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ABSTRACT Gaussian Processes (GPs) are Bayesian nonparametric models that are becoming more and
more popular for their superior capabilities to capture highly nonlinear data relationships in various tasks,
such as dimensionality reduction, time series analysis, novelty detection, as well as classical regression and
classification tasks. In this paper, we investigate the feasibility and applicability of GP models for music
genre classification and music emotion estimation. These are two of the main tasks in the music information
retrieval (MIR) field. So far, the support vector machine (SVM) has been the dominant model used in MIR
systems. Like SVM, GP models are based on kernel functions and Gram matrices; but, in contrast, they
produce truly probabilistic outputs with an explicit degree of prediction uncertainty. In addition, there exist
algorithms for GP hyperparameter learning—something the SVM framework lacks. In this paper, we built
two systems, one for music genre classification and another for music emotion estimation using both SVM
and GP models, and compared their performances on two databases of similar size. In all cases, the music
audio signal was processed in the same way, and the effects of different feature extraction methods and their
various combinations were also investigated. The evaluation experiments clearly showed that in both music
genre classification and music emotion estimation tasks the GP performed consistently better than the SVM.
The GP achieved a 13.6% relative genre classification error reduction and up to an 11% absolute increase of
the coefficient of determination in the emotion estimation task.

INDEX TERMS Music genre classification, music emotion estimation, Gaussian processes.

I. INTRODUCTION
Alot of music data have become available recently either
locally or over the Internet but in order for users to benefit
from them, an efficient music information retrieval tech-
nology is necessary. Research in this area has focused on
tasks such as genre classification, artist identification, music
mood estimation, cover song identification, music annotation,
melody extraction, etc. which facilitate efficient music search
and recommendation services, intelligent play-list generation
and other attractive applications. Information sources forMIR
can be: 1) text based - music related Internet sites, social net-
works, lyrics, etc; 2) audio based - the music signal itself; or
3) mixed text and audio. In this study, we concern our-
selves with audio based music genre classification and music
emotion1 estimation tasks.

Genre classification has been one of the most widely
researched tasks since the work of Tzanetakis and Cook [1]
sparked interest in this area. It is a classical supervised

1We assume that the terms ‘‘mood’’ and ‘‘emotion’’ have the same mean-
ing and use them interchangeably.

classification task where given labeled data, i.e. songs with
their true genre type coming from a finite set of categories
(genres), the goal is to predict the genre of an unlabeled music
piece. Human categorization of music appears natural, yet it
can be inconsistent, changing and, in some cases, may even
seem arbitrary. This is probably because human judgements
are influenced not only by the audio signal, but also by other
factors, such as artist fashion, dance styles, lyrics, social and
political attachments, religious believes, etc. [2]. In addition,
new genres constantly appear while others become forgot-
ten or irrelevant. Thus, it is impossible to come up with
a commonly agreed set of music genres. In MIR studies,
researchers usually limit the number of genres to about ten
of the most popular and easily distinguished types. Each
genre classification system consists of minimum two blocks:
feature extractor and classifier. Studies in music processing
have investigated various feature types and their extraction
algorithms [1], [3], [4]. Carefully crafted music features such
as chroma vectors are mostly used for some specific tasks,
for example, music transcription or music scene analysis [5].
On the other hand, spectrum and its derivatives are alsowidely
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adopted for music pattern classification. Various methods
for building music genre classifiers have been studied, rang-
ing from Support Vector Machines (SVM) to compressive
sampling models [6]. However, in most of the studies,
parametric models have been utilized. Learning approaches
include instances of supervised, semi-supervised [7], and
unsupervised [8] methods.

FIGURE 1. Two dimensional (Valence-Arousal) affective space of
emotions [32]. Different regions correspond to different categorical
emotions.

Although users are more likely to use genres or artists
names when searching or categorizing music, the main power
of music is in its ability to communicate and trigger emo-
tions in listeners. Thus, determining computationally the
emotional content of music is an important task. Existing
automatic systems for music mood recognition are based on
emotion representation which can be either categorical or
dimensional [9], [10]. Categorical approaches involve find-
ing emotional descriptors, usually adjectives, which can be
arranged into groups. Given the perceptual nature of human
emotion, it is difficult to come up with an intuitive and
coherent set of adjectives and their specific grouping. To alle-
viate the challenge of ensuring consistent interpretation of
mood categories, some studies propose to describe emotion
using continuous multidimensional metrics defined on low-
dimensional spaces. Most widely accepted is the Russell’s
two-dimensional Valence-Arousal (VA) space [11] where
emotions are represented by points in the VA plane. Figure 1
shows the space where some regions are associated with dis-
tinct mood categories. In this paper, we assume that the task of
music emotion recognition is to automatically find the point
in the VA plane which corresponds to the emotion induced
by a given music piece. Since the Valence and Arousal are
by definition continuous and independent parameters, we can
estimate them separately using the same music feature repre-
sentation and two different regression models. Prior studies
focused on searching for mood specific acoustic features

have not found any dominant single one [12], so the most
commonly used are those employed in the other MIR tasks as
well. Regression models, such as Multiple Linear Regression
(MLR), Support Vector Regression (SVR), or Adaboost.RT,
as well as Multi-Level Least-Squares or regression trees have
[10] been successfully applied to music emotion estima-
tion. Model learning is again supervised and requires labeled
training data. Finding consistent mood labels in terms of
VA values is even more challenging than obtaining genre
labels since emotion interpretation can be very subjective and
varies among listeners. It requires music annotation by mul-
tiple experts which, is expensive, time consuming, and labor
intensive [13].
Gaussian Processes have been known as non-parametric

Bayesian models for quite some time, but just recently
have attracted attention of researchers from other fields than
statistics and applied mathematics. After the work of Ras-
mussen and Williams [14] which introduced GPs for the
machine learning tasks of classification and regression, many
researchers have utilized GPs in various practical applica-
tions. As SVMs, they are also based on kernel functions and
Gram matrices, and can be used as their plug-in replacement.
The advantage of GPs with respect to SVMs is that their
predictions are truly probabilistic and that they provide a
measure of the output uncertainty. Another big plus is the
availability of algorithms for their hyper parameter learning.
The downside is that the GP training complexity is O(n3),
which makes them difficult to use in large scale tasks. Several
sparse approximationmethods have been proposed [15], [16],
but this problem has not yet been fully solved and is a topic
of an ongoing research.
The goal of this work is to investigate the applicability

of Gaussian Process models to music genre and emotion
recognition tasks and to compare their performance with the
current state-of-the-art Support Vector Machines. Some of
our preliminary studies [17], [18] had shown that GPs can be a
feasible alternative to SVMs, but more careful and thorough
investigation was necessary in order to confirm those find-
ings. Here, using two databases of similar size for each task,
the same set of features and the same experimental settings,
we evaluated both the GP and SVM models and compared
their performances. Results clearly show that GPs outperform
SVMs in both tasks. Genre classification accuracy of the GPs
was higher in all cases and the gain in the Valence estima-
tion, which is considered much more difficult than Arousal
estimation, was up to 11% absolute in terms of R2 metric. We
have to note that, since each music piece in our experiments
was represented by a single feature vector, this may not be
classified as a large scale evaluation whereby SVMs could
have practical advantage because of their lower computa-
tional complexity. In this regard, further research involving
sparse GP learning and inference methods is necessary.

II. RELATED STUDIES
As we mentioned in the previous section, music genre
classification is one of the most popular MIR tasks.What also
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contributes to its popularity is public availability of music
data, such as GTZAN [1] and ISMIR2004 [19] databases.
A good review of the feature extraction and modeling meth-
ods for genre classification is given in [20], where results
obtained by various research teams using the same GTZAN
data are also compared. According to this review, the most
widely applied classifier is the SVM, which achieves accu-
racy between 70.4% and 79.8% depending on the features
used. Finding good music signal representation is an impor-
tant task and some studies have proposed carefully designed
features, such as perceptually based acoustic features [21],
or modulation spectrum analysis features [22]. Both of them
achieve very good results, but require long duration signals to
work. Conventional features used for genre classification can
be divided into ‘‘low-level’’ features including timbre (zero
crossing rate, spectral centroid, flux, rolloff, MFCC, and oth-
ers) and temporal (amplitude modulation or auto-regressive
coefficients) features, as well as ‘‘‘‘mid-level’’ features, such
as rhythm, pitch and harmony [20]. On the other hand, it
is also possible to apply unsupervised learning methods to
find some ‘‘high level’’ representations of the ‘‘low-level’’
features, and then use them as a new type of features. This
can be accomplished using Non-Negative Matrix Factoriza-
tion (NMF), sparse coding [7], or Deep Neural Networks
(DNN) [23]. In both cases, genre classification is done by
standard classifiers, SVM, and Neural Network (additional
DNN layer), respectively.

Audio based emotion prediction research has been focused
on the challenge of finding the best combination of fea-
tures, learning methods, and mood representation schemes
[9]. Categorical emotion recognition is similar to the genre
classification and the approaches are similar as well. In one of
the earliest studies, features representing timbre, rhythm, and
pitch have been used in SVM based system to classify music
into 13 mood categories [24]. With 499 hand-labeled 30-sec.
clips, an accuracy of 45% was achieved. In 2007, music
emotion classification was included in the MIR evaluation
exchange (MIREX) benchmarks and the best performance
of 61.5% was again achieved using SVM classifier [25].
However, recent studies have suggested that regression
approaches using continuous mood representation can per-
form better than categorical classifiers [26]. Support Vec-
tor Regression (SVR) was applied in [12] to map music
clips, each represented by a single feature vector, into two
dimensional VA space. After principal component analysis
(PCA) based feature dimensionality reduction, this system
achieved R2 scores of 0.58 and 0.28 for arousal and valence,
respectively. Later, this approach was extended by represent-
ing perceived emotion of a clip as a probability distribution
in the emotion plane [27]. It also is possible to combine
categorical and continuous emotion representations by quan-
tizing the VA space and apply emotion cluster classification
using SVM [28], or another regression model, trained for
each cluster [29]. It can be argued that emotions are not
necessarily constant, but can vary during the course of a song.
In this case, time-varying emotion estimation or emotion

tracking methods are required. One approach is to divide a
piece of music into segments short enough to assume that
mood does not change within each segment, and then use
standard emotion recognition techniques [30]. Another study
[31] considers arousal and valence as latent states of a linear
dynamical system and applies Kalman filter to recover the
mood dynamics over time.
Although Gaussian Processes have become popular in

machine learning community and have been used in such
tasks as object categorization in computer vision [33] or
economics and environmental studies [34], there are still
few GP applications in the field of signal processing. In
one such application, GP regression model is applied to
time domain voice activity detection and speech enhance-
ment [35]. In [36], using GP, researchers estimate speakers
likability given recordings of their voices. Another recent
study employs GPs for head-related transfer function (HRTF)
estimation in acoustic scene analysis [37]. Lately, several
extensions and new models based on GPs have been devel-
oped. For example, Gaussian Process latent variable model
(GP-LVM) was introduced for non-linear dimensionality
reduction [38], but have also been applied to image recon-
struction [39] and human motion modeling [40]. Another
promising extension is the Gaussian Process Dynamic Model
(GPDM) [41]. It is a non-linear dynamical system which
can learn the mapping between two continuous variables
spaces. One of the first applications of GPDM in audio sig-
nal processing was for speech phoneme classification [42].
Although the absolute classification accuracy of the GPDM
was not high, in certain conditions they outperformed the
conventional hidden Markov model (HMM). In [43], GPDM
is used as a model for non-parametric speech representation
and speech synthesis. Similar to GPDM is the GP based state-
space model [44], [45]. It is essentially a non-linear Kalman
filter and is very useful for time series processing. Compared
to some approximate Gaussian filters, such as the Extended
Kalman filter (EKF) and the Unscented Kalman filter (UKL),
it gives exact expected values in the prediction and filter
steps.

III. GAUSSIAN PROCESSES
Gaussian processes are used to describe distributions over
functions. Formally, the GP is defined as a collection of
random variables any finite number of which has a joint
Gaussian distribution [14]. It is completely specified by its
mean and covariance functions. For a real process f (x), the
mean function m(x) and the covariance function k(x, x′) are
defined as

m(x) = E[f (x)] (1)

k(x, x′) = E[(f (x)− m(x))(f (x′)− m(x′))].

Thus, the GP can be written as

f (x) ∼ GP(m(x), k(x, x′)). (2)

A GP prior over function f (x) implies that for any finite
number of inputs X = {xi} ∈ Rd , i = 1, . . . , n, the vector of
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function values f = [f (x1), . . . , f (xn)]T = [f1, . . . , fn]T has
a multivariate Gaussian distribution

f ∼ N (m,K) (3)

where themeanm is often assumed to be zero. The covariance
matrix K has the following form

K =


k(x1, x1) . . . k(x1, xn)
k(x2, x1) . . . k(x2, xn)

...
...

k(xn, x1) . . . k(xn, xn)

 (4)

and characterizes the correlation between different points
in the process. For k(x, x′), any kernel function which pro-
duces symmetric and semi-definite covariance matrix can be
used.

IV. GAUSSIAN PROCESS REGRESSION
Given input data vectorsX = {xi}, i = 1, . . . , n and their cor-
responding target values y = {yi}, in the simplest regression
task, y and x are related as

y = f (x)+ ε (5)

where the latent function f (x) is unknown and ε is often
assumed to be a zero mean Gaussian noise, i.e. ε ∼ N (0, σ 2

n ).
Putting a GP prior over f (x) allows us to marginalize it out,
which means that we do not need to specify its form and
parameters. This makes our model very flexible and powerful
since f (x) can be any non-linear function of unlimited com-
plexity.

In practice, targets yi are assumed to be conditionally
independent given fi, so that the likelihood can be factor-
ized as

p(y|f ) =
n∏
1

p(yi|fi) (6)

where p(yi|fi) = N (yi|fi, σ 2
n ), according to our observa-

tion model Eq.(5). Since f has normal distribution, i.e.
f |X ∼ N (0,K), it follows that y is also a Gaussian random
vector

p(y|X) = N (y|0,K + σ 2
n I). (7)

Given some new (test) input x∗, we can now estimate the
unknown target y∗ and, more importantly, its distribution.
Graphically, the relationship between all involved variables
can be represented as shown in Fig.(2). To find y∗, we
first obtain the joint probability of training targets y and
f∗ = f (x∗), which is Gaussian

p(y, f∗|x∗,X) = N
(
0,

[
K + σ 2

n I k∗
kT∗ k(x∗, x∗)

])
(8)

where kT∗ = [k(x1, x∗), . . . , k(xn, x∗)]. Then, from this dis-
tribution, it is easy to obtain the conditional p(f∗|y, x∗,X),
which is also Gaussian

p(f∗|y, x∗,X) = N (f∗|µf∗ , σ
2
f∗ ) (9)

FIGURE 2. Graphical representation of observable x, y , (enclosed in
squares), latent f , and unobservable y∗ (enclosed in circles) variable
relationships in Gaussian Process based regression task.

with mean and variance

µf∗ = kT∗ (K + σ
2
n I)
−1y, (10)

σ 2
f∗ = k(x∗, x∗)− kT∗ (K + σ

2
n I)
−1k∗ (11)

It is worth noting that the mean µf∗ is a linear combination
of the observed targets y. It can also be viewed as a linear
combination of the kernel functions k(x∗, xi). On the other
hand, the variance σ 2

f∗ depends only on inputs X .
To find out the predictive distribution of y∗, we marginalize

out f∗

p(y∗|y, x∗,X) =
∫
p(y∗|f∗)p(f∗|y, x∗,X)df∗

= N (y∗|µy∗ , σ
2
y∗ ) (12)

where it is easy to show that for homoscedastic likeli-
hood, as in our case, the predictive mean and variance
are [46]

µy∗ = µf∗ , and (13)

σ 2
y∗ = σ

2
f∗ + σ

2
n . (14)

Making this mean our predicted target, ypred = µy∗
will minimize the risk for a squared loss function (ytrue −
ypred )2. The variance σ 2

y∗ , on the other hand, shows the model
uncertainty about ypred .

A. PARAMETER LEARNING
Until now, we have considered fixed covariance function
k(x, x′), but in general, it is parameterized by some parameter
vector θ . This introduces hyper-parameters to GP, which are
unknown and, in practice, very little information about them
is available. A Bayesian approach to their estimation would
require a hyper-prior p(θ ) and evaluation of the following
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posterior

p(θ |y,X) =
p(y|X, θ )p(θ )

p(y|X)
=

p(y|X, θ )p(θ )∫
p(y|X, θ )p(θ )dθ

(15)

where the likelihood p(y|X, θ ) is actually the GP marginal
likelihood over function values f

p(y|X, θ ) =
∫
p(y|f )p(f |X, θ )df . (16)

However, the evaluation of the integral in Eq.(15) can be
difficult and as an approximation we may directly maximize
Eq.(16) w.r.t. the hyper-parameters θ . This is known as maxi-
mum likelihood II (ML-II) type hyper-parameter estimation.
Since both the GP prior f |X ∼ N (0,K) and the likelihood
y|f ∼ N (f , σ 2

n I) are Gaussians, the logarithm of Eq.(16) can
be obtained analytically

log p(y|X, θ ) = −
1
2
yTK−1y y−

1
2
log |Ky| −

n
2
log 2π

(17)

where Ky = K + σ 2
n I is the covariance matrix of the

noisy targets y. Hyper parameters θ = {σ 2
n , θk} include the

noise variance and parameters of the kernel function. Those
which maximize Eq.(17) can be found using gradient based
optimization method. Partial derivatives for each θi are found
from

∂ log p(y|X, θ )
∂θi

= −
1
2
yTK−1y

∂Ky

∂θi
K−1y y

−
1
2
tr(K−1y

∂Ky

∂θi
) (18)

where for θi = σ 2
n we have

∂Ky

∂σ 2
n
= σ 2

n I. (19)

Usually, kernel function parameters are all positive, which
would require constrained optimization. In practice, this prob-
lem is easily solved by optimizing with respect to the loga-
rithm of the parameters, so simple unconstrained optimization
algorithms can be used.

V. GAUSSIAN PROCESS CLASSIFICATION
For binary classification, given training data vectors xi ∈ Rd

with corresponding labels yi ∈ {−1,+1}, we would like to
predict the class membership probability of a test point x∗.
This is done using an unconstrained latent function f (x) with
GP prior and mapping its value into the unit interval [0, 1] by
means of a sigmoid shaped function [47]. Common choice
for such function is the logistic function or the cumulative
density function 8 of the standard Gaussian distribution.
When the sigmoid is point symmetric, the likelihood p(y|x)
can be written as sig(y · f (x)).
Let X = [x1, . . . , xn] be the training data matrix,

y = [y1, . . . , yn]T be the vector of target values, and
f = [f1, . . . , fn]T with fi = f (xi) be the vector of latent

function values. Given the latent function, the class labels are
assumed independent Bernoulli variables and therefore the
likelihood can be factorized as

p(y|f ) =
n∏
i=1

p(yi|fi) =
n∏
i=1

sig(yifi) (20)

Using the Bayes’ rule and since by definition p(f |X) =
N (f |0,K), we can express the posterior distribution over the
latent values as

p(f |y,X) =
p(y|f )p(f |X)∫
p(y|f )p(f |X)df

(21)

=
N (f |0,K)
p(y|X)

n∏
i=1

sig(yifi). (22)

Unfortunately, both the likelihood p(y|f ) and the marginal
p(y|X) are non-Gaussian, so an analytic solution is impossi-
ble. Approximations in this case are either based on a Gaus-
sian approximation to the posterior or Markov Chain Monte
Carlo (MCMC) sampling [47].
For a test vector x∗, we first find predictive distribution for

the corresponding latent variable f∗ by marginalizing over the
training set latent variables

p(f∗|x∗, y,X) =
∫
p(f∗|f , x∗,X)p(f |y,X)df (23)

where the conditional prior

p(f∗|f , x∗,X) = N (f∗|kT∗K
−1f , k(x∗, x∗)− kT∗K

−1k∗)

(24)

is Gaussian.
Finally, the predictive class membership probability is

obtained by averaging out the test latent variable

p(y∗|x∗, y,X) =
∫
p(y∗|f∗)p(f∗|x∗, y,X)df∗

=

∫
sig(y∗f∗)p(f∗|x∗, y,X)df∗ (25)

A Gaussian approximation to the posterior of Eq.(21),
q(f |y,X) = N (f |f̄ ,A) gives rise to an approximate pre-
dictive distribution for the test data, i.e. q(f∗|x∗, y,X) =
N (f∗|µ∗, σ 2

∗ ), with mean and variance

µ∗ = kT∗K
−1 f̄

σ 2
∗ = k(x∗, x∗)− kT∗ (K

−1
− K−1AK−1)k∗ (26)

When the cumulative Gaussian density function 8 is used
as a likelihood function, the approximate probability of x∗
having label y∗ = +1 can be calculated analytically

q(y∗ = +1|x∗, y,X) =
∫
8(f∗)N (f∗|µ∗, σ 2

∗ )df∗

= 8(
µ∗√
1+ σ 2

∗

) (27)

The parameters f̄ and A of the posterior approximation can
be found using either the Laplace’s method or the Expectation
Propagation (EP) algorithm [48].
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A. PARAMETER LEARNING
As in the case of Gaussian Process regression, kernel function
parameters can be learned by marginal likelihood p(y|X, θ )
maximization. However, in this case, the likelihood p(y|f )
is no longer Gaussian and analytic solution does not exist.
Again, Laplace or EP approximation can be used. For the
maximization, good candidates are gradient based methods,
such as the conjugate gradient optimization or the BFGS
algorithm [49].

B. RELATION TO SVM
For the soft margin support vector machine, the optimization
problem is defined as

min
w,w0

1
2
‖w‖2 + C

n∑
i=1

(1− yifi) (28)

s.t. 1− yifi ≥ 0, i = 1, . . . , n

where fi = f (xi) = wxi + w0 and the solution has the
form w =

∑
i λiyixi =

∑
i αixi. Thus, the square norm of

w becomes
‖w‖2 =

∑
i,j

αiαjxixj (29)

which in matrix form and using kernel k(xi, xj) instead of xixj
is

‖w‖2 = αTKα = f TK−1f (30)

where f = Kα. Then, substituting ‖w‖2 in Eq.(28) we obtain
the following objective function

1
2
f TK−1f + C

n∑
i=1

(1− yifi) (31)

s.t. 1− yifi ≥ 0, i = 1, . . . , n

which requires constrained optimization. On the other hand,
in the GP classification, during the posterior approximation
we need to find the maximum a posteriori value f̄ of p(f |y,X)
by maximizing the log p(y|f )+ log p(f |X) which becomes

log p(y|f )−
1
2
f TK−1f −

1
2
log |K | −

n
2
log 2π (32)

when using zero mean GP priorN (f |0,K). Since the last two
terms are constant when the kernel is fixed, it is equivalent to
minimizing the following quantity

1
2
f TK−1f −

n∑
i=1

log p(yi|fi) (33)

Apparently, there is a strong similarity between the SVM
optimization problem and the MAP maximization of the GP
classifier. Thus, there is a close correspondence between their
solutions [14]. Note that−

∑n
i=1 log p(yi|fi) is always positive

and, therefore, no constrained optimization is required.
One big advantage of the GP classifier is that the output

it produces - the prediction for p(y = +1|x) - is clearly
probabilistic. Furthermore, it provides a measure of uncer-
tainty for this prediction, i.e. the predictive variance of f (x).

Although it is possible to give probabilistic interpretation to
the SVM outputs by wrapping them with sigmoid function,
this is a rather ad hoc procedure which also requires tuning
of the sigmoid parameters [50].

VI. EXPERIMENTS WITH MUSIC EMOTION RECOGNITION
In this study, we assume that music emotion recognition
is to estimate the Valence-Arousal (VA) values for a song,
or a clip as in our case, given its feature representation.
Separate Gaussian Process regression (GPR) and Support
Vector regression (SVR) models are independently trained
using the same training data and corresponding reference VA
values.
The models’ performance is measured in terms of R2 mea-

sure. It is widely used to describe the goodness of fit of a
statistical model and is defined as

R2 = 1−

∑
i(yi − fi)

2∑
i(yi − y)2

(34)

where yi are the reference values, y is their mean, and fi are the
corresponding estimates. R2 takes values in the range [0, 1]2

with R2 = 1 meaning a perfect data fit.

A. DATABASE AND FEATURE EXTRACTION
For the music emotion recognition experiments we used the
‘‘MediaEval’2013’’ database [13]. It consists of 1000 clips
(each 45 seconds long) taken at random locations from 1000
different songs. They belong to the following 8 music genres:
Blues, Electronic, Rock, Classical, Folk, Jazz, Country, and
Pop, and were distributed uniformly, i.e. 125 songs per genre.
There were 53-100 unique artists per genre, which provide a
good distribution across artists. Each clip has been annotated
with Arousal andValence score on a 9 point scale by a number
of annotators. In total there have been 100 annotators each
of whom annotating 107.9 clips on average. The mean of
annotator scores has been taken as final Arousal or Valence
label for each clip.
All music audio data were monaural with sampling

frequency of 44.1kHz, whichwas reduced to 22.05kHz before
the feature extraction. In our experiments, we adopted those
feature extraction methods which are widely used in music
signal processing studies and can be referred to as a ‘‘stan-
dard’’ set for such tasks. They include the following:
• MFCC (mel frequency cepstral coefficients) - first
proposed for speech recognition - they are also one of
the main features for music processing;

• LSP (line spectral pairs) - another speech related feature
used for speech coding representing the LPC coeffi-
cients;

• TMBR (timbre features) - a set of four scalar features
consisting of spectral centroid, spectral flux, spectral
rolloff, and zero crossings;

• SCF and SFM (spectral crest factor and spectral
flatness measure) - these features are subband based

2In practice, it can take values outside this range, which would indicate
estimation failure.
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measures indicating spectral shape and used to discrim-
inate between tone-line and noise-like sounds;

• CHR (chromagram) - this feature represents the spec-
trum distribution of the distinct semitones and provides
information about the key and mode.

We used the Marsyas tool [51], which allows all of the
above features to be extracted as well as any combination of
them. The analysis frame size was set to 512 points, which
corresponded to 23.2msec at 22.05kHz sampling rate. There
was no overlap between neighboring frames. We used default
dimensionality for each feature type which for MFCC was
13, for LSP was 18, for each timbre feature was 1, and
for each SFM, SCF, and CHR was 24. When multiple fea-
tures are calculated, they are stacked into a single vector per
frame. Further, the vector sequence is divided intowindows of
20 vectors and the mean and standard deviation are calculated
for each window. Finally, same statistics (mean and std) are
calculated for the windowmeans and standard deviations, and
stacked into a single vector which represents the whole clip.
Schematically, this process is illustrated in Fig.3.

FIGURE 3. Feature extraction process. Mean and standard deviation are
calculated for a window of several frame level feature vectors. At clip
level, same statistics are obtained for means and standard deviations
separately and then stacked together to form a single feature vector per
clip.

B. SVM BASELINE RESULTS
Our SVR emotion estimation system was built using the
LIBSVM toolkit [52]. We chose the Radial Bases function
(RBF) kernel because during our previous experiments [18]
it had shown better performance than the linear kernel.

We experimented with several different feature sets, start-
ing from only MFCC and gradually adding new features. The
cost parameter C was manually optimized using grid search
for each feature set. The RBF kernel scale parameter was
set to its default value. Table 1 shows the SVR performance
in terms of R2 for both Arousal and Valence estimators.
Results are given as mean and standard deviation of a 10-fold
cross-validation experiments. Each raw of the table gives
R2 values for a different feature set, where ‘‘(1)+TMBR’’
indicates the feature set of case 1, i.e. MFCC, plus TMBR
features. Clip level feature vector dimensionality is shown in
column ‘‘Dims.’’

TABLE 1. SVM performance in terms of R2 measure. The kernel function is
RBF. Results are given as mean and std values of 10-fold cross-validation.

TABLE 2. GPR performance in terms of R2 measure using squared
exponential covariance and constant mean functions. Results are given as
mean and std values of 10-fold cross-validation.

As can be seen, adding timbral features to the MFCC did
not have any effect. In contrast, the spectral crest factor (SCF)
and spectral flatness measure (SFM) provided significant
improvement. On the other hand, the chromagram and line
spectral pairs negatively affected the performance.

C. GP REGRESSION RESULTS
For the first experiments with GP regression, we used the
same feature sets as with the SVR baseline, and choose
similar kernel: the Squared Exponential (SE) function which
is defined as

k(x, x′) = σ 2
k exp(−

1
2l2

(x− x′)T (x− x′)) (35)

where the scale σ 2
k and length l are the kernel parameters.

In contrast to the SVR case, however, GRP kernel and noise
(σ 2
n from Eq.7) parameters are learned from the training data

and manual tuning is not necessary. The GP mean function
m(x) is usually set to zero, but the GP regression and classifi-
cation toolbox (GPML [46]) we used to implement our GPR
system allows the mean to be set to a constant other than zero,
which is also estimated during training.
Table 2 presents the GPR performance for different feature

sets using squared exponential kernel and constant mean
function. It is directly comparable with Table 1, which shows
the SVR results. In the GPR case, we can see that the bigger
the feature set, the better the R2 score for both Arousal and
Valence. The best Arousal result is worse than the SVR one,
but the Valence value of 0.442 is 11% better than the 0.398
baseline.
For the following experiments we used only the full fea-

ture set (condition (4) in Table 2) because it yielded the
best results. Since the GPR learning allows kernel function
parameters to be estimated automatically, wide variety of
differentiable kernel functions can be utilized. Beside the
squared exponential (SE), we used the following functions:
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• Linear (LIN) with parameter l,

k(x, x′) = (xT x′ + 1)/l2 (36)

• Rational Quadratic (RQ) with parameters σk , α and l,

k(x, x′) = σ 2
k (1+

1
2αl2

(x− x′)T (x− x′))−α (37)

• Matérn of 3rd degree (MAT3) with parameters σk and l,

k(x, x′) = σ 2
k (1+ r) exp(−r), (38)

r =

√
3
l2
(x− x′)T (x− x′)

It is possible to combine several kernel functions into a more
complex one using sum or product operations. We experi-
mented with various kernel combinations and the results of
those which showed the best performance are summarized in
the lower part of Table 3. The upper part of the table shows the
results of each individual kernel function. The mean function
in these experiments was constant.

TABLE 3. GPR performance in terms of R2 measure using different kernel
functions, as well as their best combinations. Results are given as mean
and std values of 10-fold cross-validation.

As evident from Table 3, the GPR performance greatly
depends on the selected kernel function. The Rational
Quadratic is the best, followed by the Matérn of 3rd degree.
Small additional improvement can be achieved using com-
posite kernels such as LIN+RQ or SE*RQ. The best GPR
score is much better than the SVR score in both Arousal
and Valence estimation tasks. We have to note that kernels
such as RQ or MAT3 can also be used in the SVR case. The
practical problem here is that SVM framework does not allow
for kernel function parameter estimation as GP does. This
greatly reduces the range of useful SVR kernels and makes
finding their parameters a tedious task.

Finally, Fig.4 compares the best results of the GPR and
SVR based systems in terms of R2 measure. In both cases the
GPR is better, achieving bigger improvement for the Valence
estimation, which is traditionally the more difficult task.

VII. EXPERIMENTS WITH MUSIC GENRE CLASSIFICATION
In these experiments, we again compared the Gaussian Pro-
cesses and Support Vector Machines, but in the classification
task. We kept the same amount of data, feature extraction
methods and cross-validation type of evaluation as in the
previous regression task.

FIGURE 4. Gaussian Process (GPR) and Support Vector machine
regression (SVR) best performance comparison in terms of R2 for both the
Arousal and Valence prediction tasks.

A. DATABASE AND FEATURE EXTRACTION
We used the popular GTZAN song collection [1] which con-
sisted of 30 second long music clips belonging to one of
the following 10 genres: Blues, Classical, Country, Disco,
HipHop, Jazz, Metal, Pop, Reggae, and Rock. There were
100 clips per genre and 1000 clips in total.
All 1000 clips were processed in the sameway as theMedi-

aEval’2013 data for music emotion estimation and exactly the
same features were extracted as well. Again, each music clip
was represented by a single feature vector consisting of two
level statistics of the frame level features, as depicted in Fig.3.

B. SVM AND GP CLASSIFICATION EVALUATION
Since the SVM and GP are binary classifiers, in both cases,
multiclass classification is simulated by one-versus-others
setting. As in the music emotion experiments, SVM cost
parameter C was manually optimized and the RBF scale was
set to its default value.
In the GP classification, the likelihood function should

have the shape of sigmoid. We tried two such functions:
• Logistic defined as

p(y|f ) =
1

1+ exp(−yf )
, (39)

• and Error function (ERF) defined as

p(y|f ) =
∫ yf

−∞

N (t)dt. (40)

Both functions are in their simplest form, i.e. with no param-
eters, so they do not have to be estimated during training.
Table 4 compares SVM and GP based classification sys-

tems’ performance for various feature sets. The GP model
was trained using SE covariance, zero mean and ERF
likelihood functions. These results clearly show that GP
consistently outperforms the SVM classifier in all cases.
Again the best performance is achieved with the full feature
set: MFCC+TMBR+SCF+SFM+CHR+LSP.
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TABLE 4. Music genre classification accuracy(%). The SVM kernel function
is RBF. The GP classifier uses SE covariance, ERF likelihood and zero mean.
Results are given as mean and std values of 10-fold cross-validation.

TABLE 5. GP music genre classification accuracy (%). results are given as
mean and std values of 10-fold cross-validation.

A comparison between the two GP likelihood functions
with respect to various covariance kernels and their combi-
nations is given in Table 5. It seems that the Logistic function
is slightly better, especially in the composite kernels case.
The absolute difference between GP and SVM best results
of 79.3% and 76.5% is 2.8%, which corresponds to 13.6%
relative error reduction.

VIII. CONCLUSION
In this paper, we described and evaluated two systems based
on Gaussian Process models for music genre and emotion
recognition, respectively. In each of these tasks, Support
Vector Machine is currently considered as the state-of-the-art
model and therefore we used it for comparison.

The GP and SVM have many common characteristics.
They are both non-parametric, kernel based models, and their
implementation and usage as regressors or binary classi-
fiers are the same. However, GP are probabilistic Bayesian
predictors which in contrast to SVM produce Gaussian distri-
butions as their output. Another advantage is the possibility of
parameter learning from the training data. On the other hand,
SVM provide sparse solution, i.e. only ‘‘support’’ vectors are
used for the inference, which can be a plus whenworkingwith
large amount of data.

The evaluation experiments carried out using the
MediaEval’2013 music database for emotion estimation and
GTZAN corpus for genre classification have shown that GP
models consistently outperform the SVM, especially in the
classification task.

We have extended the GP application field into the area
of music information retrieval, but there are many other
unexplored research directions where GP can become viable
alternative to the current state-of-the-art methods. One such

direction is speech processing and recognition where high
performance temporal sequences discrimination and non-
linear dynamical system modeling are demanded.
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