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Abstract. This study proposes an infinite context Transformer model based on 
Token Memory, which aims to solve the problem of contextual limitation in long 
text processing. The core of this model is Token Memory, which stores the context 
memory for each token and provides the information during model generation. 
The model first splits a long text into segments and then generates local and 
global attention for each segment. Local attention is generated by the decoder-only 
Transformer and is discarded after each segment is completed. Global attention 
is generated by the Token Memory. The Token Memory is retained to provide 
information for the infinite context, and it is updated after the current segment is 
calculated. Combining local and global attention can achieve an infinite context. 
We trained and evaluated the proposed model on the PG-19, C4-en, and BookSum 
datasets. Our model reaches state-of-the-art results on language modeling tasks 
with long contexts of up to 1M tokens. Our approach enables large language 
models to handle infinite contextual tasks, adapting to the increasing demands 
placed on these models by people. 

Keywords: Large Language Model · Infinite Context · Memory · Fine-Tuning · 
Neural Networks 

1 Introduction 

With the introduction of ChatGPT [1], natural language processing (NLP) models have 
provided great convenience for people. These models help humans answer questions, 
generate suggestions, brainstorm, and perform other tasks. However, some tasks require 
the model to have long context processing capabilities, such as summarizing long 
documents or holding very long conversations that consider the context. 

The most widely used model for NLP is the Transformer [2], but the attention mecha-
nism in Transformers exhibits quadratic complexity regarding memory usage and com-
putation time. Therefore, most Transformer-based models are unlikely to have long 
context or output lengths due to massive consumption [3]. 

One common approach to solving the above problems is to split long inputs into 
smaller segments and use memory, which is the segment-level memory transformer (c.f.
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Sect. 2). Memory is effective for humans [4] and NLP models [5]. It allows the model to 
process long contexts at a lower cost by storing and retrieving contextual information. 
Based on the above information, we propose a machine learning model that uses Token 
Memory, which aims to solve the problem of context limitation in long text processing. 

Currently, most language model tokenizers come with a vocabulary whose main 
function is to convert tokens into integers for further processing. Our work focuses on 
processing and storing the information that tokens pass through the model. This infor-
mation can be utilized for processing long contexts. Our model can be roughly divided 
into three components. First, like most current works [5], we split the long context into 
shorter segments and send them to the model one by one. The model uses decoder-only 
Transformers to calculate the local attention of the current segment. Second, unlike what 
was done in previous works [6], we prepare the memory for each token in the tokenizer 
vocabulary of the model, which we call Token Memory. When a token appears for the 
first time, the model uses the query, key, and value from the multi-head attention to 
calculate and save the memory for this token, which we call Corresponding Memory. 
If the token reappears in a later segment, the query and Token Memory are used to 
calculate its global attention and then update the Token Memory. This method builds 
a permanent and queryable Token Memory that is continuously updated. Based on this 
Token Memory, the model remembers information about the tokens over a long context. 
Third, we added Segment Memory to the model to summarize the previous segment 
[7]. It is used to supply the previous segment’s information when the first token of the 
current segment is generated. 

In the experiments, our model solves the long context modeling task with a maximum 
length of 1M tokens. The model achieves state-of-the-art performance in the language 
modeling task on the PG-19 [8] and C4-en [9] datasets and performs well in the summary 
task on the BookSum [10] dataset. 

Our model mainly refers to infini-transformers [5], Memorizing Transformers [6], 
and LMEDR [7]. Compared with these models, our model is different in the following 
ways: 

• Unlike Infini-attention, our model provides memory for each token instead of com-
pressing the previous information into one matrix. When the token information is 
transmitted over long distances, it does not pass through the intermediate segment 
memories, and thus, the integrity of the information is preserved. 

• Unlike Memorizing Transformers, our model considers the memory for all tokens. 
Therefore, our model does not discard any information about tokens and does not 
need to use kNN to search. Our model performs better with less memory. 

• Unlike LMEDR, our model simplifies the two memory pools into one to accelerate 
the training and prediction speed when a large amount of memory is used. In addition, 
the memory is initialized and updated by the query, key, and value instead of randomly 
generated and backpropagated. This approach improves memory accuracy. 

The contributions of this paper are summarized as follows: 

• We propose a Transformer model based on Token Memory that can handle contexts 
of unlimited length. The Token Memory provides memory for each token and updates 
this memory when it processes lengthy texts, thereby enhancing the model’s accuracy.
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• Our proposed model was trained and tested on the PG-19 [8], C4-en [9] and BookSum 
[10] datasets. Our proposed model achieves state-of-the-art performance on long 
context language modeling and summarization tasks. The entire code for replicating 
the experiment is on https://github.com/Ozawa333/tokenmemory 

2 Related Work 

In this section, we discuss related segment-level memory models that can process long 
contexts. 

Transformer-XL [11] solves the problem of context fragmentation by introduc-
ing a segment-level repetition mechanism and a new position encoding scheme, which 
enables the model to learn dependencies beyond a fixed-length context. Long-distance 
dependency modeling is achieved by sharing hidden states between different paragraphs, 
whereas relative position encoding is introduced to capture a wider range of context 
information. It is widely used in tasks that require long context understanding. 

Compressive Transformer [12] models longer sequences by compressing past hid-
den states (memory). It inherits the idea of Transformer-XL but compresses rather than 
discards memories at each time step. It retains a longer context without losing important 
information; thus, it performs well in long text processing tasks. 

Memorizing Transformers [6] allows models to acquire new knowledge by reading 
and memorizing new data. This approach uses an approximate k-nearest neighbor lookup 
to memorize and retrieve new information. It enhances the performance of the language 
models and enables them to update and expand their knowledge base continuously. 
In addition, it reduces the need for periodic retraining, thereby increasing the model’s 
flexibility and adaptability. This method is especially beneficial for tasks that require 
dynamic updates to the knowledge base. 

Recurrent Memory Transformer (RMT) [13] combines the advantages of the 
RNN [14] and the Transformer [2]. By introducing a memory mechanism to process 
long-sequence data, it captures both short-term and long-term dependencies, thereby 
improving the efficiency and effectiveness of long-sequence processing. It uses the mem-
ory capacity of RNN and the parallel computing capability of the Transformer to achieve 
efficient long-sequence dependency modeling, and it is widely used in tasks that require 
long-term dependency modeling. 

AutoCompressors [15] reduces computing costs using automatic compression 
mechanisms while maintaining efficient performance. It significantly reduces the con-
sumption of computing resources while maintaining the high-performance output of the 
model. Using automated compression methods optimizes the weights and structure of 
the model and reduces redundant calculations. AutoCompressors are suitable for tasks 
that require efficient computing. 

Infini-Transformers [5] is designed to process sequences of infinite length; it can 
process ultralong sequences. It uses new positional encoding and attention mecha-
nisms to ensure that the model can effectively capture and utilize infinitely long context 
information. It is suitable for tasks that require the processing of extremely long text 
sequences. 

LMEDR [7] is not a Segment-Level Memory Transformer, but Entailment Relation 
Memory (ERM) in this work inspired our model. ERM is an external memory module

https://github.com/Ozawa333/tokenmemory
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that learns and stores the entailment relationships between premises and assumptions to 
ensure consistency in the conversation. 

3 Method  

Our model mainly maintains a Token Memory Pool for tokens. Each token in the tok-
enizer vocabulary has a Corresponding Memory in the Pool. A Corresponding Memory 
is calculated and updated when the model processes a token. Token Memory will pro-
vide additional information in long context generation. The structure of our model is 
shown in Fig. 1. On the left is the traditional Transformer decoder [2] that calculates 
local attention, and on the right is the memory module that we use to calculate global 
attention. First, we chunk the long input into segments and send the segments to the 
model in order. Second, we find the Corresponding Memory of the token and replace the 
memory of the first token with Segment Memory. Then, the Corresponding Memory is 
used to calculate global attention. After passing through a linear layer, we return global 
attention to the model and then plus it with local attention. Third, we calculate the mem-
ory update using the query, key, and value of the token, and then update the memory after 
the current segment calculation is complete. Fourth, we save the hidden states of the last 
token in the last layer as the Segment Memory and update after the current segment is 
calculated. After the current segment is complete, the model processes the next segment 
with memory. This section introduces each part of the model in detail. 

3.1 Local Multi-head Attention Calculation 

Our model is based on a decoder-only Transformer [2]. The local multi-head attention is 
calculated in each decoder layer. The local attention [11] is focused only on the current 
segment, and the local attention of the previous segment is discarded. Similar to most 
other Transformer-based models, our model calculates the query, key, and value states 
from the input X ∈ RN ×dmodel or the previous layer: 

Q = XWQ, K = XWK, V = XWV (1) 

where Q, K, V ∈ RN×dmodel , W_ ∈ Rdmodel×dmodel are trainable matrices, and N is the 
length of the input X . Then, we split the last dimension dmodel for the local multi-head 
attention calculation: 

Q, K, V ∈ RH×N×dhead (2) 

where H is the number of attention heads and dhead is the dimension of the attention 
heads. Q, K , and V are used for the local multi-head attention calculation [2]: 

Alocal = softmax
(

QKT 

√
dhead

)
V (3) 

where Alocal ∈ RH×N×dhead and KT means transposing the last two dimensions of key 
K .
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Fig. 1. The architecture of Token Memory Transformer. 

3.2 Memory Initialization 

Similar to previous work, such as the RNN [14] and LSTM [16], we maintain a recurrent 
memory state to track long contexts efficiently. Our model’s memory usage increases 
with the number of different tokens that appear, but it never exceeds the size of the model 
tokenizer vocabulary. Our Token Memory is a variable-length parameterized matrix [17] 
that stores the Corresponding Memory of each token that has appeared in past segments. 
The model allocates Token Memory for all heads in every layer, defined as: 

M ∈ Rl×H×v×dhead (4) 

where l is the number of layers and v is the number of tokens encountered thus far. The 
Token Memory M matrix is initialized to all zeros. 

3.3 Global Memory Attention Calculation and Injection 

We find the Corresponding Memory for each token in each layer, and we then replace 
the memory of the first token with Segment Memory. (Some elements will be defined in 
the following subsection because these values are initially zero). 

M C s−1 ← Ms−1 (5)
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where M C s−1 ∈ RH×N×dhead .We calculate the global attention: 

Aglobal =
M C s−1 

σ (Q)zs−1 
(6) 

where Aglobal ∈ RH ×N×dhead , zs−1 ∈ RH×dhead×1 is the normalization term [18], and σ 
is the element-wise ELU + 1 activation function [19]. Unlike previous work that used 
learned gating scalar [5], we pass Aglobal through a linear layer before feeding it back 
into the decoder for injecting global attention and mitigating potential issues arising 
from context turbulence [3]. Then, Aglobal and Alocal are added together and merged 
from the dhead to dmodel . Finally, we passed the above result through another linear layer 
to complete the current decoder layer. 

O = (
AglobalWA + Alocal

)
WO (7) 

where O ∈ RN ×dmodel . WA ∈ RH×dhead×dhead and WO ∈ Rdmodel×dmodel are trainable 
matrices. 

3.4 Memory Update 

After the current segment calculation is complete, the new Corresponding Memory will 
be updated to the Token Memory for the token. Our approach is similar to that of previous 
work [5], as this work has demonstrated the superiority of this method. However, there 
are two differences. First, we utilize the position embeddings for the Q and K vectors 
that are used to calculate the Token Memory. Second, we directly use the current Q, K , 
and V of each token in the multi-head attention mechanism of each layer to compute the 
updated memory: 

Ms ← M C s−1 + σ(Q)(σ
(
KT

)
V ) (8) 

According to previous experience [18], the norm method is important to training 
stability, so we let the model sum K along the second dimension to compute and update 
the normalization term for the calculation of memory: 

zs ← zs−1 +
∑N 

n=1 
σ (Kn) (9) 

where zs ∈ RH ×1×dhead . Then, we transpose the last two dimensions of the normalization 
term zs ∈ RH×dhead×1. 

3.5 Segment Memory 

This part uses a method similar to that idea in previous work [7], which uses Segment 
Memory to summarize the previous segment’s information and to maintain contextual 
consistency. The Segment Memory comes from the hidden state hN ∈ R1×dmodel of the 
final token of the final decoder layer output, which contains all the token information
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of the segment due to the structure of the decoder. Splitting the dmodel dimension of the 
hidden state produces the Segment Memory. 

M S s ← hN s−1 (10) 

where M S s ∈ RH ×1×dhead . It is also updated to the memory pool after the current segment 
ends. 

3.6 Loss Function 

Our model converts all tasks to language modeling tasks. We used Teacher Forcing. 
Given X = (x1, x2, . . .  xN ), the model predicts the next token based on the input tokens, 
so the loss function is: 

loss = −
∑N 

n=1 
P(xn)logP

(
x′
n|x1, x2, . . . ,  xn−1

)
(11) 

where x′
n is the output of the model, and P(x) represents the probability distribution of 

x in the vocabulary as calculated by a linear layer. 

4 Experiment 

We modified a large language model using the Sect. 3 method to address long context 
language modeling tasks. We trained and evaluated the model using long context datasets 
and compared the model with other models. 

4.1 Datasets 

We selected texts having an appropriate length from the following datasets for training 
and evaluation. 

• PG-19 [8] is a language modeling benchmark created by DeepMind. It consists of a 
collection of books extracted from the Project Gutenberg library, specifically those 
published before 1919. Commonly used for model evaluation with long contexts. We 
used its train split with 13.7K texts for the training, and we used its test split with 100 
texts for evaluation. 

• C4 [9] dataset is a massive, cleaned version of the Common Crawl web crawl corpus. 
It was used to train the T5 text-to-text Transformer models. We use its train split with 
16K texts for training and test split with 3.6K texts for evaluation on the en subset. 

• BookSum [10] is a dataset that was designed for long-form narrative summarization. It 
aims to address the limitations of most current text summarization datasets. BookSum 
contains source texts from the literary domain, such as novels, plays, and stories, as 
well as highly abstract human-written summaries. We used its train split with 330 
texts for training and its test split with 25 texts for evaluation.
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4.2 Implementation Details 

We trained our model based on Sheared-LLaMA-1.3B [20]. This model was pruned 
and further pre-trained from Llama2 [21] by removing layers, heads, and intermediate 
hidden dimensions. Data from different domains in the RedPajama [22] dataset were 
dynamically loaded to continue pre-training the model. This model had 16 attention 
heads of dimension 128, 24 hidden layers, and 2048 model dimensions. The maximum 
input length of the model was 4096, so we also set the segment length to 4096. 

We set the input length to (32K, 512K, 1M), which was (8, 128, 256) times the 
segment length. We tested the learning rates (1e-2, 1e-3, 1e-4) using a decay cosine 
scheduler and gradient accumulation steps (8, 128, 256) with a batch size of one. We 
used cross-entropy to calculate the loss and Adafactor [23] to optimize the model. The 
average full parameter fine-tuning time was 12 h with Pytorch on three NVIDIA RTX 
A6000 Ada Generation. Algorithm 1 is our training algorithm. 

4.3 Language Modeling Task 

Our model was trained for about 23K steps on PG-19 [8] and C4-en [9]. We used 
perplexity to evaluate the model. If a model is confident in predicting many words 
(high probability), its perplexity will be low; conversely, if a model is unsure about the 
prediction of a word (low probability and wide distribution), its perplexity will be high. 
Due to the insufficient length of C4-en, we were not able to train and test the results of 
512K and 1M input lengths. We found that the model performed best when the gradient 
accumulation steps were 8 and the learning rate was 1e-3. 

Table 1 shows the evaluation results for our model compared with other segment-
level language models. On PG-19 [8], our model achieves state-of-the-art results for all 
input lengths. This demonstrates the effectiveness of the Token Memory in handling 
long context language modeling tasks. On C4-en [9], we tested only the results of 32K 
input length due to insufficient data length, and our model again achieved state-of-the-art 
results. 

4.4 Summarization Task 

We concatenated the chapters and summaries in BookSum [10] into a new text by 
using the keyword “Summarization:”. In addition, due to data length limitations, we 
selected new texts having lengths between 32K and 64K, and we then truncated them 
to 32K for the training and evaluation. Our model was trained for 330 steps. We use 
ROUGE [24] to evaluate the models. The ROUGE evaluation mainly measured the 
model’s performance by comparing the similarity between the generated text and the 
reference text. Common ROUGE indicators include ROUGE-N, which calculates the 
number of identical n-grams. ROUGE-L evaluates the similarity based on the longest 
common subsequence. Our model performed best at a learning rate of 1e-3 with 128 
gradient accumulation steps.
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Table 1. Language modeling results comparison of our model and others on PG-19 and C4-en. 
All the models used the optimal settings. Some data come from [5]. 

Model Input length PG-19 C4-en 

Transformer-XL [11] - 11.88 -

Memorizing Transformers [6] - 11.37 13.64 

RMT [13] 8k 13.27 -

Infini-Transformer [5] 32k 9.65 -

Ours 32k 9.35 4.89 

512k 8.83 -

1m 8.04 -

Table 2 shows a comparison with other segment-level language models. Even when 
compared with a model that is designed specifically for summarization [25, 26] with a 
long context extension [0], our model takes the lead on some indicators. However, when 
it is compared with the latest segment-level Memory Transformer Infini-Transformer 
[5], it only takes the lead on ROUGE-1. This suggests that although the model is good 
at finer details, it may require further optimization to improve its ability to capture the 
overall gist of the text and the more complex relationships within the text. 

4.5 Ablation Study 

Table 3 shows the performance of the model on PG-19 using different context lengths. 
As the input length increases, the model performs better, which shows that as the tokens 
that have appeared gradually fill the memory, the performance of the model improves. 
In addition, although the input length increases by 16-fold and 32-fold for 32K input 
length, the increase of memory is only 2.8-fold and 3.1-fold. The above result indicates
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Table 2. Summarization result comparison of our and others on BookSum. Some data come from 
[5]. 

Model ROUGE-1 ROUGE-2 ROUGE-L 

BART + Unlimiformer[25] 36.8 8.3 15.7 

PRIMERA + Unlimiformer[26] 37.9 8.2 16.3 

Infini-Transformer[5] 40.0 8.8 17.9 

Ours 43.2 7.6 16.7 

that many words are repeated in the dataset, which enhances the advantage of our model 
as the input length increases. 

Table 3. Language modeling results of different context lengths on PG-19. 

Context length Memory pool Token Perplexity 

32k 3857 9.35 

512k 10837 8.83 

1M 12135 8.04 

In the summarization task, the result in Table 4 shows that removing Token Memory 
and Segment Memory decreased almost all the performance. This indicates that Token 
Memory and Segment Memory play a crucial role in improving the detail of the generated 
summaries and maintaining contextual consistency. When disabling the Token Memory, 
the increase of ROUGE-2 scores may suggest that our model focuses too much on single 
token information and loses the overall information of the sentence. 

Table 4. Summarization results of our model including w/o memory on BookSum. 

Model ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum 

Original 43.29 7.64 16.74 41.57 

w/o Token Memory 39.65 7.66 15.91 37.97 

w/o Segment Memory 36.26 6.89 16.33 34.61 

5 Conclusion 

In this study, we introduced an innovative infinite context Transformer model based on 
Token Memory to overcome the limitations of traditional Transformer models in process-
ing long texts. Our approach effectively combined local and global attention mechanisms,
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which then enabled the model to process texts of unlimited length while maintaining 
high performance. Through experiments on the PG-19, C4-en, and BookSum datasets, 
our model demonstrated state-of-the-art performance and excelled particularly on tasks 
that involved long contexts of up to 1M tokens. 

Our model’s ability to retain and update memory for each token ensured that no 
information was discarded, thereby improving the accuracy of long context language 
modeling. This advancement introduces new possibilities for applications that require 
extensive contextual understanding, such as document summarization and long-form 
content generation. 

Our future work will focus on further optimizing the model’s memory management 
and exploring its application in more diverse NLP tasks. 
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