversion and Acoustic Model Training

The recognition result of standard inversion depends on the
outputs of the inversion model. However, the inversion model
is only trained to minimize its MSE loss with respect to the
articulatory vector and does not have any knowledge about how
its outputs will be used later. It would be helpful to tell the inver-
sion model what the final goal is. Thus, we train the inversion
model and the acoustic model as a single network so that the
parameters of the two models are trained to minimize the final
objective jointly.

The joint training procedure and the network structure are
illustrated in Fig. 2. The acoustic vector xi is passed through the
inversion DNN finv to calculate the MSE loss with respect to the
articulatory vector ai using Eq. (3). In addition, xi concatenated
with the inversion DNN output finv (xi) (which is expected to
have a physical meaning of articulatory feature) and the vec-
tor concat(xi, finv (xi)) (denoted as x∗

i ) is passed through the
acoustic model DNN fac followed by a softmax output function
σ to calculate the categorical cross entropy loss with respect to
HMM state labels yi using Eq. (5).
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Fig. 2. Block diagram of the joint articulatory inversion and acoustic model
DNN training.

1) Joint Training Procedure: During the training the entire
network is trained by minimizing the weighted average of the
two loss functions controlled by λ ∈ [0, 1) using Eq. (6)

fIN V , fAC = arg min
fi n v ∈FI N V ,fa c ∈FA C

1
n

n∑

i=1

[(1 − λ)

× H(σ(fac(x∗
i )), yi) + λL(finv (xi), ai)

+ Ω(||fac || + ||finv ||)] (6)

We have to note that the weight λ which controls the contri-
bution of each loss function in the weights update cannot be set
to 1, because this will eliminate the HMM states as targets and
destroy the acoustic model. On the other hand, λ = 0 means that
articulatory targets are eliminated and no articulatory informa-
tion is integrated.

2) Testing Procedure: During testing, the HMM state prob-
abilities obtained from the joint model are fed to the HMM
decoder as shown in Fig. 3. The only input data in this case
are the acoustic features as in any articulatory inversion based
system.

C. Acoustic Model Training using Generalized Distillation

Generalized distillation method has been proposed in [19] to
combine two techniques - Hinton’s distillation [17] and Vapnik’s
privileged information [18] which enables machines to learn
from other machines. In this framework, an “intelligent teacher”
is incorporated into machine learning and the training data is

Fig. 3. Block diagram of the joint articulatory inversion testing.

formed by a collection of triplets

(x1 , x
∗
1 , y1), . . . , (xn , x∗

n , yn ) ∼ Pn (x, x∗, y),

where (xi, yi) is a feature-label pair and x∗
i represents a priv-

ileged information about xi provided by an intelligent teacher
and is supposed to have higher discriminating power than xi

itself. The teacher is assumed to develop a language that effec-
tively communicates information to help the student come up
with better representation and to enable to it learn characteris-
tics about the decision boundary which are not contained in the
student training data. In our task, combined acoustic and artic-
ulatory feature vectors are regarded as privileged information
source, x∗

i = concat(xi, ai).
The training procedure is as follows:
1) Learn teacher fT ∈ FT using {(x∗

i , yi)}n
i=1 .

fT = arg min
f t ∈FT

1
n

n∑

i=1

l(yi, σ(ft(x∗
i ))) + Ω(||ft ||) (7)

where, x∗
i ∈ Rd , d is the total dimension of acoustic and

articulatory features, yi ∈ Δc , FT is a class of functions
from Rd to Rc , σ : Rc → Δc is a softmax function, l
is a loss function (in our case, it is the categorical cross
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Fig. 4. Student training block diagram. In contrast to hard targets yi , soft
targets si provide information about between class relations.

entropy from Eq. (5)). The paramters of teacher model are
then fixed.

2) Compute teacher soft labels {si}n
i=1 using temperature

parameter T , where si = σ(fT (x∗
i )/T ) ∈ Δc . T is nor-

mally set to 1. We use a higher value for T to soften the
probability distribution over classes.

3) Learn student fS ∈FS from Eq. (8) using {(xi, yi , si)}n
i=1

and imitation parameter λ ∈ [0, 1]. Because the magni-
tudes of the gradients produced by the soft targets scale
as 1/T 2 , multiplying the second loss by T 2 is necessary
[17].

fS = arg min
f s ∈FS

1
n

n∑

i=1

[(1 − λ)l(yi, σ(fs(xi)))

+ T 2λl(si, σ(fs(xi)/T ))] (8)

The student DNN training procedure is illustrated in Fig. 4.
The outputs of the teacher DNN softened by the temperature
parameter T are used as soft targets si and together with the hard
targets yi act as arguments of the student DNN loss function as in
Eq. (8). The input training data for the student DNN consists of
acoustic features only. The corresponding concatenated acoustic
and articulatory features, are given to the teacher DNN input in
order to calculate the soft targets. However, only the student
DNN parameters are updated during this procedure.

During testing, only the student DNN is used and the state
probability predictions from the “hard” output, i.e. the output
that was compared with the hard targets during training, are fed
to the HMM decoder as shown in Fig. 5. Student DNN model
trained using this method does not need articulatory feature nor
extra computational resources during testing and is as fast as the
standard DNN acoustic model.

V. EXPERIMENTS

Every ASR system used in our experiment is a hybrid DNN-
HMM system, where DNN is used to predict HMM state poste-
rior probabilities given an input data vector. These probabilities
are converted to likelihoods using state priors and standard de-
coding is performed to obtain the recognition result. Targets for
the student (teacher) DNN learning are obtained by first training
conventional GMM-HMM systems using acoustic (acoustic +

Fig. 5. Testing with student DNN. No extra cost is required during the test.

Fig. 6. Placement of the 8 pellets on T1, T2, T3, T4, MANm, MANi, UL, and
LL points.

articulatory) features. Then, target states are identified by forced
alignment.

A. Database

The database used in our experiments is the University of
Wisconsin X-ray microbeam database (XRMB) [37], which
consists of simultaneously recorded acoustic and articulatory
measurements from 47 American English speakers (22 males,
25 females). Each speaker’s recordings comprise at most 118
tasks such as a sequence of numbers, TIMIT sentences spoken
in different ways (normal, slow, fast), isolated word sequences,
paragraphs as well as non-speech oral motor. In our experi-
ments, only word: standard, sentence: normal, counting(1-20),
and number sequences were used. The articulatory measure-
ments are horizontal and vertical displacements of 8 pellets on
the tongue, lips, and jaw as shown in Fig. 6 [37].

We downsampled the acoustic signal from 21.74 kHz
to 16 kHz and our acoustic features are 13-dimensional
Mel-frequency cepstral coefficients (MFCCs) computed every
10 ms over a 25 ms window, along with their first and sec-
ond derivatives, resulting in 39-dimensional vectors. We also
downsampled the articulatory data from the original rate of
145.7 Hz to 100 Hz to match the frame rate of acoustic features
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TABLE I
DETAILS OF THE TRAIN, VALIDATION, AND TEST SETS

and use the x, y coordinates of the 8 articulators along with
their first and second derivatives as articulatory feature vectors
of 48 dimensions. Including the first and second derivatives of
the articulatory data is helpful since the movement itself cannot
tell apart speech pause from other phonemes. Finally, all fea-
ture vectors are mean and variance normalized on per utterance
basis.

Due to limitations in the recording technologies, articula-
tory measurements contain missing data when individual pellets
are mistracked. Though there are methods to reconstruct miss-
ing data [38], we decided to use only complete data samples.
Phoneme alignment was done using the Penn Phonetics Lab
Forced Aligner [39] and the missing entries, as well as speech
data which are not consistent with their orthographic transcripts,
were removed. Utterances are split into files, each containing
only one sentence with silence parts at the beginning and end
reduced to 150 ms. After excluding the speakers who had only
few utterances left, our dataset was reduced to about 3 hours,
while the whole database has 19 hours in total. All experimental
results are obtained from a 7-fold cross validation with 6 speak-
ers for testing, 4 speakers for validation and 32 speakers for
training in each fold. Unlike many other studies, this makes our
models as speaker-independent as possible. Table I summarizes
the details about our data sets.

We built two conventional GMM-HMM recognizers with 38
Gaussian components per state using the train and validation
data. One uses only acoustic features (39 dim) and the other
uses both the MFCCs and articulatory features (87 dim). They
are both standard 3-state left-to-right context independent mono-
phone HMM models. The phoneme language model is a simple
bi-gram trained on data transcriptions including the paragraph
task. We use 39 distinct phonemes extracted using the Carnegie
Mellon University pronunciation dictionary-0.7b [40] and one
silence HMM (120 HMM states in total). With the GMM-HMM
systems, we generated frame level training targets for the neural
networks with corresponding features.

B. Common DNN Settings

In our experiments, we used RNN for both the acoustic and
inversion models. DNNs have a lot of hyper parameters, such
as number of layers, number of nodes, activation function type,
etc. In a series of preliminary experiments, we tried various
RNN structures and parameters in order to achieve the best pos-
sible baseline performance. Finally, we chose two biGRU layers
stacked in between feedforward dense layers which showed the
best performance. Similar findings are reported in [26] and [41].

Fig. 7. Inversion and acoustic RNN structures. The number of nodes and the
activation function of each layer is given. Note that the biGRU layer consists of
two GRUs layers, so the number of nodes is for each of them.

TABLE II
COMMON DNN PARAMETERS

Although in principle a DNN with more recurrent layers should
be able to provide similar performance, yet it takes much longer
to propagate the information through the recurrent layers than
feedforward layers and deeper RNNs easily become over-fitted
after several epochs of training. Thus, most DNNs in our exper-
iments have following hidden layers: 2 feedforward (F) layers
with ReLU activation followed by 2 biGRU (B) layers on top
of which there are another 2 ReLU feedforward layers. This
structure is denoted as FFBBFF and is shown in Fig. 7 for both
the acoustic and inversion DNNs. The other common settings
are summarized in Table. II.

For regularization, a dropout layer with 30% dropout rate is
inserted after every feedforward layer and biGRU layer and L2
regularizations of feedforward layers with a rate of 0.001 are
also added to the final loss, which is 10−3 ∑

(‖θ‖2)/2 and θ is
the weights of a layer.

For the training, a gradient clipping norm of 10.0 is set to
prevent the exploding gradient and the weights of gates in GRU
layers are initialized using orthogonal matrix initialization [42],
which we found important for the training. Finally, all DNNs
were first trained with 9e-5 learning rate and fine-tuned with 5e-
6 learning rate once the validation data losses did not go down
for 3 epochs.

C. Articulatory Inversion Experiments

1) Baseline System: As a baseline, we adopt a system where
the inversion model and acoustic model are trained sepa-
rately. The inversion model architecture is FFBFF illustrated in
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Fig. 7-a. The inputs and outputs are the MFCC (39 dim) and
articulatory feature (48 dim) vectors respectively.

Our acoustic model architecture is FFBBFF and is shown in
Fig. 7-b. The train data x∗

i are concatenated acoustic and gen-
erated articulatory vectors (87 im) and the “hard” targets yi are
one-hot vectors (120 dim) where the component corresponding
to the target state is 1 and all other components are set to 0.

2) Joint Inversion and Acoustic RNN Training: The archi-
tectures of inversion and acoustic RNN in the joint training
experiment are the same as in baseline system. The difference
is that the two models are trained jointly as illustrated in Fig. 2.

In the first series of experiments, we initialized weights of
the RNNs randomly. However, since the number of model pa-
rameters has doubled, finding a good initialization strategy is
essential for the success of the training. Here, we use a pretrain-
ing strategy to help the network to start from a good position.
In this case, the weights of the network are initialized with the
weights from well trained inversion model and acoustic model
of the baseline system. This initialization reduced 2 to 3 times
the number of iterations necessary to train the models.

During training, the joint loss function parameter λ was varied
from 0 to 0.9 in steps of 0.1. As we explained above, λ = 1.0 is
meaningless with respect to the training goal.

D. Acoustic RNN Training using Generalized Distillation

In a similar way to our previous work [20], we applied the
Generalized Distillation framework, but this time for RNN train-
ing. The teacher model in this case is the same as the acoustic
RNN used in the articulatory inversion baseline system. How-
ever, here it is used only to obtain the soft targets for the student
RNN model training which has the same architecture, except for
the input layer. It takes only acoustic feature vectors (39 dim).

The two hyper-parameters of the distillation training, the tem-
perature T and the imitation parameter λ were changed as fol-
lows. T was set to 1, 2, and 5, and λ was varied from 0 to 1 with
steps of 0.2. Note that λ = 0 reduces the distillation training
to conventional training, with the only difference that the hard
targets are obtained from the GMM-HMM model trained with
both the acoustic and articulatory features. On the other hand,
λ = 1 means that the training is done using only the soft targets.

VI. RESULTS AND ANALYSIS

A. Lower and Upper Performance Bounds

Although impractical, it is possible to train and evaluate the
system performance using the true articulatory data. This would
give us the maximum achievable performance, or in terms of
phoneme error rate, the PER lower bound. On the other hand,
performance of the system trained on acoustic data only would
serve as the PER upper bound. Any PER in between those
bounds would show improvement, but the goal is to get as close
as possible to the lower PER bound.

Figure 8 shows those bounds for the GMM-HMM and RNN-
HMM acoustic models. Previously, we have built an DNN-
HMM model with feedforward layers only, and its results are
also shown as FNN-HMM.

Fig. 8. The PER results of different acoustic models with and without true
articulatory (ART) features. The numbers correspond to the upper and lower
PER bounds for each model.

TABLE III
SPEAKER INDEPENDENT INVERSION RESULTS (THE 1ST AND 2ND DERIVATIVES

ARE EXCLUDED)

Fig. 9. The predictions of T2_x, T2_y, MI_x, MI_y articulatory movements
obtained from the RNN inversion model.

Obviously, models using the articulatory features are always
better than those without them. As the model becomes more
and more powerful, i.e. GMM→ FNN→ RNN (whose numbers
of parameters are about 0.8, 20, 42.4 millions respectively), the
gap between the upper and lower bounds reduces significantly.

B. Inversion Baseline Results

First, we investigated how our models perform the acoustic-
to-articulatory mapping. Table III shows the inversion results for
a 5 hidden layers feedforward network (FNN) with input win-
dow size of 17 frames and the RNN (from Fig. 7a) in terms of
Root Mean Squared Error (RMSE) and the Pearson correlation
coefficient r computed using the true articulatory data. In Fig. 9
plots of predicted trajectories for several articulatory features
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Fig. 10. Results of the joint inversion and acoustic model training. λ = 0
corresponds to the case when the acoustic model uses MFCC features only but
is trained with targets obtained from the MFCC+ART GMM-HMM.

using the RNN inversion model are given. The predictions from
the RNN inversion model are smooth enough even without any
post-processing as mentioned in [25]. This indicates that RNN
accounts for the previous and future information quite well.
When inversion model predictions are used as articulatory fea-
tures in the corresponding DNN-HMM acoustic models, clear
error reduction is observed as shown in PER(%) column.

C. Joint Inversion and Acoustic Models Training Results

The joint inversion + acoustic model results are summarized
in Fig. 10, where Fig. 10-a shows the results for the test set
and Fig. 10-b gives the results for the validation set, the blue
dashed line and green dashed line represent the upper and lower
bounds respectively and the red dashed line is the inversion
baseline result. The “Joint Inv” curve shows the results of jointly
trained model with different λ. The “Joint Inv+Pre” denotes the
results with pretraining, i.e when networks are initialized with
the weights from the separately trained inversion and acoustic
DNNs as explained in Section V-C2.

When the RNN networks are randomly initialized, the joint
training gives slight improvement for several values of λ. How-
ever, the effect of the pretraining is obvious.

From the figure we can see that the test set and validation set
both achieve best results with λ = 0.2. Because the validation
data was used to tune the DNN parameters and to train the
GMM-HMM systems, the results are better than the ones on
test set. The best joint training result with λ = 0.2 is 2.80 ±
0.49%, which is very close to the lower bound of 2.68%.

D. Generalized Distillation Training Results

The RNN distillation training results in terms of PER are
summarized in Fig. 11, Fig. 11-a and Fig. 11-b show the results
on test and validation sets respectively. The blue dashed line
represents the result of the student when trained alone which
corresponds to the upper PER bound. The teacher’s result is
the lower bound distilled student can achieve. As can be seen,
for T = 2 and λ = 0.8, both sets achieve the best results. The
distillation result of 2.93 ± 0.52% PER is 21.9% better than the

Fig. 11. Results of distillation training. The lower and upper bound for the
PER are shown as teacher and student only results. λ = 0 corresponds to the
case when the student is trained using hard targets only. “Student+” corresponds
to the case when the acoustic model uses MFCC features only but is trained
with targets obtained from the MFCC+ART GMM-HMM.

Fig. 12. Performance of different methods and two acoustic baseline models.
The “MFCC only” is the PER upper bound result. The “MFCC+ART” is the
lower bound.

result of the student alone. When λ = 0, the distillation training
is reduced to standard training with MFCC features using hard
targets provided by the GMM-HMM trained on MFCC+ART
vectors, which is already much better than training without any
articulatory information. On the other hand, λ = 1 means the
model is trained using the soft targets only and is even better
than training with hard targets from the teacher. This suggests
that soft targets provide a more informative objective than the
hard targets alone.

Finally, we compare the best performances from all the dif-
ferent methods in Fig. 12. Here, the most left and most right bars
show the upper and lower performance bounds respectively. The
best articulatory information fusion result is 2.80 ± 0.49% ob-
tained from the joint inversion and acoustic model pretraining
method. Distillation training result is little bit worse, but net-
work size in this case is two times smaller and consequently
faster to train and operate.

VII. DISCUSSION

As we mentioned in Section V-A, the XRMB data were col-
lected by asking all the speakers perform the same tasks. This
makes the lexical content of the speech data the same for all
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TABLE IV
7-FOLD CV RESULTS ON DIFFERENT DATA SETS WITH DIFFERENT LANGUAGE

MODELS. RESULTS ARE SHOWN FOR MFCC / MFCC+ART FEATURES

the speakers. While the focus of this study is the acoustic and
articulatory information fusion, we cannot ignore the fact that
lexically the training and test data are the same. With respect
to the phoneme language model, this would mean that it is a
closed set LM and may have a boosting effect on all the results.
In addition, the RNNs input consists of full utterances, so they
may learn not only the acoustic dependencies, but the linguis-
tic ones as well, which in turn can lead to biased performance.
To check this hypothesis we performed a series of additional
experiments.

A. The Closed Set Language Model Effect

To explore the effect of the LM on our results, we did tests
without LM as well as with a LM trained on the TIMIT database
transcriptions which can be considered as a “general purpose”
LM for this task. The results of the upper and lower PER bounds
for the GMM, FNN and RNN acoustic models are summarized
in Table IV.1

Table IV shows that the closed set XRMB LM has big effect
on the GMM model performance, but less effect on the DNN
acoustic models. Furthermore, even without LM their perfor-
mance is quite good. This suggests that DNN may have learned
some lexical information as well.

B. The Lexical Content Effect on DNN Training

Although the utterances in the test set are from different
speakers, they contain words and word sequences seen in the
training set. For the neural network based acoustic models this
could be significant since the input context in NNs is much larger
(the whole utterance in RNNs) and the long span dependencies
learned during training to some extend would match those in
the test data.

To check this assumption, we repeated all joint inversion and
distillation training experiments using an updated setting. This
time we split the data into seven folds in terms of both speaker
and sentence ids, so we got a two dimensional split with 49
sets as shown in Fig. 13 and we used the 7 sets on the diagonal
that are unique in both speakers and sentences for testing. All

1In these experiments, we excluded 5 utterances (per speaker) with the same
lexical content across the speakers, so the results are slightly different from
those in Fig 8.

Fig. 13. Train (green) and test (blue) datasets split for the second fold. Simi-
larly, for other folds diagonal boxes data are used for testing.

TABLE V
DETAILS OF THE TRAIN, VALIDATION, AND TEST SETS WHEN UTTERANCES

WITH THE SAME LEXICAL CONTENT ARE REMOVED. THE NUMBER IN ( ) IS

THE PERCENTAGE OF THE AMOUNT FROM TABLE I

Fig. 14. 7-fold CV results when utterances with the same lexical content are
removed. a) PER of the inversion methods, b) PER of the distillation training.

sets from the rows and columns other than those of the test set
are used for training. This reduced the amount of data by more
than half. Table V summarizes the details about the new dataset.
We used the same DNN hyperparameters and XRMB language
model.

The RNN-HMM inversion and distillation results are sum-
marized in Fig. 14 and results for all usable systems are sum-
marized in Fig. 15. As can be seen, both proposed methods
work in this case as well. The absolute values of the PERs,
however, are about ten times higher. Since the presence of the
same lexical material in both train and test data and both the
acoustic and inversion models are better suited for such test
data, the results show less improvement using the proposed
methods when utterances with the same lexical content are re-
moved. Nevertheless, the same performance pattern can be ob-
served in this case: the pretrained joint inversion is the best;
the joint inversion is better than the distillation training, which
in turn is better than the standard inversion. The optimized
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Fig. 15. The results with 95% confidence intervals for all systems that can be
used in practice after removing lexical content effect.

hyperparameters for the distillation training still are T = 2.0
and λ = 0.8, while the optimized hyperparameter for the joint
inversion is λ = 0.4. Although λ = 0 means no articulatory in-
formation is integrated in the joint inversion, it is introduced
by the pretraining, which is the reason that the pretrained joint
inversion in this case is still better than MFCC only.

It is difficult to directly compare our results with results from
other studies because the experimental conditions vary signifi-
cantly. The closest experimental settings are the ones reported
in [27] and [43] where DCCA method showed significant im-
provements.

VIII. CONCLUSION

In this work, we proposed two methods to integrate artic-
ulatory information into ASR systems. One method utilizes
the Generalized Distillation framework to build a biGRU-RNN
based acoustic model which is trained with the guidance of
the soft targets from a teacher biGRU-RNN learned from “rich”
data which include articulatory features. The other method com-
bines the inversion model and acoustic model into a single neural
network which is trained jointly. When properly initialized, it
achieves significant improvements.

The main findings of this study are:
1) Using deep RNNs as acoustic and inversion models pro-

vides big performance boost compared to the deep FNNs.
2) An RNN acoustic model trained using generalized dis-

tillation framework leads to up to 21.9% PER reduction
having the same number of parameters as standard MFCC
AM.

3) The PER is reduced by 25.3% using the joint inversion
training strategy at the expense of increasing the size of
the neural network.

4) The long term dependency learning capabilities of the
RNNs are powerful enough to learn not only the temporal
acoustic but also lexical information. As our experiments
showed, this however may lead to biased results when
the data set is rather small and the train and test data are
lexically similar.

In the future work, we are going to investigate how much
reduction in the network size is possible by the joint inver-
sion training. We also plan to experiment with bigger databases
which don’t provide articulatory measurements and try to inte-
grate the available articulatory data based on our joint training
approach.
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