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ABSTRACT

In this paper we propose a new speaker identi�cation system,

where the likelihood normalization technique, widely used for
speaker veri�cation, is introduced. In the new system, which

is based on Gaussian Mixture Models, every frame of the test

utterance is inputed to all the reference models in parallel.
In this procedure, for each frame, likelihoods from all the

models are available, hence they can be normalized at ev-

ery frame. A special kind of likelihood normalization, called
Weighting Models Rank, is also proposed. Experiments were

performed using two databases - TIMIT and NTT. Evalua-

tion results clearly show that frame level likelihood normal-
ization technique is superior to the standard accumulated

likelihood approach.

1. INTRODUCTION

Speaker identi�cation has been research topic for many years

and various types of speaker models have been studied. Hid-

den Markov Models (HMM) have become the most popular
tool for this task. The best results have been obtained using

Continuous HMM (CHMM) [2, 3]. Since temporal sequence

modeling capability of the HMM is not essential for the text-
independent task, one state CHMM, also called Gaussian

Mixture Model (GMM), is widely used for speaker modeling

[5, 6, 8, 9]. As our previous study [1] showed, GMM can
perform even better than a CHMM with multi-states.

Although most of the existing speaker identi�cation systems

based on GMM address various problems, they have one
thing in common. The reference speaker model scores (like-

lihoods) are calculated over the whole test utterance and

then compared in order to �nd the best score. An exception
is the system, studied by Gish and Schmidt [8], where the

speaker scores are computed over relatively short time inter-
vals (segments). In this system each speaker is represented

by multiple GMMs trained on data from di�erent sessions,

and only the best model's score for each speaker over a given
segment is taken into account. The scores are further nor-

malized in order to obtain meaningful comparison between

segments.

Our likelihood normalization approach makes use of new

speaker identi�cation system structure, which is di�erent

from the study [8] in two main points. First, in our system
each speaker is represented by only one GMM. Second, the

speaker scores are computed at each frame instead of short

time intervals. In other words, in our identi�cation system
the test utterance is processed by all the reference speaker

models in parallel in frame by frame manner. Having the

likelihoods from all models, given particular test frame, al-
lows these likelihoods to be normalized at the frame level.

Generally, the likelihoods can be processed using not only

normalization, but any appropriate technique, which trans-
forms them into a new scores. Transformed (normalized)

likelihoods can further be accumulated over all test frames

to form a �nal score for each speaker model. The unknown
speaker is identi�ed as the speaker, whose model gives the

best score.

2. GAUSSIAN MIXTURE MODEL

A Gaussian mixture density is a weighted sum of M compo-

nent densities and is given by the form [5]:

p(xj�) =

MX
i=1

cibi(x) (1)

where x is a d-dimensional random vector, bi(x); i = 1; . . . ;M ,
is the component density and ci; i = 1; . . . ;M , is the mix-

ture weight. Each component density is a d-variate Gaussian
function of the form:
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with mean vector �i and covariance matrix �i. The mixture
weights satisfy the constraint that:

MX
i=1

ci = 1 (3)

The complete Gaussian mixture density is parameterized by
the mean vectors, covariance matrices and mixture weights

from all component densities. These parameters are collec-

tively represented by the notation:

� = fci; �i;�ig i = 1; . . . ;M (4)

In our speaker identi�cation system, each speaker is repre-
sented by such GMM and is referred to by his/her model �.

GMM parameters are estimated using the standard Expec-
tation Maximization (EM) algorithm.

For a sequence of T test vectors X = x1; x2; . . . ; xT , the

GMM log-likelihood can be written as:



P (Xj�) =

TX
t=1

log p(xtj�) (5)

In the standard identi�cation approach after applying the
Bayes rule, the unknown speaker is identi�ed from a set of
N speakers as:

i
� = arg max

1�i�N
P (Xj�i) (6)

3. SPEAKER IDENTIFICATION

SYSTEM

Fig. 1 shows the structure of the new speaker identi�ca-
tion system. The �rst step is, as usually, the transformation

of the speech samples into a feature vector sequence X =

x1; x2; . . . ; xT . Then, each vector xt is fed to all reference
speaker models in parallel, which is the main di�erence be-

tween this system and the standard one. The ith speaker de-

pendent GMM produces the likelihood pi(xt); i = 1; 2; . . . ;N
and all these likelihoods are passed in the so called Likeli-

hood processing block, where they are transformed (normal-

ized) and accumulated for t = 1; 2; . . . ; T to form the new
scores Sci(X). These scores are compared in the decision

logic block and the best one is determined. The unknown

speaker is classi�ed as the speaker, whose model has given
the best score.
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Figure 1: Block diagram of the new speaker identi�cation
system.

3.1. Likelihood Normalization

For the speaker veri�cation, the likelihood normalization tech-

nique has been proved to improve signi�cantly system perfor-

mance [6, 11, 12]. The general approach is to apply a likeli-
hood ratio test [10] to an input utterance X = x1; x2; . . . ; xT
using the claimed speaker model �c:

l(X) =
P (�cjX)

P (�cjX)
(7)

Applying Bayes' rule and assuming equal prior probabilities,

the likelihood ratio in the log domain becomes:

�(X) = logP (Xj�c) � logP (Xj�c) (8)

where �c is a model representing all other possible speakers.
The likelihood P (Xj�c) is directly computed from Eq.(5)

assuming that the speaker model is of GMM type:

logP (Xj�c) =
1

T

TX
t=1

log p(xtj�c) (9)

The likelihood P (Xj�c) is usually approximated using a col-
lection of background speaker models. With the set of B

background speaker models, f�1; . . . ; �Bg, the background

speaker's log-likelihood is computed as:

logP (Xj�c) = log

(
1

B

BX
b=1

P (Xj�b)

)
(10)

The likelihood normalization provided by the background
speakers is important for the speaker veri�cation task, be-

cause it helps to minimize the text dependent variations in

the test utterance. The speaker identi�cation task, based on
utterance scores, does not need the normalization, because

decisions are made using the likelihood from a single utter-

ance requiring no inter-utterance likelihood comparisons [6].

But the situation for the speaker identi�cation task becomes

di�erent when likelihood normalization is applied on the sin-

gle vector likelihood p(xtj�), or at the frame level. In this
case, the likelihood normalization is done using:

pnorm(xtj�i) =
p(xtj�i)

1

B

PB

b=1
p(xtj�b)

(11)

In contrast to the speaker veri�cation task, in speaker iden-

ti�cation, there is no need of comparison of the normalized

likelihoods with a threshold. Instead, they are accumulated
over all vectors xt; t = 1; 2; . . . ; T for each speaker model i

to produce the new scores:

Sci(Xj�i) =
1

T

TX
t=1

log pnorm(xtj�i) (12)

The speaker to be chosen, in this case, will simply depend

on which speaker has the highest score Sci(Xj�i).

As in the speaker veri�cation task, here also arises the prob-

lem of choosing the proper background speaker set. In the

closed set speaker identi�cation, the background speakers
should be selected from the available set of N speakers.

Given the speaker model i, the following background speaker

sets seem to be reasonable:

� All others - the background speaker set consists of
all speakers, except the speaker i.

� All others from the same gender - the background

speaker set consists of all speakers having the same

gender as speaker i, except the speaker i.

� TopM speakers - since the likelihoods from all speaker

models for the current vector xt are available, it is pos-

sible to determine the speaker models, which have the



M maximum likelihoods and the background speaker
set in this case consists of these M speakers, excluding

speaker i.

� Cohort speakers - the background speaker set con-

sists ofK acoustically most close speakers to the speaker
i. The cohort speakers are determined on the training

data in advance and this procedure is described in [11].

3.2.Weighting Models Rank

This is the new scoring approach and can be viewed as a spe-

cial kind of likelihood normalization. Since the likelihoods

p(xtj�i) from all speaker models i = 1; 2; . . . ;N for the cur-
rent vector xt are available, it is possible to sort them in

order, corresponding to the value p(xtj�i). This is the same
as to make N-best list of models for each vector xt. At the
top of this list, the model has the highest likelihood and

at the bottom, the model with the lowest likelihood. This

procedure can be called also ranking of the speaker models.
Table 1 shows how the speaker models are ordered in this

list. This table also shows that each rank (each row in the

Table 1: N-best list of speaker models

Rank Weight Model

1 w1 Model �l (max.likelihood)

2 w2 Model �j
. . . . . . . . .

m wm Model �k
. . . . . . . . .

N wN Model �p (min. likelihood)

table) is assigned a weight wn; n = 1; 2; . . . ;N . Now the

scoring procedure is as follows:
Step 1. For each test vector xt; t = 1; 2; . . . ; T , construct

the N-best list of the reference models �i; i = 1; 2; . . . ;N , as

shown in the Table 1.
Step 2. For each model �i; i = 1; 2; . . . ;N , �nd its rank n,

i.e. its place in the N-best list, and assign the corresponding

weight wi(t) to this model.
Step 3. For each model �i, sum up all weights assigned to

this model to produce its score:

Sci(Xj�i) =

TX
t=1

w
i(t) (13)

where wi(t) is the weight of the model i at time t. The
unknown speaker is identi�ed as the speaker, who has the

highest score Sc(Xj�i), i.e.:

i
� = arg max

1�i�N
Sci(Xj�i) (14)

Obviously, in this scoring approach, the most important is-

sue is how to set the values of the weights wn. Rather than

to use any particular values for the weights, it seems to be
reasonable to use values obtained according to a certain func-

tion. We used three types of functions as shown in Fig. 2.

RankRank

Rank

Weight

Weight

Weight

1 N

N

N

N

N

N

11
1

1
1

a) Exponential b) Linear

c) Sigmoidal

Figure 2: The three types of weight functions.

4. DATABASES AND SPEECH

ANALYSIS

The NTT database consists of recordings of 35 speakers (22
males and 13 females) collected in 5 sessions over 10 months

in sound proof room [3]. For training the models, 10 sen-

tences from one session are used. Five other sentences from
the other four sessions were used as test data. Average du-

ration of the sentences is about 4 sec. The input speech was

sampled at 12 kHz. 14 cepstrum coe�cients were calculated
by the 14th order LPC analysis at every 10 ms with a win-

dow of 21.33 ms. Then these coe�cients were further trans-

formed into 10 mel-cepstrum (cep) and 10 regressive (�cep)
coe�cients. Each session's mel-cepstrum vectors were mean

normalized and silence parts were removed.

The well known TIMIT database, consisting of 6300 utter-
ances (630 speakers�10 utterances), was also used in eval-

uation experiments. 8 utterances (one SA, �ve SX and two

SI) from each speaker were used for training and the rest 2
(one SA and one SI) utterances for testing. The same speech

analysis was performed as for the NTT database, except that

cepstrum vectors were not mean normalized and silence was
not removed.

5. EXPERIMENTS

We evaluated our speaker identi�cation system using several

types of GMMs with both full and diagonal covariance matri-

ces. As a baseline system we used the standard accumulated
likelihood approach (Eq.(5)).

5.1. NTT results

The results presented in the following tables are averaged

over all test sessions. Table 2 shows the identi�cation rates

using frame level likelihood normalization with four types of



background speaker set. Cohort size is set to 5. Analyz-
ing this table, it is clear that likelihood normalization gives

better results and that Cohort background speaker set per-
forms best. Table 3 presents the results when Weighting

Table 2: Identi�cation rates (%) for GMMs using likelihood
normalization.

Model Fea- Backgr.speaker set Base

type ture All Gen. Top10 Coh. line

4 mix. cep 95.02 95.02 95.02 95.30 95.02

full c+�c 96.17 96.17 96.17 96.17 96.02

8 mix. cep 96.30 96.15 96.30 96.15 95.87

full c+�c 96.85 96.72 96.72 96.88 96.85

32 mix. cep 96.15 96.00 96.15 96.15 96.00

diag. c+�c 96.45 96.60 96.45 96.58 95.85

64 mix. cep 96.57 96.57 96.73 96.85 96.15

diag. c+�c 96.15 96.15 96.27 96.85 96.12

Table 3: Identi�cation rates (%) for GMMs using weighting
models rank normalization.

Model Fea- Weight function Base

type ture Sig. Lin. Exp. line

4 mix. cep 93.00 94.12 94.15 95.02
full c+�c 92.60 94.72 95.55 96.02

8 mix. cep 94.12 95.57 96.57 95.87

full c+�c 95.00 96.70 97.85 96.85

32 mix. cep 92.57 94.30 96.42 96.00

diag. c+�c 93.00 94.55 96.42 95.85

64 mix. cep 94.30 96.42 96.42 96.15
diag. c+�c 95.27 95.97 97.15 96.12

models rank normalization technique is used with three types

of weights. The importance of choosing the right weights is

obvious. Only the exponential weights could outperform the
baseline. It is noted that identi�cation rate of 97.85% is the

best on this database.

5.2. TIMIT results

In Table 4, the results on TIMIT database are summarized.

The column \Likelihood" means likelihood normalization us-

ing \All others" type of background speaker set (the other
types are currently under experiments), and \WMR" means

weightingmodels rank normalization with exponential weights.

Identi�cation rates for both the SA and SI test utterances
are presented separately. Here also can be seen that our ap-

proaches give better results, though the 4 mixture GMM did

not perform well.

6. CONCLUSIONS

We proposed a new structure of the speaker identi�cation

system, which allows the likelihood normalization method to

be utilized. A new technique, Weighting model rank, is also

experimented. Both approaches showed better performance

Table 4: Identi�cation rates (%) for GMMs using TIMIT
database

Model Fea- Normalization Base line
type ture Likelihood WMR

SA SI SA SI SA SI

4 mix. cep 94.0 90.0 89.7 87.3 93.2 91.6

full c+�c 94.8 91.1 89.8 87.0 95.1 92.9

8 mix. cep 97.0 93.7 97.1 94.4 97.0 93.0

full c+�c 97.3 94.1 95.7 93.0 96.8 93.8

16 mix. cep 93.8 91.1 92.1 90.2 91.0 87.6

diag. c+�c 94.1 90.8 89.4 86.3 92.4 87.9

32 mix. cep 95.2 92.2 94.4 94.6 94.3 92.4

diag. c+�c 94.9 92.1 94.1 91.4 94.3 92.4

compared to the standard accumulated likelihood on TIMIT

and NTT databases.
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