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Abstract

Non-native speech is harder to recognize than na-
tive speech, because they pronounce words differently
from native speakers. We propose a novel approach
to cover non-native pronunciation variations statisti-
cally. Rather than explicitly representing those vari-
ations, discrete HMMs that model pronunciations of
each word are generated. The models are initialized
from a baseline lexicon. The phoneme distributions
and transition probablilities are estimated on the results
of a phoneme recognition on training data. The pronun-
ciation HMMs are evaluated by performing rescoring
of n-best continuous word recognition. The task con-
sists of hotel reservation dialogs, spoken by non-native
speakers of five accent groups. A pronunciation model
is trained and evaluated separately for each group. The
word error rate improves in average by 10.9%.

1. Introduction

There are several reports in literature about pronunci-
ation modeling in general [1] and for the special case
of non-native speakers [2]. Many approaches follow
the similar basic scheme of comparing manually or au-
tomatically generated phoneme transcriptions to some
baseline transcription. Variation information can be ex-
tracted from the differences. Typically it is represented
in the form of rules, which can be weighted based on
occurence frequency, likelihood, confusability or other
measures (e.g. [3]). These rules are applied to a base-
line lexicon in order to generate some adapted lexicon
or to optimize an acoustic model [4]. Unfortunately
this approach usually achieves only limited improve-
ment [5].

In this research, we suggest a new data-driven ap-
proach to deal with pronunciation variations. It is based
on word-level pronunciation HMMs. A statistical lex-
icon in the form of discrete word Markov models has
been proposed earlier. This method has been applied
to an isolated word task with native speakers [6]. Non-
native speakers with their high pronunciation variabil-
ity are an even more promising target for such a sta-
tistical approach. Such pronunciation Markov models
can be applied in the decoder [7] or, as in this paper, for
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Figure 1: Two layers of processing are required to
generate pronunciation models: an acoustic level for
phoneme recognition and the phoneme label level for
word model training.

rescoring. Our target is to improve the performance of
a continuous speech recognition system on a challeng-
ing speaker group such as non-native speakers.
Similar to the standard approach of extracting
pronunciation confusion rules, we generate a pho-
netic transcription with a phoneme recognizer. These
phoneme string sequences are used as training data for
discrete word HMMs; one HMM for each word. There
is no attempt to explicitly represent the phoneme vari-
ations. Even phoneme substituions unseen in the train-
ing data are allowed, as a certain floor probability exists
for all possible phoneme sequences for each word. In-
sertions and deletions are also modeled implicitly. The
HMM training process takes care of all variation- and
likelihood issues, unlike in other approaches. E.g. rule
firing frequencies, thresholds to determine whether a
rule is applicable or not, do not have to be calculated.

2. Word HMMs

As illustrated in Figure 1, two levels of HMM-based
recognition are involved in this approach:

e Acoustic level: phoneme recognition to generate
the phoneme sequence S; from the acoustic fea-
tures O;



e Phoneme label level: For training, the phoneme
sequences S; are considered as input. For all
words, a discrete word HMM is trained on all
instances of that word in the training data. The
models are applied for rescoring, generating a
pronunciation score given the observed phoneme
sequence S; and the word sequence.

The first step requires a standard HMM acoustic
model, and preferably some phoneme bigram language
model as phonotactic constraint. The continuous train-
ing speech data is segmented to word chunks based
on time information generated by Viterbi alignment.
Acoustic feature vectors are decoded to an 1-best se-
quence of phonemes.

For each word in the vocabulary, one discrete un-
tied HMM is generated. Figure 2 shows as an example
the HMM for the word “and”.
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Figure 2: An example discrete word HMM for the word
“and”, initialized with two pronunciation variations
for the first phoneme.

The models are initialized on the phoneme se-
quence in some baseline pronunciation lexicon. The
number of states for a word model is set to be the num-
ber of phonemes in the baseline pronunciation, plus
enter and exit states. Each state has a discrete proba-
bility distribution of all phonemes. The phoneme se-
quence(s) in the baseline dictionary are given a high
probability and all other phonemes some low but non-
zero value. Forward transition between all states is al-
lowed, with initial transition probabilities favouring a
path that hits each state once.

The probability distribution as well as the transi-
tion probabilities are reestimated on the phoneme se-
quences of the training data. For each word, all in-
stances in the training data are collected and analyzed.
The number of states of each word model remains
static. Phoneme deletions are covered by state skip
transitions, phoneme insertions are modeled by state
self-loop transitions.

Data sparseness is a common problem for automa-
tically trained pronunciation modeling algorithms. In
this approach, pronunciations for words that do appear
sufficiently frequent in the training data, the pronunci-
ations are generated in a data-driven manner. For rare
words, the algorithm falls back on baseline phoneme

sequences from a given lexicon. This combination
should make it more robust than for example an ap-
plication of phoneme confusion rules on a lexicon (as
e.g. in [3]) could be.

3. Experiments
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Figure 3: Rescoring an n-best recognition result with
word pronunciation models.

As Figure 3 shows, the pronunciation word mod-
els are applied by rescoring an n-best recognition re-
sult. On a non-native test utterance, both a 1-best
phoneme recognition and a n-best (word-level) recog-
nition step are performed. With the pronunciation
HMMs as “acoustic model” and each n-best hypothesis
as reference, a Viterbi alignment results in an “acoustic
score”, which is in fact the pronunciation score. To-
gether with the language model score of that n-best hy-
pothesis, a total score is calculated.

3.1. Non-native database

The non-native database was collected at ATR and
consists of 90 speakers of English. The first lan-
guages of the speakers are Chinese (mostly Mandarin)
(CN), French (FR), German (GER), Indonesian (IN)
and Japanese (JP). About 14 minutes of read speech are
available per speaker. The sentences include six hotel
reservation dialogs, TIMIT phonetically balanced sen-
tences and credit-card style digit sequences. The text is
uniform for all speakers. Two of the hotel reservation
dialogs were chosen as a test set of about three minutes,
the rest of about eleven minutes as training data. The
number of speakers is shown in Table 1.

Table 1: Number of speakers per nation.

|CH FR GER IN JP
# speakers | 17 15 15 15 28

3.2. Word HMM initialization

The discrete probability distribution for each state is
initialized depending on the ‘“correct” phoneme se-
quence(s) as given in the lexicon. The correct phoneme



has a probability of 0.99. If more than one pronunci-
ation variant is included in the lexicon, the variations
all have the same probability, totalling 0.99. All other
phonemes are assigned some non-zero probability.
The transition probabilities depend on the number | CH FR GER IN JP

Table 2: Phoneme accuracy in %, compared to a
canonic transcription.

of succeeding phonemes in the baseline lexicon. The monophone | 39.21 4541 4885 4331 37.74

probability to skip k& phonemes is initialized to 0.05%. biphone 2054 37.87 41.15 3384 2924
Insertions are allowed with a chance of 0.05. The tran- triphone 30.07 41.57 4545 27.08 29.46

sition to the next state therefore has a probability of
slightly below 0.9.

3.3. Phoneme recognition

As a data-driven approach, the pronunciation modeling
method proposed here includes a phoneme recognition
step. For native speakers, context-dependent acoustic
models achieve higher accuracy than monophone mod-
els. To examine the impact of context for non-native
speakers, phoneme recognition was performed on full
utterances with a monophone, right-context biphone
and triphone model. All models are trained on more
than 60 hours of native English speech data from the
LDC Wall Street Journal (WSJ) read newspaper speech
corpus [8]. The phoneme set consists of 43 phonemes
plus silence. The three acoustic models have the fol-
lowing properties:

o the monophone HMM model has 132 states and
16 mixtures,

o the biphone model 3000 states and 10 mixtures,
o the triphone model 9600 states and 12 mixtures.

The word error rates of these models for the (native
English) Hub2 5k task are 19.2%, 15.2% and 6.4%,
respectively. The features are 12 MFCC coefficients,
energy and the first and second level derivatives.

Table 2 shows the phoneme accuracy for mono-
phone, biphone and triphone models on the non-native
data. A phoneme bigram model trained on the result
of a forced alignment of native speech (WSJ) provided
some phonotactic constraint. The references for evalu-
ation are generated automatically from a baseline lexi-
con. If a correct phoneme transcription was available,
higher numbers could be expected. The monophone
model performs best for all speaker groups. Obviously,
the phonetic context for native English speakers is con-
siderably different to non-native speakers.

For the rescoring step, the phoneme sequence of the
whole utterance is recognized. For the training of the
word models, the non-native training data set is seg-
mented into single words based on time information
aquired by Viterbi alignment. On these word chunks,
phoneme recognition is performed.

The HTK toolkit [9] is used for all training and de-
coding steps.

3.4. N-best word recognition

The HMM pronunciation models are applied in the
form of rescoring the n-best decoding result. The n-
best recognition uses the monophone acoustic model
introduced in Section 3.3 and a bigram language model
with a perplexity of 32 relative to the test set. The base-
line dictionary contains 8875 entries for 7311 words.
We chose to examine 10-best recognition in this re-
search.

3.5. Rescoring

On each utterance in the test data, both a 1-best
phoneme recognition and a standard n-best recognition
(on word level) is performed. For each of the n-best
word sequences, we apply a forced alignment using the
discrete pronunciation models, the phoneme sequence
as input features and the word sequence as labels. The
resulting score is the pronunciation score.

word
models
phoneme
sequence‘\\\\\x pron.
alignment SCOre ] score com argmax best
bination selector hypothesis

hth-best I

nth-best[Janguage | 1 Score
n-best word lLanguage
model

sequences n-best

Figure 4: The rescoring process.
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Figure 5: For each n-best hypothesis of an utterance
(bottom three lines), a pronunciation score is calulated
relativ to the phoneme sequence (top line). The correct
result is “and when would you like to stay”.



Figure 5 shows an example of calculating the pro-
nunciation score for three recognition hypotheses of
the utterance “and when would you like to stay”. On
the phoneme sequence in the top line, an alignment is
performed with each hypothesis as transcription. The
score is highest for the correct word sequence. Because
of mispronunciation and phoneme recognition errors,
the phoneme sequence is only similar to the baseline
pronunciations of the words.

This pronunciation score is combined with the
weighted language model score for this hypothesis.
The hypothesis achieving the highest total score among
the n-best is selected as correct.

Table 3: Word error rates in % for non-native speech
recognition without and with pronunciation rescoring.

|CH FR GER IN JP  avg

baseline | 51.23 37.93 31.77 40.48 56.92 45.88
rescoring | 45.12 34.80 29.88 38.31 52.36 42.14

Table 3 shows the word error rates for recognition
of non-native speech of the five speaker groups. For
all speaker groups, the recognition performance could
be improved by rescoring the n-best. Averaging over
all language groups while considering the number of
speakers in each group, the word error rate dropped
from 45.88% to 42.14%. Both the highest absolute
gain (6.11%) as well as the best relative improvement
(11.93%) was archieved for the Chinese speakers.

4. Conclusion

Word error rate could be improved in average by a rel-
ative 10.9% with pronunciation rescoring, showing the
effectiveness of the approach for non-native speech.
The full strength of the approach may not be achieved
in this evaluation because the non-native training data
covers only a limited share of the total vocabulary.
Many word models just default to the standard pro-
nunciations. This will always be a problem in a large
vocabulary scenario. It could be countered by ex-
tending the training data to other non-native databases,
e.g. [10]. Alternatively, modeling pronunciation on
other levels than words may be a solution.

Possible future work includes considering the
acoustic score together with pronunciation and lan-
guage model score, or taking the speakers English skill
into account by providing skill-dependent pronuncia-
tion models. It may also be helpful to initialize the tran-
sition probabilities in the pronunciation models based
on an examination of typical insertion and deletion er-
ror frequencies.
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