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ABSTRACT

In current HMM based speech recognition systems, it is diffi-
cult to supplement acoustic spectrum features with additional
information such as pitch, gender, articulator positions, etc.
On the other hand, Bayesian Networks (BN) allow for easy
combination of different continuous as well as discrete fea-
tures by exploring conditional dependencies between them.
However, the lack of efficient algorithms has limited their
application in continuous speech recognition. In this pa-
per we propose new acoustic model, where HMM are used
for modeling of temporal speech characteristics and state
probability model is represented by BN. In our experimen-
tal system based on HMM/BN model, in addition to speech
observation variable, state BN has two more (hidden) vari-
ables representing noise type and SNR value. Evaluation
results on AURORA2 database showed 36.4% word error
rate reduction for closed noise test without using any model
adaptation or noise robust methods.

1. INTRODUCTION

For many years, since the introduction of the HMM for
speech recognition [1, 2], observations conditional distri-
butions P (y|Q) for each state Q have been modeled by mix-
ture of probability density functions (discrete HMM are not
considered here). Gaussian as well as Laplacian pdfs are
commonly used for this purpose. Later, a hybrid HMM/NN
systems were proposed [3] where Neural Networks are used
to estimate HMM state likelihoods given input observation.
In most of the cases, features extracted from speech spec-
trum form these observations. However, research in speech
recognition has shown that using only these features is not
enough to achieve high system performance. Thus, many
researchers have tried to include additional features repre-
senting some other knowledge into their HMM systems. For
example, in [4] milti-space probability distribution is pro-
posed for modeling additional pitch information. But, in
almost each case, different approach is taken depending on
the properties of the additional feature. There is no common,
flexible enough framework to deal with this problem.
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cently, the Bayesian Networks (BN) have attracted
hers attention as an alternative to the HMM. BN are
nown and studied in Artificial Intelligence research
ut in speech recognition, they are relatively new re-
topic. Bayesian Networks can model complex joint
ility distributions of many different (discrete and/or

uous) random variables in well structured and easy to
ent way. Especially suitable for modeling temporal

characteristics are the Dynamic BN (DBN)[5]. In
f the first reports on DBN in speech recognition, they
sed as word models in isolated word recognition tasks
In these works, DBN are regarded as generalization of
M, which in addition to speech spectral information

sily incorporate additional knowledge, such as artic-
features, sub-band correlation, speaking style, etc.

acoustic features are easily supplemented with pitch
ation within the framework of DBN. Another advan-
f the Bayesian Networks is that additional features
are difficult to estimate reliably during recognition

e left hidden, i.e unobservable. Despite these attrac-
operties of BN, their application in speech recognition
limited to small, isolated word recognition tasks. The
is that existing algorithms for BN parameter learn-

d inference are not practically suitable for continuous
recognition (CSR) and especially large vocabulary
sks. Although, an extension of the DBN word model

ng recognition of continuously spoken digits was re-
in [9], increasing task vocabulary even to a few hun-
ords would be computationally prohibitive.

e method we are proposing in this paper aims at utiliz-
vantages of both HMM and BN while being free from
rawbacks described above. In our approach, HMM
N are combined together in one hybrid HMM/BN
. In this model, temporal characteristics of speech
are modeled by HMM state transitions and the BN is
model HMM state distributions. There is a two level

hy in which the BN is at the lower level and the HMM
t the top level. The advantage of this is that existing
ition algorithms can be used without any modifica-
nce this model behaves as a conventional HMM and
used to model both word and sub-word units which



is essential for large vocabulary systems.
This paper is organized as follows. Section 2 describes in

detail our hybrid HMM/BN model and several possible BN
structures. In Section 3, we show how to include additional
information about noise type and noise SNR using HMM/BN
framework and in Section 4 we describe the evaluation of our
system onAURORA2 task. Section 5 offers discussion about
our approach and some conclusions are drawn in Section 6.

2. THE HYBRID HMM/BN MODEL

In most cases, the use of BN in speech recognition has been
based on the idea to represent HMM as a Dynamic BN. Such
representation is shown in Fig. 1 where Qt is the state vari-
able and Yt is the continuous observation variable at time
t = 1, 2, 3, 4, . . . . Arcs represent probabilistic dependen-
cies between variables and it is easy to see that arcs between
state instances represent HMM transition probabilities and
arcs between state and observation instances represent HMM
state conditional distributions. In figures below, variables
shown in squares are discrete and variables in circles are
continuous. Shaded circles/squares denote observable vari-
ables.
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Fig. 1. Representation of HMM as DBN

Representing HMM as DBN requires BN inference al-
gorithms to be used when we need to obtain the likelihood of
input observation sequence P (Y |M) where Y = y1, . . . , yT

andM is our model. In doing so, the size of the network is ad-
justed to the size T of the input sequence and then P (Y |M)
is inferred from the whole network.

Let’s now imaginary break arcs between state nodes.
Then we get multiple, independent BN as shown in Fig.
2 corresponding to each time t. If we let the time transi-
tions (broken arcs) be governed by conventional HMM, and
assign those BNs to appropriate HMM states we can drop
the time index and since all BNs have the same structure we
can represent them as single BN shown in Fig. 3 where the
variable Q takes values of state indexes (Sij) of all HMMs
in the acoustic model and the state probability distributions
P (Y |Q = Sij) are represented by the arc.

In other words, we modified the conventional HMM to
have a BN as state distribution model instead of mixture
of Gaussians. Combining HMM and BN in this manner
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Fig. 2. Multiple BN for each time t
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Y

Fig. 3. State BN

the HMM/BN model hierarchical, where BN is at the
level and HMM is at the top level. Note that, the

ariable Q (Fig. 3) has become observable for the BN,
the upper HMM level it is still hidden.
e state BN, can easily be extended to include other

variables representing additional knowledge. The
cal structure of the extended BN can be imposed ac-
g to our knowledge of the relationship between vari-
rather than be learned from data, which is not a triv-
. Some possible structures of extended sate BN are
in Fig. 4. For example, the variable X in this figure

present the environment noise type and the other W
variables can represent speaker id and his/her native
ge.

hen doing recognition with this HMM/BN model, as
case of conventional HMM, we need to calculate the
) for each state Q = qij where i is the HMM index
is the state index of the ith HMM. We can infer this
from the BN probability model and there are many
s well as approximate inference algorithms to do this.
ple BN, as that of Fig. 4.a, even “brute force” method

licable. The joint probability model for this BN can
ressed by chain rule as follows:

P (Y, X, Q) = P (Y |X, Q) ∗ P (X|Q) ∗ P (Q) (1)

ce X and Q are independent variables (there are no
nking them), above equation can be rewritten as:

P (Y, X, Q) = P (Y |X, Q) ∗ P (X) ∗ P (Q) (2)
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a) State BN with one additional discrete variable.

Q

Y

X

Z

W

b) State BN with more complex structure.

Fig. 4. Possible state BN structures.

Then, probability of interestP (Y |Q) is calculated by marginal-
ization over X:

P (Y |Q) =
P (Y, Q)
P (Q)

=
∑

x P (Y, X = x, Q)
P (Q)

=
∑

x P (Y |X = x, Q) ∗ P (X = x) ∗ P (Q)
P (Q)

=
∑

x

P (Y |X = x, Q) ∗ P (X = x) (3)

In many practical cases, we can assume that P (X) is the
same for all X = x and then Eq.(3) reduces to:

P (Y |Q) =
1

N(x)

∑

x

P (Y |X = x, Q) (4)

where N(x) is the number of values X can take.
Training of the BN parameters can be done indepen-

dently for each state, in much the same way as conven-
tional HMM state parameters are trained. For simple BN,
as in our example (Fig. 4.a), we need to estimate only
P (Y |X = x, Q) for each x. If we use Gaussian mixture
pdfs to represent each P (Y |X = x, Q), their parameters
(means, weights and covariances) can be estimated by the
standard EM algorithm from data labeled for each condition
x. For more complex BN, BN training algorithms should
be integrated with the Baum-Welch training. However, this
topic is out of the scope of this paper and will be researched
in the future.

When
tors ch
the no
can ex
shown

ables r
the sta
way as
P (N)
type o

P (

Word
same w
can be
any ch

In the
scenar
mary i
with M
ing the
the tra
HTK t
other s
numbe
that, n
HMM
the two
depend

Re
in trai
marize
perfor
test (A
task ob
3. HMM/BN MODEL IN NOISY SPEECH
RECOGNITION SYSTEM

speech is contaminated by noise, speech feature vec-
ange their distributions and this change depends on

ise type as well as on the SNR value. Therefore, we
press these dependencies with a state BN of the type
in Fig. 5. Here, N and S are hidden discrete vari-

Q

Y

NS

Fig. 5. State BN with noise and SNR variables

epresenting noise type and SNR value. In this case,
te likelihood can be expressed analytically in the same
we derived Eq.(3). In most cases, prior probabilities
and P (S) can reasonably be assumed equal for each

f noise and each SNR value and then:

Y |Q) =
1

N(n, s)

∑

n,s

P (Y |N = n, S = s, Q) (5)

models as well as sub-word models are made in the
ay as in the conventional HMM case. Decoding also

performed as in standard HMM based systems without
anges in the decoder.

4. EVALUATION ON AURORA2 TASK

se experiments, we followed closely the evaluation
io suggested by the official AURORA2 task. Of pri-
nterest for us was to compare the HMM/BN system
ulti-condition trained HMM system. When train-
HMM/BN state conditional distributions, we divided

ining data by noise type and by SNR value and used
o train parameters for each condition separately. All
ystem parameters as feature vectors, word model state
r and experimental conditions are kept the same. Note
o adaptation or noise robust methods are used in our
/BN system. The main functional difference between

systems is that HMM/BN system explores the hidden
encies of speech features and noise.

cognition results for test set A (same noise types as
ning data) and test set B (different noises) are sum-
d in Table 1. As can be seen, the HMM/BN system

mance is much higher for the closed noise condition
set) approaching the state-of-the-art results for this
tained by much more complex systems. As for the B



set condition, there is a degradation of the performance. This
can be explained by the fact that no knowledge of dependen-
cies for the new noises is available to the HMM/BN system in
addition to the mismatch in the speech spectrum feature dis-
tributions. On the other hand, in the multi-condition HMM
system, state Gaussian mixtures clearly do not model very
well the complex distribution from multiple noise and SNR
conditions. However, this mismatch between data and model
distributions has some smoothing effect which increases the
model abilities to generalize over unseen data.

Table 1. HMM and HMM/BN systems performance (%)

SNR Test set A Test set B
HMM HMM/BN HMM HMM/BN

Clean 98.54 98.83 98.54 98.83
20 dB 97.52 98.12 96.96 97.26
15 dB 96.94 97.65 95.38 95.05
10 dB 94.59 96.04 92.58 90.27
5 dB 87.51 91.70 83.50 78.00
0 dB 59.84 76.11 58.91 48.70
-5 dB 23.46 35.79 23.86 3.18

Average∗ 87.29 91.92 85.46 81.85
∗ Calculated over values from 20dB to 0dB.

5. DISCUSSION

Obviously, the proposed hybrid HMM/BN model is applica-
ble not only in noisy speech recognition systems, but in many
other cases, where performance can benefit from additional
observable or hidden features. This approach is more like
a general framework for increasing modeling capabilities of
the system by combining together features from different
spaces and exploring dependencies between them. Espe-
cially interesting is the possibility to infer the probabilities
of the hidden variables of the BN. This way, HMM/BN sys-
tem can be used for recognition of those additional param-
eters. For example, if an additional hidden variable X rep-
resents language in a multi-lingual system, we can calculate
P (X|Q) for each frame and accumulate these probabilities
over the input utterance. Then, x = arg maxx P (x|QS),
where QS is the best hypothesis state sequence, shows the
most probable language the utterance has been spoken in.
Thus, in addition to recognizing multi-lingual speech, such
system can perform language recognition as well.

6. CONCLUSION

We have proposed a method for combining HMM and BN in
a single model which benefits from strengths of both HMM
and BN. The hybrid HMM/BN model allows for easy addi-
tion of other information in the speech recognition systems
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sing their performance at minimal cost. Furthermore,
/BN model can represent sub-word phonetic units like
nventional HMM. This way, it becomes possible to
BN framework in large vocabulary continuous speech
ition. Experimental evaluation of the method in noisy
recognition task showed that adding noise type and

alues as additional parameters and exploring depen-
between them and the spectrum feature parameters
d in 36.4% less errors in the AURORA2 task.
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