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ABSTRACT

Availability of large amounts of raw unlabeled data has

sparked the recent surge in semi-supervised learning research.

In most works, however, it is assumed that labeled and unla-

beled data come from the same distribution. This restriction

is removed in the self-taught learning approach where un-

labeled data can be different, but nevertheless have similar

structure. First, a representation is learned from the unlabeled

data via sparse coding and then it is applied to the labeled

data used for classification. In this work, we implemented

this method for the music genre classification task using two

different databases: one as unlabeled data pool and the other

for supervised classifier training. Music pieces come from 10

and 6 genres for each database respectively, while only one

genre is common for both of them. Results from wide variety

of experimental settings show that the self-taught learning

method improves the classification rate when the amount of

labeled data is small and, more interestingly, that consistent

improvement can be achieved for a wide range of unlabeled

data sizes.

Index Terms— Music genre classification, Self-taught

learning, Sparse coding, Transfer learning.

1. INTRODUCTION

A tremendous amount of music-related data has recently be-

come available either locally or remotely over networks, and

technology for searching this content and retrieving music-

related information efficiently is demanded. This consists

of several elemental tasks such as genre classification, artist

identification, music mood classification, cover song identifi-

cation, fundamental frequency estimation, and melody extrac-

tion. Essential for each task is the feature extraction as well

as the model or classifier selection. Audio signals are conven-

tionally analyzed frame-by-frame using Fourier or Wavelet

transform, and coded as spectral feature vectors or chroma

features extracted for several tens or hundreds of milliseconds

[1, 2, 3]. However, it is an open question how precisely mu-

sic audio should be coded depending on the task kind and the

succeeding classifier. Recently proposed compressive sam-

pling / sparse coding approaches to feature generation have

also been applied in music processing with promising results

[4, 5, 6].

For the classification, classical supervised pattern recog-

nition approaches require large amount of labeled data which

is difficult and expensive to obtain. On the other hand, in

the real world, a massive amount of musical data is created

day by day and various musical databases are newly com-

posed. There may be no labels for some databases and mu-

sical genres may be very specific. Thus, recent music in-

formation retrieval research has been increasingly adopting

semi-supervised learning methods where unlabeled data are

utilized to help the classification task. Common assumption

in this case is that both labeled and unlabeled data come from

the same distribution [7] which, however, may not be easily

achieved during the data collection. This restriction is alle-

viated in the transfer learning framework [8] which allows

the domains, tasks, and distributions used in training and test-

ing to be different. Utilizing this framework and the semi-

supervised learning ideas, the recently proposed self-taught

learning approach [9] seems be a good fit for the music genre

classification task. First, an unsupervised learning algorithm

finds a sparse and high-level representation of the inputs given

only unlabeled data. Then, using this representation the la-

beled data which are assumed to be few are transformed into

new feature vectors. Finally, classical supervised classifier

is trained using the new features. It can be considered that

by utilizing the sparse coding, sparse and key features for all

classes are possibly captured.

In order to manage various types of new musical databases,

we utilize the self-taught learning algorithm based on sparse

coding and investigate a genre classification method for new

musical database using an existing one which has a well-

balanced design for all genres.

2. THE SELF-TAUGHT LEARNING ALGORITHM

A classification task is considered with small labeled training

data set X l = {xl
i}, i = 1, . . . ,M drawn i.i.d. from an un-
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known distribution D. Each xl
i ∈ Rn is an input feature vec-

tor which is assigned a class label yi ∈ Y = {1, . . . , C}. In

addition, a larger unlabeled training data set X u = {xu
i }, i =

1, . . . ,K is available, which is assumed only to be of the

“same type” as X l and may not be associated with the class

labels Y and distribution D. Obviously, in order X u to help

the classification of the labeled data, it should not be totally

different or unrelated.

The main idea of the self-taught learning approach is to

use the unlabeled data to learn in an unsupervised way slightly

higher level representation of the data [9]. In other words, to

discover some hidden structures in the data which can be con-

sidered as basic building blocks. For example, if the data rep-

resent images, the algorithm would find simple elements such

as edges, curves, etc., so that the image can be represented

in terms of these more abstract, higher level features. Once

learned, this representation is applied to the labeled data X l

resulting in a new set of features which lighten the supervised

learning task.

To learn the higher level representation, a sparse coding

method is used. Given the unlabeled data set X u, the follow-

ing optimization procedure is defined:

min
a,b

∑

i

‖xu
i −

∑

j

aijbj‖22 + β‖ai‖1 (1)

subject to ‖bj‖2 ≤ 1, j = 1, . . . , s

where basis vectors bj ∈ Rn, j = 1, . . . , s and activations

ai ∈ Rs, i = 1, . . . ,M are subject to optimization. The

first term of the above objective tries to represent each data

vector as a linear combination of the bases bj with weights

given by the corresponding activations. The second term, on

the other hand, tries to reduce the L1 norm of the activation

vectors, thus making them sparse. The optimization problem

is convex only in terms of basis vectors or activations alone

and these sub-problems are solved iteratively by alternatingly

holing ai or bj fixed. An efficient algorithm for solving this

sparse coding problem is reported in [10].

3. FEATURE GENERATION USING UNLABELED
DATA

After learning the basis vectors bj from the unlabeled training

data X u as described in the previous section, we can use them

to obtain activations for the labeled data X l. This procedure

can be viewed as a non-linear mapping or transformation of

vectors xl
i ∈ Rn into vectors a∗i ∈ Rs, which will be further

used as features in the supervised classification task. The new

features are computed by solving the following optimization

problem:

a∗i = argmin
a

‖xl
i −

∑

j

ajbj‖22 + β‖a‖1 (2)

This is a convex L1-norm regularized least squares task which

is the same as the optimization problem (1) with fixed bases bj

and can be solved in the same way. Vectors a∗i are sparse and

approximate labeled data xl
i as a linear combination of the

bases which, however, are learned using the unlabeled data

xu
i . Considering that basis vectors represent information dis-

covered automatically from different data, and that activation

vectors a∗i in fact use this information to encode the labeled

data, the self-taught learning approach can be viewed as an

instance of knowledge transfer between tasks [8].

Finally, using labels yi and the new feature vectors a∗i we

can train standard supervised classification models, such as

SVMs. During testing, for each test vector an activation vec-

tor is computed using Eq.(2) which is then used as input to

the trained classifier. Following three steps summarize the

self-taught learning algorithm:

1. Compute basis vectors bj using unlabeled data xu
i by

solving the optimization problem (1).

2. Fix the basis vectors and obtain activation vectors a∗i
for each labeled data vector xl

i using Eq.(2).

3. Use activation vectors a∗i as new labeled features to

train standard supervised classifier. Transform each test

vector into an activation vector (using Eq.(2) again) and

apply the classifier to obtain its label.

4. EXPERIMENTS

4.1. Databases

As unlabeled data we used the GTZAN collection of musical

pieces [1]. It consists of 1000 30-second audio clips, each be-

longing to one of the following ten genres: Classical, Country,

Disco, Hip-Hop, Jazz, Rock, Blues, Reggae, Pop and Metal.

There are 100 clips per genre and all of them have been down-

sampled to 22050 Hz. The other database which we used as

labeled data is the corpus used in the ISMIR 2004 audio con-

test [11]. It contains of 729 whole tracks for training, but since

the number of tracks per genre is non-uniform, the original

nine genres are usually mapped in the following six classes:

Classical, Electronic, Jazz-Blues, Metal-Punk, Rock-Pop and

World. Another 729 tracks are used for testing. Note that the

only common class between the two databases is the “Classi-

cal” genre.

Audio data from both databases are divided into 5 sec.

pieces which were further randomly selected in order to make

several training sets with different amount of data, keeping the

same number of such pieces per genre. Table 1 summarizes

the contents of the data sets we used in our experiments. For

example, set GT-50 has 50 randomly selected 5 sec. pieces

per genre, 500 pieces in total or 0.69 hours of music. All sets

are constructed such that each larger set contains all the pieces

from the smaller set. The test set consists of 250 pieces per

genre randomly selected from the ISMIR 2004 test tracks.
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Table 1. Data sets used in the experiments.

GTZAN database ISMIR 2004 database

Set pieces hours Set pieces hours

GT-50 500 0.69 IS-20 120 0.17

GT-100 1000 1.39 IS-50 300 0.42

GT-250 2500 3.47 IS-100 600 0.83

GT-500 5000 6.95 IS-250 1500 2.08

4.2. Audio signal preprocessing

When it comes to feature extraction for music information

processing, in contrast to the case of speech where the MFCC

is dominant, there exists wide variety of approaches - from

carefully crafted multiple music specific tonal, chroma, etc.

features to single and simple “don’t care about the content”

spectrum. In our experiments, we used spectral representation

tailored for music signals, such as Constant-Q transformed

(CQT) FFT spectrum. The main property of this transform

is the log-like frequency scale where the consecutive musical

notes are linearly spaced [12].

The CQT transform is applied to FFT spectrum vectors

computed from 23.2ms (512 samples) frames with 50% over-

lap in a way that there are 12 Constant-Q filters per octave

resulting in a filter-bank of 89 filters which covers the whole

bandwidth of 11025 Hz. The filter-bank outputs of 20 consec-

utive frames are further stacked into a 1780 (89x20) dimen-

sional super-vector which is used in the experiments. This

is the same as to have a 20 frame time-frequency spectrum

image. There is a overlap of 10 frames between such two

consecutive spectrum images. This way, each 5 sec. music

piece is represented by 41 spectrum images or super-vectors.

4.3. Bases learning

For each dataset given in Table 1 we learned several basis

vector sets or dictionaries as they are often called in the lit-

erature. The sets sizes are: 100, 200, 300 and 500. Contrary

to the conventional sparse coding scheme, where the dictio-

nary size is much bigger than the vectors dimension (for over-

complete representation), in our case we in fact do dimension

reduction. This is motivated by the fact that our super-vectors

are highly redundant and that basis vectors actually represent

higher level spectral image features, not just arbitrary projec-

tion directions.

Before bases learning, all data are pooled and randomly

shuffled. Then, 100 iterations of the learning algorithm (see

Section 2) are performed. Figure 1 shows the first 68 of 200

basis vectors learned from GT-100 as 89x20 pixel spectrum

images. Specific spectrum shapes and transitions are clearly

captured by these bases.

Fig. 1. Example of learned basis vectors shown as spectrum

images.

4.4. Supervised classification

After all labeled training data, sets IS-20, IS-50, IS-100 and

IS-250, have been transformed into activation vectors for each

dictionary learned from each unlabeled data set, we obtained

in total 64 (4 labeled datasets x 4 dictionary sizes x 4 un-

labeled datasets) labeled training data sets. Then, using the

LIBSVM tool, we learned 64 SVM classifiers each consisting

of 6 SVMs trained in one-versus-all mode. The SVM input

vectors were linearly scaled to fit the [0,1] range. This signif-

icantly reduces their sparsity, but it is tolerable since our goal

is not the sparse representation itself. Linear kernel was used

as distance measure and the SVMs were trained to produce

probabilistic outputs.

During testing, each 5 sec. musical piece represented by

41 feature (activation) vectors is considered as a sample for

classification. Outputs of all genre specific SVMs are aggre-

gated (summed in the log domain) and the label of the maxi-

mum output is taken as the classification result.

4.5. Results

In order to assess the effect of the self-taught learning, we

need a performance comparison with a system build under

the same conditions but without unlabeled data. We will re-

fer to this system as a baseline. In this case, the basis vectors

are learned using labeled training data X l instead of the unla-

beled X u. Then, the activations are obtained in the same way

as if the bases were learned from the unlabeled data. Table

2 shows the baseline system performance for several dictio-

nary sizes and different amounts of training data. As can be

expected, the more training data are available the better is the

classification accuracy. It also increases with the size of the

Table 2. Baseline classification accuracy. Bases are learned

from the labeled training data.

Training Dictionary size

Set 100 200 300 500

IS-20 52.5% 52.4% 51.5% 54.1%

IS-50 56.3% 58.6% 58.9% 60.9%

IS-100 57.0% 58.9% 60.1% 62.3%

IS-250 57.4% 59.9% 61.7% 64.0%
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Table 3. Absolute improvement wrt baseline when bases are

learned from the unlabeled GT-50 dataset.
Training Dictionary size

Set 100 200 300 500

IS-20 -1.67% 0.66% 4.60% 2.54%

IS-50 -1.06% -1.00% 1.83% -0.86%

IS-100 -2.00% -1.67% 0.34% -1.40%

IS-250 -1.40% -0.60% -0.20% -0.33%

Table 4. Absolute improvement wrt baseline when bases are

learned from the unlabeled GT-100 dataset.
Training Dictionary size

Set 100 200 300 500

IS-20 -0.67% 0.40% 3.40% 1.94%

IS-50 -2.06% -0.06% 1.76% 2.74%

IS-100 -2.80% -0.14% -0.60% 1.14%

IS-250 -0.33% 0.00% -0.27% 0.60%

dictionary and this seems to be independent of the amount of

training data except for the case with very few data: IS-20.

Tables 3-6 show the absolute difference of the classifica-

tion accuracy between the self-taught learning based system

and the baseline when basis vectors are learned with different

amounts of unlabeled data: GT-50 to GT-250 respectively.

The results clearly show that for the smallest labeled train-

ing set, IS-20, consistent improvement is achieved with dic-

tionary sizes 300 and 500 no matter how much unlabeled data

are used for bases learning. As the amount of labeled training

data increases, the effect of the self-taught learning gradually

decreases, which is an expected result.

5. CONCLUSION

In this study, we investigated the effect of the self-taught

learning algorithm when applied to the music genre classi-

fication task. Results of the experiments conducted under

various conditions confirmed that when small size of labeled

training is available, higher level features extracted from

a bigger unlabeled dataset in an unsupervised manner via

sparse coding can indeed help the supervised classification

task.
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