
Token Memory Transformer with Infinite
Context

Taize Sun1 , Katsuhide Fujita1(B) , Konstantin Markov2 ,
and Shengbo Chang3

1 Tokyo University of Agriculture and Technology, Koganei, Japan
katfuji@cc.tuat.ac.jp

2 University of Aizu, Aizuwakamatsu, Japan
3 Tsinghua University, Beijing, China

Abstract. This study proposes an infinite context Transformer model based on
Token Memory, which aims to solve the problem of contextual limitation in long
text processing. The core of this model is Token Memory, which stores the context
memory for each token and provides the information during model generation.
The model first splits a long text into segments and then generates local and
global attention for each segment. Local attention is generated by the decoder-only
Transformer and is discarded after each segment is completed. Global attention
is generated by the Token Memory. The Token Memory is retained to provide
information for the infinite context, and it is updated after the current segment is
calculated. Combining local and global attention can achieve an infinite context.
We trained and evaluated the proposed model on the PG-19, C4-en, and BookSum
datasets. Our model reaches state-of-the-art results on language modeling tasks
with long contexts of up to 1M tokens. Our approach enables large language
models to handle infinite contextual tasks, adapting to the increasing demands
placed on these models by people.

Keywords: Large Language Model · Infinite Context · Memory · Fine-Tuning ·
Neural Networks

1 Introduction

With the introduction of ChatGPT [1], natural language processing (NLP) models have
provided great convenience for people. These models help humans answer questions,
generate suggestions, brainstorm, and perform other tasks. However, some tasks require
the model to have long context processing capabilities, such as summarizing long
documents or holding very long conversations that consider the context.

The most widely used model for NLP is the Transformer [2], but the attention mecha-
nism in Transformers exhibits quadratic complexity regarding memory usage and com-
putation time. Therefore, most Transformer-based models are unlikely to have long
context or output lengths due to massive consumption [3].

One common approach to solving the above problems is to split long inputs into
smaller segments and use memory, which is the segment-level memory transformer (c.f.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
D.-S. Huang et al. (Eds.): ICIC 2025, LNAI 15865, pp. 319–330, 2025.
https://doi.org/10.1007/978-981-95-0020-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-95-0020-8_27&domain=pdf
http://orcid.org/0009-0003-5298-6633
http://orcid.org/0000-0001-7867-4281
http://orcid.org/0000-0003-1838-4789
http://orcid.org/0000-0001-6992-7566
https://doi.org/10.1007/978-981-95-0020-8\sb {27}

320 T. Sun et al.

Sect. 2). Memory is effective for humans [4] and NLP models [5]. It allows the model to
process long contexts at a lower cost by storing and retrieving contextual information.
Based on the above information, we propose a machine learning model that uses Token
Memory, which aims to solve the problem of context limitation in long text processing.

Currently, most language model tokenizers come with a vocabulary whose main
function is to convert tokens into integers for further processing. Our work focuses on
processing and storing the information that tokens pass through the model. This infor-
mation can be utilized for processing long contexts. Our model can be roughly divided
into three components. First, like most current works [5], we split the long context into
shorter segments and send them to the model one by one. The model uses decoder-only
Transformers to calculate the local attention of the current segment. Second, unlike what
was done in previous works [6], we prepare the memory for each token in the tokenizer
vocabulary of the model, which we call Token Memory. When a token appears for the
first time, the model uses the query, key, and value from the multi-head attention to
calculate and save the memory for this token, which we call Corresponding Memory.
If the token reappears in a later segment, the query and Token Memory are used to
calculate its global attention and then update the Token Memory. This method builds
a permanent and queryable Token Memory that is continuously updated. Based on this
Token Memory, the model remembers information about the tokens over a long context.
Third, we added Segment Memory to the model to summarize the previous segment
[7]. It is used to supply the previous segment’s information when the first token of the
current segment is generated.

In the experiments, our model solves the long context modeling task with a maximum
length of 1M tokens. The model achieves state-of-the-art performance in the language
modeling task on the PG-19 [8] and C4-en [9] datasets and performs well in the summary
task on the BookSum [10] dataset.

Our model mainly refers to infini-transformers [5], Memorizing Transformers [6],
and LMEDR [7]. Compared with these models, our model is different in the following
ways:

• Unlike Infini-attention, our model provides memory for each token instead of com-
pressing the previous information into one matrix. When the token information is
transmitted over long distances, it does not pass through the intermediate segment
memories, and thus, the integrity of the information is preserved.

• Unlike Memorizing Transformers, our model considers the memory for all tokens.
Therefore, our model does not discard any information about tokens and does not
need to use kNN to search. Our model performs better with less memory.

• Unlike LMEDR, our model simplifies the two memory pools into one to accelerate
the training and prediction speed when a large amount of memory is used. In addition,
the memory is initialized and updated by the query, key, and value instead of randomly
generated and backpropagated. This approach improves memory accuracy.

The contributions of this paper are summarized as follows:

• We propose a Transformer model based on Token Memory that can handle contexts
of unlimited length. The Token Memory provides memory for each token and updates
this memory when it processes lengthy texts, thereby enhancing the model’s accuracy.

Token Memory Transformer with Infinite Context 321

• Our proposed model was trained and tested on the PG-19 [8], C4-en [9] and BookSum
[10] datasets. Our proposed model achieves state-of-the-art performance on long
context language modeling and summarization tasks. The entire code for replicating
the experiment is on https://github.com/Ozawa333/tokenmemory

2 Related Work

In this section, we discuss related segment-level memory models that can process long
contexts.

Transformer-XL [11] solves the problem of context fragmentation by introduc-
ing a segment-level repetition mechanism and a new position encoding scheme, which
enables the model to learn dependencies beyond a fixed-length context. Long-distance
dependency modeling is achieved by sharing hidden states between different paragraphs,
whereas relative position encoding is introduced to capture a wider range of context
information. It is widely used in tasks that require long context understanding.

Compressive Transformer [12] models longer sequences by compressing past hid-
den states (memory). It inherits the idea of Transformer-XL but compresses rather than
discards memories at each time step. It retains a longer context without losing important
information; thus, it performs well in long text processing tasks.

Memorizing Transformers [6] allows models to acquire new knowledge by reading
and memorizing new data. This approach uses an approximate k-nearest neighbor lookup
to memorize and retrieve new information. It enhances the performance of the language
models and enables them to update and expand their knowledge base continuously.
In addition, it reduces the need for periodic retraining, thereby increasing the model’s
flexibility and adaptability. This method is especially beneficial for tasks that require
dynamic updates to the knowledge base.

Recurrent Memory Transformer (RMT) [13] combines the advantages of the
RNN [14] and the Transformer [2]. By introducing a memory mechanism to process
long-sequence data, it captures both short-term and long-term dependencies, thereby
improving the efficiency and effectiveness of long-sequence processing. It uses the mem-
ory capacity of RNN and the parallel computing capability of the Transformer to achieve
efficient long-sequence dependency modeling, and it is widely used in tasks that require
long-term dependency modeling.

AutoCompressors [15] reduces computing costs using automatic compression
mechanisms while maintaining efficient performance. It significantly reduces the con-
sumption of computing resources while maintaining the high-performance output of the
model. Using automated compression methods optimizes the weights and structure of
the model and reduces redundant calculations. AutoCompressors are suitable for tasks
that require efficient computing.

Infini-Transformers [5] is designed to process sequences of infinite length; it can
process ultralong sequences. It uses new positional encoding and attention mecha-
nisms to ensure that the model can effectively capture and utilize infinitely long context
information. It is suitable for tasks that require the processing of extremely long text
sequences.

LMEDR [7] is not a Segment-Level Memory Transformer, but Entailment Relation
Memory (ERM) in this work inspired our model. ERM is an external memory module

https://github.com/Ozawa333/tokenmemory

322 T. Sun et al.

that learns and stores the entailment relationships between premises and assumptions to
ensure consistency in the conversation.

3 Method

Our model mainly maintains a Token Memory Pool for tokens. Each token in the tok-
enizer vocabulary has a Corresponding Memory in the Pool. A Corresponding Memory
is calculated and updated when the model processes a token. Token Memory will pro-
vide additional information in long context generation. The structure of our model is
shown in Fig. 1. On the left is the traditional Transformer decoder [2] that calculates
local attention, and on the right is the memory module that we use to calculate global
attention. First, we chunk the long input into segments and send the segments to the
model in order. Second, we find the Corresponding Memory of the token and replace the
memory of the first token with Segment Memory. Then, the Corresponding Memory is
used to calculate global attention. After passing through a linear layer, we return global
attention to the model and then plus it with local attention. Third, we calculate the mem-
ory update using the query, key, and value of the token, and then update the memory after
the current segment calculation is complete. Fourth, we save the hidden states of the last
token in the last layer as the Segment Memory and update after the current segment is
calculated. After the current segment is complete, the model processes the next segment
with memory. This section introduces each part of the model in detail.

3.1 Local Multi-head Attention Calculation

Our model is based on a decoder-only Transformer [2]. The local multi-head attention is
calculated in each decoder layer. The local attention [11] is focused only on the current
segment, and the local attention of the previous segment is discarded. Similar to most
other Transformer-based models, our model calculates the query, key, and value states
from the input X ∈ RN ×dmodel or the previous layer:

Q = XWQ, K = XWK, V = XWV (1)

where Q, K, V ∈ RN×dmodel , W_ ∈ Rdmodel×dmodel are trainable matrices, and N is the
length of the input X . Then, we split the last dimension dmodel for the local multi-head
attention calculation:

Q, K, V ∈ RH×N×dhead (2)

where H is the number of attention heads and dhead is the dimension of the attention
heads. Q, K , and V are used for the local multi-head attention calculation [2]:

Alocal = softmax
(

QKT

√
dhead

)
V (3)

where Alocal ∈ RH×N×dhead and KT means transposing the last two dimensions of key
K .

Token Memory Transformer with Infinite Context 323

Fig. 1. The architecture of Token Memory Transformer.

3.2 Memory Initialization

Similar to previous work, such as the RNN [14] and LSTM [16], we maintain a recurrent
memory state to track long contexts efficiently. Our model’s memory usage increases
with the number of different tokens that appear, but it never exceeds the size of the model
tokenizer vocabulary. Our Token Memory is a variable-length parameterized matrix [17]
that stores the Corresponding Memory of each token that has appeared in past segments.
The model allocates Token Memory for all heads in every layer, defined as:

M ∈ Rl×H×v×dhead (4)

where l is the number of layers and v is the number of tokens encountered thus far. The
Token Memory M matrix is initialized to all zeros.

3.3 Global Memory Attention Calculation and Injection

We find the Corresponding Memory for each token in each layer, and we then replace
the memory of the first token with Segment Memory. (Some elements will be defined in
the following subsection because these values are initially zero).

M C s−1 ← Ms−1 (5)

324 T. Sun et al.

where M C s−1 ∈ RH×N×dhead .We calculate the global attention:

Aglobal =
M C s−1

σ (Q)zs−1
(6)

where Aglobal ∈ RH ×N×dhead , zs−1 ∈ RH×dhead×1 is the normalization term [18], and σ
is the element-wise ELU + 1 activation function [19]. Unlike previous work that used
learned gating scalar [5], we pass Aglobal through a linear layer before feeding it back
into the decoder for injecting global attention and mitigating potential issues arising
from context turbulence [3]. Then, Aglobal and Alocal are added together and merged
from the dhead to dmodel . Finally, we passed the above result through another linear layer
to complete the current decoder layer.

O = (
AglobalWA + Alocal

)
WO (7)

where O ∈ RN ×dmodel . WA ∈ RH×dhead×dhead and WO ∈ Rdmodel×dmodel are trainable
matrices.

3.4 Memory Update

After the current segment calculation is complete, the new Corresponding Memory will
be updated to the Token Memory for the token. Our approach is similar to that of previous
work [5], as this work has demonstrated the superiority of this method. However, there
are two differences. First, we utilize the position embeddings for the Q and K vectors
that are used to calculate the Token Memory. Second, we directly use the current Q, K ,
and V of each token in the multi-head attention mechanism of each layer to compute the
updated memory:

Ms ← M C s−1 + σ(Q)(σ
(
KT

)
V) (8)

According to previous experience [18], the norm method is important to training
stability, so we let the model sum K along the second dimension to compute and update
the normalization term for the calculation of memory:

zs ← zs−1 +
∑N

n=1
σ (Kn) (9)

where zs ∈ RH ×1×dhead . Then, we transpose the last two dimensions of the normalization
term zs ∈ RH×dhead×1.

3.5 Segment Memory

This part uses a method similar to that idea in previous work [7], which uses Segment
Memory to summarize the previous segment’s information and to maintain contextual
consistency. The Segment Memory comes from the hidden state hN ∈ R1×dmodel of the
final token of the final decoder layer output, which contains all the token information

Token Memory Transformer with Infinite Context 325

of the segment due to the structure of the decoder. Splitting the dmodel dimension of the
hidden state produces the Segment Memory.

M S s ← hN s−1 (10)

where M S s ∈ RH ×1×dhead . It is also updated to the memory pool after the current segment
ends.

3.6 Loss Function

Our model converts all tasks to language modeling tasks. We used Teacher Forcing.
Given X = (x1, x2, . . . xN), the model predicts the next token based on the input tokens,
so the loss function is:

loss = −
∑N

n=1
P(xn)logP

(
x′
n|x1, x2, . . . , xn−1

)
(11)

where x′
n is the output of the model, and P(x) represents the probability distribution of

x in the vocabulary as calculated by a linear layer.

4 Experiment

We modified a large language model using the Sect. 3 method to address long context
language modeling tasks. We trained and evaluated the model using long context datasets
and compared the model with other models.

4.1 Datasets

We selected texts having an appropriate length from the following datasets for training
and evaluation.

• PG-19 [8] is a language modeling benchmark created by DeepMind. It consists of a
collection of books extracted from the Project Gutenberg library, specifically those
published before 1919. Commonly used for model evaluation with long contexts. We
used its train split with 13.7K texts for the training, and we used its test split with 100
texts for evaluation.

• C4 [9] dataset is a massive, cleaned version of the Common Crawl web crawl corpus.
It was used to train the T5 text-to-text Transformer models. We use its train split with
16K texts for training and test split with 3.6K texts for evaluation on the en subset.

• BookSum [10] is a dataset that was designed for long-form narrative summarization. It
aims to address the limitations of most current text summarization datasets. BookSum
contains source texts from the literary domain, such as novels, plays, and stories, as
well as highly abstract human-written summaries. We used its train split with 330
texts for training and its test split with 25 texts for evaluation.

326 T. Sun et al.

4.2 Implementation Details

We trained our model based on Sheared-LLaMA-1.3B [20]. This model was pruned
and further pre-trained from Llama2 [21] by removing layers, heads, and intermediate
hidden dimensions. Data from different domains in the RedPajama [22] dataset were
dynamically loaded to continue pre-training the model. This model had 16 attention
heads of dimension 128, 24 hidden layers, and 2048 model dimensions. The maximum
input length of the model was 4096, so we also set the segment length to 4096.

We set the input length to (32K, 512K, 1M), which was (8, 128, 256) times the
segment length. We tested the learning rates (1e-2, 1e-3, 1e-4) using a decay cosine
scheduler and gradient accumulation steps (8, 128, 256) with a batch size of one. We
used cross-entropy to calculate the loss and Adafactor [23] to optimize the model. The
average full parameter fine-tuning time was 12 h with Pytorch on three NVIDIA RTX
A6000 Ada Generation. Algorithm 1 is our training algorithm.

4.3 Language Modeling Task

Our model was trained for about 23K steps on PG-19 [8] and C4-en [9]. We used
perplexity to evaluate the model. If a model is confident in predicting many words
(high probability), its perplexity will be low; conversely, if a model is unsure about the
prediction of a word (low probability and wide distribution), its perplexity will be high.
Due to the insufficient length of C4-en, we were not able to train and test the results of
512K and 1M input lengths. We found that the model performed best when the gradient
accumulation steps were 8 and the learning rate was 1e-3.

Table 1 shows the evaluation results for our model compared with other segment-
level language models. On PG-19 [8], our model achieves state-of-the-art results for all
input lengths. This demonstrates the effectiveness of the Token Memory in handling
long context language modeling tasks. On C4-en [9], we tested only the results of 32K
input length due to insufficient data length, and our model again achieved state-of-the-art
results.

4.4 Summarization Task

We concatenated the chapters and summaries in BookSum [10] into a new text by
using the keyword “Summarization:”. In addition, due to data length limitations, we
selected new texts having lengths between 32K and 64K, and we then truncated them
to 32K for the training and evaluation. Our model was trained for 330 steps. We use
ROUGE [24] to evaluate the models. The ROUGE evaluation mainly measured the
model’s performance by comparing the similarity between the generated text and the
reference text. Common ROUGE indicators include ROUGE-N, which calculates the
number of identical n-grams. ROUGE-L evaluates the similarity based on the longest
common subsequence. Our model performed best at a learning rate of 1e-3 with 128
gradient accumulation steps.

Token Memory Transformer with Infinite Context 327

Table 1. Language modeling results comparison of our model and others on PG-19 and C4-en.
All the models used the optimal settings. Some data come from [5].

Model Input length PG-19 C4-en

Transformer-XL [11] - 11.88 -

Memorizing Transformers [6] - 11.37 13.64

RMT [13] 8k 13.27 -

Infini-Transformer [5] 32k 9.65 -

Ours 32k 9.35 4.89

512k 8.83 -

1m 8.04 -

Table 2 shows a comparison with other segment-level language models. Even when
compared with a model that is designed specifically for summarization [25, 26] with a
long context extension [0], our model takes the lead on some indicators. However, when
it is compared with the latest segment-level Memory Transformer Infini-Transformer
[5], it only takes the lead on ROUGE-1. This suggests that although the model is good
at finer details, it may require further optimization to improve its ability to capture the
overall gist of the text and the more complex relationships within the text.

4.5 Ablation Study

Table 3 shows the performance of the model on PG-19 using different context lengths.
As the input length increases, the model performs better, which shows that as the tokens
that have appeared gradually fill the memory, the performance of the model improves.
In addition, although the input length increases by 16-fold and 32-fold for 32K input
length, the increase of memory is only 2.8-fold and 3.1-fold. The above result indicates

328 T. Sun et al.

Table 2. Summarization result comparison of our and others on BookSum. Some data come from
[5].

Model ROUGE-1 ROUGE-2 ROUGE-L

BART + Unlimiformer[25] 36.8 8.3 15.7

PRIMERA + Unlimiformer[26] 37.9 8.2 16.3

Infini-Transformer[5] 40.0 8.8 17.9

Ours 43.2 7.6 16.7

that many words are repeated in the dataset, which enhances the advantage of our model
as the input length increases.

Table 3. Language modeling results of different context lengths on PG-19.

Context length Memory pool Token Perplexity

32k 3857 9.35

512k 10837 8.83

1M 12135 8.04

In the summarization task, the result in Table 4 shows that removing Token Memory
and Segment Memory decreased almost all the performance. This indicates that Token
Memory and Segment Memory play a crucial role in improving the detail of the generated
summaries and maintaining contextual consistency. When disabling the Token Memory,
the increase of ROUGE-2 scores may suggest that our model focuses too much on single
token information and loses the overall information of the sentence.

Table 4. Summarization results of our model including w/o memory on BookSum.

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum

Original 43.29 7.64 16.74 41.57

w/o Token Memory 39.65 7.66 15.91 37.97

w/o Segment Memory 36.26 6.89 16.33 34.61

5 Conclusion

In this study, we introduced an innovative infinite context Transformer model based on
Token Memory to overcome the limitations of traditional Transformer models in process-
ing long texts. Our approach effectively combined local and global attention mechanisms,

Token Memory Transformer with Infinite Context 329

which then enabled the model to process texts of unlimited length while maintaining
high performance. Through experiments on the PG-19, C4-en, and BookSum datasets,
our model demonstrated state-of-the-art performance and excelled particularly on tasks
that involved long contexts of up to 1M tokens.

Our model’s ability to retain and update memory for each token ensured that no
information was discarded, thereby improving the accuracy of long context language
modeling. This advancement introduces new possibilities for applications that require
extensive contextual understanding, such as document summarization and long-form
content generation.

Our future work will focus on further optimizing the model’s memory management
and exploring its application in more diverse NLP tasks.

Acknowledgments. This research was supported by a tuition exemption from the Tokyo
University of Agriculture and Technology.

Disclosure of Interests. The authors have no conflicts of interest to declare.

References

1. Liu, Y., et al.: Summary of chatgpt-related research and perspective towards the future of
large language models. Meta-Radiol., 100017 (2023)

2. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)
3. Brown, T.B.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)
4. Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Verbal

Behav. 8(2), 240–247 (1969). https://doi.org/10.1016/S0022-5371(69)80069-1, https://www.
sciencedirect.com/science/article/pii/S0022537169800691

5. Munkhdalai, T., Faruqui, M., Gopal, S.: Leave no context behind: Efficient infinite context
transformers with infini-attention. arXiv preprint arXiv:2404.07143 (2024)

6. Wu, Y., Rabe, M.N., Hutchins, D., Szegedy, C.: Memorizing transformers. arXiv preprint
arXiv:2203.08913 (2022)

7. Chen, R., Wang, J., Yu, L.C., Zhang, X.: Learning to memorize entailment and discourse rela-
tions for persona-consistent dialogues. In: Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 12653–12661 (2023)

8. Rae, J.W., Potapenko, A., Jayakumar, S.M., Hillier, C., Lillicrap, T.P.: Compressive trans-
formers for long-range sequence modelling. arXiv preprint (2019), https://arxiv.org/abs/1911.
05507

9. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv e-prints (2019)

10. Kryściński, W., Rajani, N., Agarwal, D., Xiong, C., Radev, D.: Booksum: A collection of
datasets for long-form narrative summarization (2021)

11. Dai, Z.: Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860 (2019)

12. Rae, J.W., Potapenko, A., Jayakumar, S.M., Lillicrap, T.P.: Compressive transformers for
long-range sequence modelling. arXiv preprint arXiv:1911.05507 (2019)

13. Bulatov, A., Kuratov, Y., Burtsev, M.: Recurrent memory transformer. Adv. Neural. Inf.
Process. Syst. 35, 11079–11091 (2022)

14. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

http://arxiv.org/abs/2005.14165
https://doi.org/10.1016/S0022-5371(69)80069-1
https://www.sciencedirect.com/science/article/pii/S0022537169800691
https://www.sciencedirect.com/science/article/pii/S0022537169800691
http://arxiv.org/abs/2404.07143
http://arxiv.org/abs/2203.08913
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1911.05507

330 T. Sun et al.

15. Chevalier, A., Wettig, A., Ajith, A., Chen, D.: Adapting language models to compress contexts.
arXiv preprint arXiv:2305.14788 (2023)

16. Graves, A., Graves, A.: Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pp. 37–45 (2012)

17. Schlag, I., Munkhdalai, T., Schmidhuber, J.: Learning associative inference using fast weight
memory. arXiv preprint arXiv:2011.07831 (2020)

18. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F.: Transformers are rnns: fast autoregres-
sive transformers with linear attention. In: International Conference on Machine Learning,
pp. 5156–5165. PMLR (2020)

19. Clevert, D.A.: Fast and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289 (2015)

20. Xia, M., Gao, T., Zeng, Z., Chen, D.: Sheared llama: accelerating language model pre-training
via structured pruning. arXiv preprint arXiv:2310.06694 (2023)

21. Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288 (2023)

22. Computer, T.: Redpajama: An open source recipe to reproduce llama training dataset
(2023). https://github.com/togethercomputer/RedPajama-Data

23. Shazeer, N., Stern, M.: Adafactor: adaptive learning rates with sublinear memory cost. In:
International Conference on Machine Learning. pp. 4596–4604. PMLR (2018)

24. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Text Summarization
Branches Out, pp. 74–81 (2004)

25. Lewis, M.: Bart: Denoising sequence-to-sequence pre-training for natural language genera-
tion, translation, and comprehension. arXiv preprint arXiv:1910.13461 (2019)

26. Xiao, W., Beltagy, I., Carenini, G., Cohan, A.: Primera: pyramid-based masked sentence
pre-training for multi-document summarization. arXiv preprint arXiv:2110.08499 (2021)

27. Bertsch, A., Alon, U., Neubig, G., Gormley, M.: Unlimiformer: long-range transformers with
unlimited length input. Adv. Neural Inform. Process. Syst. 36 (2024)

http://arxiv.org/abs/2305.14788
http://arxiv.org/abs/2011.07831
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2307.09288
https://github.com/togethercomputer/RedPajama-Data
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/2110.08499

	Token Memory Transformer with Infinite Context
	1 Introduction
	2 Related Work
	3 Method
	3.1 Local Multi-head Attention Calculation
	3.2 Memory Initialization
	3.3 Global Memory Attention Calculation and Injection
	3.4 Memory Update
	3.5 Segment Memory
	3.6 Loss Function

	4 Experiment
	4.1 Datasets
	4.2 Implementation Details
	4.3 Language Modeling Task
	4.4 Summarization Task
	4.5 Ablation Study

	5 Conclusion
	References

