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Abstract
This paper presents a method for improving acoustic model pre-
cision by incorporating wide phonetic context units in speech
recognition. The wide phonetic context model is constructed
from several narrower context-dependent models based on the
Bayesian framework. Such a composition is performed in order
to avoid the crucial problem of a limited availability of train-
ing data and to reduce the model complexity. To enhance the
model reliability due to unseen contexts and limited training
data, flooring and deleted interpolation techniques are used. Ex-
perimental results show that this method gives improvement of
the word accuracy with respect to the standard triphone model.

1. Introduction
Coarticulation effect is a term where phonemes can have very
different waveforms when produced in the context of other
phonemes [1]. Efficient modeling of the coarticulation effect is
one important problem that needs to be addressed for realistic
application of an automatic speech recognition (ASR) system.
A standard solution to the coarticulation problem in speech is to
extend the analysis units to include context [2]. A triphone unit
which includes the immediate preceding and following phonetic
contexts is most widely used in the current ASR systems.

Although such triphones have proved to be an efficient
model, a wider phonetic context seems to be appropriate for
capturing coarticulation effects more precisely. By incorporat-
ing something wider than the triphone context, such as a pen-
taphone (or more), more than just one preceding and one fol-
lowing phonetic context dependencies are taken into account,
so the performance of such an acoustic model is expected to
improve. This, however, faces the general problem of un-robust
parameter estimation due to the limited speech training data and
increased numbers of unseen context. As a consequence, the
complexity of the model, as well as the number of parameters
that need to be estimated may increase dramatically.

Some researcher have tried to use wider-than-triphone
units, such as syllables or multi-phone units that give better
overall recognition rates [3, 4], but difficulties arise in using
them properly with conventional decoding. Another study pro-
posed compiling wide context dependent models into a network
of Weighted Finite State Transducers (WFT) [5], so that the de-
coding process is completely decoupled from dealing with the
wide context. However, when higher order models are used, dif-
ficulties lie in the compilation it self. The work in [6] then tried
to simplify the compilation method. For large scale systems, a
simple procedure is to apply wide context models in rescoring
pass.

The approach we adopted in this paper is to model a wider-
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triphone context by approximating it using several less
xt-dependent models. This approach is an extension of
ethod proposed in [7, 8] where a triphone model is con-
ed from monophone and biphone models. Such a com-
on is performed in order to alleviate the crucial issue of
d training data. The approach allows us to model wide
tic context from less context-dependent models, without

ng the whole large model from scratch. In this work, we
e standard decoding system with no modification to gen-
a N-best hypotheses list. Then, we apply the proposed
ach to acoustic rescoring. It is a process where decoding
se knowledge sources of progressively increasing com-
y to decrease the size of the search space [9]. First it will
e conventional hidden Markov model (HMM) to find the
t sequences word based on the Viterbi algorithm, then it
escore them using a wider context model. To enhance the
l reliability due to unseen contexts and limited training
flooring and deleted interpolation techniques are used.

the next section, we briefly describe the Bayesian frame-
for constructing a wide phonetic context. The approaches
hance the model reliability are described in Section 3
etail explanation of deleted interpolation technique is de-
d in Section 4. The acoustic rescoring mechanism is de-
d in Section 5. Details of experiments are presented in
n 6, including results and discussion. A conclusion is
in Section 7.

2. Bayesian Wide Phonetic Context
wing to the theoretical framework of [7, 8], a phone-level
vation is denoted by X and a context-dependent triphone
l Q is denoted by /a−, a, a+/, with a being some phone
− and a+ being its preceding and following phonemes,
ctively. The problem of triphonic acoustic modeling can
pressed as the estimation of the probability density func-
pdf) p(X|Q) = p(X|a−, a, a+) of X generated from
a, a+/. Using the Bayesian principle

X|a−, a, a+) =
p(X, a−, a, a+)

p(a−, a, a+)

=
p(a−, a+|a, X)p(a, X)

p(a−, a+|a)p(a)

=
p(a−|a, X)p(a+|a, X)p(a, X)

p(a−|a)p(a+|a)p(a)
.(1)

ssumed that a− and a+ are independent given a and X , so
(a−, a+|a) = p(a−|a)p(a+|a) and p(a−, a+|a, X) =
|a, X)p(a+|a, X). Using the Bayes rule, Equation (1) can



be easily transformed to:

p(X|a−, a, a+) =
p(X|a−, a)p(X|a, a+)

p(X|a)
(2)

This equation indicates a new way of representing a tri-
phone model by models of less context dependency, i.e.,
p(X|a−, a), p(X|a, a+) and p(X|a), which correspond to
the pdfs of the observation X given the preceding-context,
following-context and context-independent units, respectively.
Since the derivation of Equation (2) is closely related to
Bayesian statistics, it is called the Bayesian triphone model.

Using similar consideration, we extend this framework
into a wider context, such as a pentaphone model. It in-
cludes not only the immediate preceding and following pho-
netic contexts, but also the second preceding and following pho-
netic context. The pdf of X generated from the pentaphone
/a−−, a−, a, a+, a++/ becomes:

p(X | a−−, a−, a, a+, a++)

=
p(X, a−−, a−, a, a+, a++)

p(a−−, a−, a, a+, a++)

=
p(X|a−−, a−, a)p(X|a, a+, a++)

p(X|a)
(3)

The result indicates that a pentaphone model can be de-
composed into models of less context dependency, i.e.,
p(X|a−−, a−, a), p(X|a, a+, a++) and p(X|a), which corre-
spond to the pdfs of the observation X given the preceding-
triphone-context, following-triphone-context and center unit,
respectively. In this case the center unit is still a context-
independent (monophone) unit. In order to have a triphone unit
as a center base, the overlapping between preceding-context and
following-context should perform a triphone context (see Fig-
ure 1). The pdf of X generated from /a−−, a−, a, a+, a++/
becomes:

p(X | a−−, a−, a, a+, a++)

=
p(X, a−−, a−, a, a+, a++)

p(a−−, a−, a, a+, a++)

=
p(X|a−−, a−, a, a+)p(X|a−, a, a+, a++)

p(X|a−, a, a+)
(4)

In this case a pentaphone model is composed by the preceding-
tetraphone-context unit, following-tetraphone-context unit and
center-triphone-context unit.

If we treat the triphone unit /a−, a, a+/ as one base unit A,
and the second preceding/following contexts is the immediate
context from our base unit A (A− and A+), then:

p(X | a−−, a−, a, a+, a++)

=
p(X|a−−, a−, a, a+)p(X|a−, a, a+, a++)

p(X|a−, a, a+)

=
p(X|a−−, [a−, a, a+])p(X|[a−, a, a+], a++)

p(X|[a−, a, a+])

=
p(X|A−, A)p(X|A, A+)

p(X|A)

= p(X|A−, A, A+) (5)

The same result will happen if we treat the monophone unit /a/
as one base unit A, the preceding context unit /a−−, a−/ and
the following context unit /a+, a++/ as A− and A+, respec-
tively. Now, we can see the basic formula in a more general
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e 1: Bayesian pentaphone model composition. (a)
posed of the preceding/following triphone-context unit

enter-monophone unit and (b) is composed of the pre-
g/following tetraphone-context unit and center-triphone-
xt unit.

where A can be any context unit of the acoustic modeling,
e A− and the A+ are its one or more preceding and fol-

g contexts, respectively. Hereafter, we will use this term
eneral representation.

3. Enhancing Model Reliability
g the rescoring process, there might be some phonetic
xts which have to be estimated but have not been seen dur-
e training process. For such contexts, during recognition
ayesian wide context model is not able to produce any
t probability. To handle this problem, in such cases we
y assign a small numeric value as an output probability.
the Bayesian wide context model rescoring involves the

t probability from preceding, following and center model,
ooring mechanism is applied for each model.

the amount of training data is not large enough, the
eter estimation of the Bayesian wide context model

A−, A, A+) may become unreliable, and so will be the
output. In this study, to improve the model reliability we
ree different approaches:

No decision:
Always accept the output value from Bayesian rescoring
p(X|Q) = p(X|A−, A, A+) as the final output.

Hard decision:
Accept p(X|A−, A, A+) when it is bigger than p(X|A)
which is the output from the base model. Otherwise we
fall back to p(X|A).

Soft decision:
Use deleted interpolation described in the next section.

4. Deleted Interpolation
ed interpolation (DI) is an efficient technique which allows
fall back to the more reliable model when the supposedly
precise model is, in fact, unreliable [10]. The concept
es interpolating two (or more) separately trained models,
f which is more reliably trained than the other. So the
olation model, p(X|Q), is obtained as

p(X|Q) = λp(X|A−, A, A+) + (1 − λ)p(X|A) (6)

λ represents the weight of the precise model, and (1−λ)
sents the weight of the reduced, but more reliable, model.



If the amount of training data is large enough, p(X|A−, A, A+)
becomes more reliable and we expect λ to tend to 1.0. But if it is
not, we expect λ to tend to 0.0 so as to fall back to the more reli-
able model p(X|A). The optimal value of interpolation weights
are estimated using development set other than training or using
the cross-validation method [10]. In this method, the training
data is divided into M parts, and models are trained from each
combination of M − 1 parts, with the deleted part serving as
unseen data to estimate the interpolation weights. These M sets
of interpolation weights are then averaged to obtain the final
weights. In this study, in order to reduce the training time, we
estimated the interpolation weights using a development set.

5. Acoustic Rescoring Mechanism
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Figure 2: Rescoring procedure.

The block diagram of the rescoring procedure is shown
in Figure 2. On each utterance in the test data, a N-best
recognition (on word level) is performed using a conventional
HMM model and a standard two-pass decoding system based
on Viterbi algorithm without modification. The system will
result N-best hypothesis list including the acoustic score, the
language modeling (LM) score and the Viterbi segmentation of
each phoneme. Then for every phoneme segment in each hy-
pothesis, we rescore the acoustic precision using wider context
model as shown in Figure 3. These updated scores is combined
with LM score for this hypothesis. Then the hypothesis achiev-
ing the highest total utterance score among the N-best is se-
lected as the new recognition output.
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Figure 3: N-best rescoring mechanism.

6.
Our b
than 6
Journ
quenc
dow,
ramet
powe
the in
net is
rithm
rion i
conte
MDL
each
/A, A

T
tested
which
test s
differ
lect 1
10 Fe
param
200 u
Fema

F
basel
tem.
mean
unit (
mono
5. A
phone
conte
spect
decis
recog
mariz

F

In
obtain
that B
to 5.6
just r
the tr
resco
Experimental Results and Discussion
aseline triphone HMM acoustic model is trained on more
0 hours of native English speech data from the Wall Street
al (WSJ0 and WSJ1) speech corpus [11]. A sampling fre-
y of 16 kHz, a frame length of a 20-ms Hamming win-
a frame shift of 10 ms, and 25 dimensional feature pa-
ers consisting of 12-order MFCC, Δ MFCC and Δ log
r are used as feature parameters. Three states were used as
itial model for each phoneme. Then, a state level HM-
obtained using a successive state splitting (SSS) algo-
based on the minimum description length (MDL) crite-
n order to gain the optimal structure in which triphone
xts are shared and tied at the state level. Details about
-SSS can be found in [12]. Three acoustic models, one for
preceding-context unit /A−, A/, following-context unit
+/ and center-context unit /A/, are trained separately.
he performance of this Bayesian rescoring approach was
on the ATR Basic Travel Expression Corpus (BTEC)[13],
is quite different than the training corpus. The full BTEC

et1 consists of 4,080 read speech utterances spoken by 40
ent speakers (20 Males, 20 Females). In this study, we se-
,000 utterances spoken by 20 different speakers (10 Males,
males) used as a development set to find the optimum λ
eter of deleted interpolation. And we randomly selected
tterances spoken by 40 different speakers (20 Males, 20
les) used as a test set.
irst, we performed Bayesian triphone rescoring where the
ine system was a context independent monophone sys-
The Bayesian acoustic rescoring, named rescore-C1L2R2
ing that it composed from left/preceding-biphone-context
L2), right/following-biphone-context unit (R2) and center-
phone-context unit (C1), was done as described in Section
s a comparison, we also rescored using conventional bi-

and triphone model, named rescore-C2 (center-biphone-
xt unit) and rescore-C3 (center-triphone-context unit), re-
ively. For each rescoring, we applied a no decision, hard
ion and soft decision mechanism (see Section 3). The best
nition results obtained by each rescoring method are sum-
ed in Figure 4.

igure 4: Recognition results of monophone rescoring.

this case, the best performance from each method is
ed by the hard decision mechanism. The result shows
ayesian rescore-C1L2R2 achieve an improvement of up
% relative to the baseline. Its performance is better than

escoring with biphone-context model (rescore-C2). Since
aining data is large enough to train the triphone model, the
re-C3 thus yields the best result among them.



Now we extend this framework into a wider context,
to perform Bayesian pentaphone rescoring where the base-
line system is a context-dependent triphone system. As de-
scribed in Section 2, we will have two types of Bayesian pen-
taphone rescoring, one that uses the left/preceding-triphone-
context (L3), the right/following-triphone-context (R3) and
the center-monophone-context unit (C1), named as rescore-
C1L3R3, and the other one that uses the left/preceding-
tetraphone-context (L4), the right/following-tetraphone-context
(R4) and the center-triphone-context unit (C3), named as
rescore-C3L4R4. As a comparison, we also rescore with a con-
ventional pentaphone model, named as rescore-C5, where we
trained a full pentaphone model from scratch. The best recogni-
tion results obtained by each rescoring method are summarized
in Figure 5.

Figure 5: Recognition results of triphone rescoring.

In this case, the best performance from each method is ob-
tained by the soft decision mechanism using deleted interpola-
tion. The average of the weight parameter is about 0.3. The
result shows that the Bayesian rescore-C1L3R3 and rescore-
C3L4R4 could also achieved improvement relative to the base-
line. The results of rescore-C5 are worse than applying the
Bayesian rescoring technique. Here, the improvement is not
as much as in monophone rescoring, due to the following rea-
sons. First, the coarticulation effect from the second preceding
and following contexts is less than the coarticulation effect from
the first preceding and following contexts. Second, the training
data are not enough to train the full pentaphone model. This
can be seen also from the weight factor of the deleted interpo-
lation, which can be interpreted as a confidence factor. Having
a weight factor of 0.3 means the contribution of the pentaphone
model is only about 30% of the total score.

7. Conclusion

We have demonstrated the possibility to improve acoustic
model performance by incorporating wide phonetic context
based on Bayesian framework. This method allows to con-
struct wider context models from several other models that have
narrower context. We also can use the standard decoding sys-
tem without any modification, since the new model is applied at
the post-processing stage by N-best rescoring. The recognition
results show that ASR system performance is improved after
Bayesian rescoring.
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