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ABSTRACT
Most current automatic speech recognition (ASR) systems
use statistical data-driven methods based on hidden Markov
models (HMMs). Although such approaches have proved to
be efficient choices, ASR systems often still perform much
worse than human listeners, especially in the presence of un-
expected acoustic variability. Only a limited level of success
can be achieved, by relying only on statistical models and
mostly ignoring the additional knowledge available. We pro-
pose a new method of integrating various kinds of additional
knowledge sources into an HMM-based statistical acoustic
model in this paper. We utilized the junction tree algorithm
to achieve efficient integration due to increased model com-
plexity. This is since it facilitates the decomposition of the
joint probability density function (PDF) into a linked set of
local conditional PDFs. This way, a simplified form of the
model could be constructed and reliably estimated using lim-
ited training data. We evaluated how efficient the proposed
method was on an LVCSR task using two different types of
accented English speech data. The experimental results re-
vealed that our method improved word accuracy with respect
to the standard HMM.

1. INTRODUCTION

Numerous researchers have worked in the area of ASR for
about the past four decades. The promise is to develop an in-
telligent machine that can automatically recognize naturally
spoken words uttered by humans. However, extracting the
underlying linguistic message from a complex acoustic sig-
nal is not an easy task, due to many sources of variability that
are contained in the signal [1].

Several approaches have been developed to address this
problem. The approaches to ASR can generally be classi-
fied into two main types: ”knowledge-based” and ”corpus-
based”. The former is mainly based on human ability to
interpret spectrograms or other visual representations of the
speech signal by knowledge-based rules [2, 3, 4]. However,
there are underlying problems in the fact that it is difficult
to envisage all possible ways in which these rules are in-
terdependent. Consequently, some rules inevitably compete
with others that explain the same phenomenon while still
others are in direct contradiction [5]. The latter approach,
in contrast, is usually based on modeling the speech sig-
nal using well-defined statistical algorithms that can auto-
matically extract knowledge from the data. This approach
has achieved encouraging results, and outperforms the pre-
vious knowledge-based approach. That is why most cur-
rent ASR systems usually use statistical data-driven methods
based on hidden Markov models (HMMs). Today’s state-of-

the-art ASR systems attain very good performance in con-
trolled conditions. Although such approaches have proved to
be efficient choices, ASR systems still often perform much
worse than human listeners, especially in the presence of un-
expected acoustic variability. Only a limited level of success
can be achieved, by relying only on statistical models and
mostly ignoring the additional knowledge available.

Various attempts to integrate more explicit knowledge-
based and statistical approaches have also been undertaken.
For example, [6] proposed that acoustic phonetic knowledge
sources be incorporated using neural networks. Other works
such as [7, 8] proposed that articulatory features, sub-band
correlation, or speaking styles be incorporated by utilizing
dynamic Bayesian networks (DBNs). However, there are of-
ten cases when developing such complex models and achiev-
ing optimal performance is not feasible. These occur espe-
cially when the resources, i.e. available training data and
memory space, are inadequate to properly train the model pa-
rameters. Input space resolution may be lost as a result due
to non-robust estimates and an increased number of unseen
patterns. Moreover, decoding using a large model may also
become cumbersome and sometimes even impossible. The
best we can do is to choose a simplified form of the model
that can be reliably estimated using the training data avail-
able.
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Figure 1: Integrating knowledge sources into statistical ASR
system

We propose a new method of integrating various kinds of
additional knowledge sources into an HMM-based statisti-
cal acoustic model in this paper, as outlined in Fig 1. We
utilized the junction tree algorithm to achieve efficient inte-
gration due to increased model complexity. This is since it
facilitates the decomposition of the joint probability density
function (PDF) into a linked set of local conditional PDFs.
This way, a simplified form of the model can be constructed
and reliably estimated using limited training data.

We will first explain how we applied the proposed frame-
work to the problem of integrating wide-phonetic knowl-
edge information, which often suffers from data sparsity and
memory constraints. We then attempted to integrate other
additional knowledge, such as accent and gender informa-
tion. The performance of the proposed model was experi-
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mentally demonstrated in an LVCSR task using accented En-
glish speech data.

The next section describes the general framework for
incorporating additional sources of knowledge and details
about junction tree decomposition are given in Section 3.
We then explain how this framework was applied to incor-
porate the additional knowledge sources of accent, gender,
and wide-phonetic information in Section 4. After that, we
clarify how the proposed model was used in an ASR system
in Section 5. Details on the experiments are then presented in
Section 6, including the results and discussion. Conclusions
are drawn in Section 7.

2. GENERAL FRAMEWORK FOR INTEGRATING
KNOWLEDGE SOURCES

Let us first define some notations related to statistical acous-
tic models. We denote an HMM phonetic model by λ and
Xs = Xt , ...,Xt+s is an observation data segment of length
s. Then, assume that we incorporate additional knowledge
sources K1,K2, ...,KN into the HMM model, λ , with obser-
vation data segment Xs.

Since the knowledge sources, K1,K2, ...,KN , might come
from different domains, it may be difficult to formulate
a probabilistic function of the model without learning the
causal dependencies between the sources. Here, we use
Bayesian network (BN) to described the causal relationship
between λ , Xs, and K1,K2, ...,KN , as that in Fig. 2, where
we assume that Xs is a continuous variable denoted by a cir-
cle node, λ , K1,K2, ...,KN are discrete variables denoted by
square nodes, and all K1,K2, ...,KN are conditionally inde-
pendent given λ .
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Figure 2: Describes the conditional relationship between λ ,
Xs, and additional knowledge sources K1,K2, ...,KN by using
BN.

The BN joint probability function can be factorized [9] as

P(Z1,Z2, ...,ZK) =
K

∏
k=1

P(Zk|Pa(Zk)), (1)

where Pa(Zk) denotes the parents of BN variables Zk, so that
we obtain

P(Xs,K1,K2, ...,KN ,λ )
= P(Xs|K1, ...,KN ,λ )P(K1|λ )...P(KN |λ )P(λ ), (2)

from Fig. 2. Our primary interest is to calculate probability,
P(Xs|K1,K2, ...,KN ,λ ), which predicts data that can be ex-
pected given current knowledge about the model. Depending
on the complexity of form P(Xs|K1,K2, ...,KN ,λ ), inference
computation can be easy or difficult. If the form of this PDF
is simply a single Gaussian distribution where all variables
can be observed, we can simply calculate the output proba-
bility directly as

p(xs|k1 j , ...,kN j ,λ )

= P(Xs = xs|K1 = k1 j , ...,KN = kN j ,λ )). (3)

However, in our case, the conditional PDF involves HMM
model λ and segment Xs of variable duration. Thus, the cal-
culation of global conditional probability P(Xs|K1, ...,KN ,λ )
might not be trivial, due to too many variables and/or com-
putational complexity. To solve this problem, BN directed
graphs need to be decomposed into clusters of variables, on
which the relevant computations can be performed. This can
be done with the junction tree algorithm [9], which is briefly
described in the next section.

3. JUNCTION TREE DECOMPOSITION

Let us explain a simple case where we only incorporate two
additional knowledge sources, K1 and K2. The causal rela-
tionship between Xs, λ , K1, and K2 is described by the BN in
Fig. 3(a). Here, λ , K1, and K2 are discrete variables denoted
by square nodes, and Xs is a continuous variable denoted by
a circle node.

The following graphical transformations are then applied
to obtain a junction tree [9, 10]:
1. Construct an undirected graph from the BN, by marrying

the parents (adding a link between any pair of variables
with a common child) and dropping the direction of the
links. The resulting graph is called a moral graph.

2. Selectively add arcs to the moral graph to form a trian-
gulated graph (adding links until all cycles consisting of
more than three links have a chord).

3. Form a subset containing Pa(A)
⋃

A, which is called a
cluster/clique, for all variables A with Pa(A) 6= 0 in the
triangulated graph.

4. Build a junction tree, starting with clusters as the nodes,
in which all links between two clusters are labeled by
using a separator of a non-empty intersection between
these clusters.
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Figure 3: (a) BN topology describing conditional relation-
ship between Xs, λ , K1, and K2. (b) Moral and triangulated
graph of Fig. 3a. (c) Equivalent BN topology (d) Moral and
triangulated graph of Fig. 3c (e) Junction tree of Fig. 3d.

Figure 3(b) outlines a moral and triangulated version of
the BN from Fig. 3(a). However, we can only obtain one
cluster with the full set of variables {Xs, λ , K1, and K2} from
this triangulated graph, and can not decompose any further.
Fortunately, since K1, and K2 are assumed to be independent,
by reversing some arrows we can obtain the equivalent graph
as in Fig. 3(c). Figure 3(d) outlines the moral and triangu-
lated version of this graph. We can then identify the clusters
and obtain the junction tree in Fig. 3(e), where the cluster
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sets are represented by oval nodes and the separator sets are
represented by square nodes.

The joint probability distribution is then defined as the
product of all cluster potentials, divided by the product of
the separator potentials [10] as

P(U) =
∏i φCi

∏ j φSi

, (4)

where U is the ”universe” representing all variables in the
graph, φCi is the cluster potential (the probability over cluster
Ci), and φSi is the separator potential (the probability over
separator Si). Thus, according to Fig. 3(e), joint probability
function P(Xs,K1,K2,λ ) becomes

P(Xs,K1,K2,λ ) =
P(Xs,K1,λ )P(Xs,K2,λ )

P(Xs,λ )
, (5)

where P(Xs,K1,λ ) and P(Xs,K2,λ ) are the cluster potentials
and P(Xs,λ ) is the separator potential.

Since our primary interest is to calculate P(Xs|K1,K2,λ ),
we can derive this using Eqs. (2) and (5), and finally obtain

P(Xs|K1,K2,λ ) =
P(Xs|K1,λ )P(Xs|K2,λ )

P(Xs|λ )
. (6)

This demonstrates a new way of representing probability
function P(Xs|K1,K2,λ ), as the composition of several local
probability functions P(Xs|K1,λ ),P(Xs|K2,λ ), correspond-
ing to the probability of the observation data, Xs, given spe-
cific additional knowledge K1 and K2. In this case, the term,
P(Xs|λ ), serves as a normalization constant.

Now, it should be much easier to define, estimate, and cal-
culate several simple P(Xs|Ki,λ ) than a single but complex
P(Xs|K1, ...,KN ,λ ).

4. INCORPORATING ACCENT, GENDER, AND
WIDE-PHONETIC CONTEXT INFORMATION

We first apply the approach described in the previous section
to the task of incorporating additional wide-phonetic context
knowledge, where K1 is preceding context CL and K2 is suc-
ceeding contexts CR. If we assume that λ is monophone unit
model /a/, and CL and CR are the preceding and following
context unit models /a−/ and /a+/, we can define the fol-
lowing equation

P(Xs|CL,CR,λ ) = P(Xs|[a−,a,a+]), (7)
and Eq. (6) becomes

P(Xs|[a−,a,a+]) =
P(Xs|[a−,a])P(Xs|[a,a+])

P(Xs|[a])
. (8)

This equation has the same factorization as the one proposed
in [11], where a triphone model is constructed from mono-
phone and biphone models based on Bayes rule and is known
as a Bayesian triphone. However, difficulties arise when dif-
ferent types of knowledge sources need to be incorporated.

In contrast, the current unified framework gives us a more
appropriate means of incorporating various kinds of knowl-
edge sources, not only knowledge about a wider phonetic
context, but also other additional knowledge variables, such
as gender (G) or accent (A) information.

One simple way of representing the composition of a pen-
taphone, /a−−,a−,a,a+,a++/ is by setting λ to represent a

monophone, /a/, and the second preceding and succeeding
contexts, CL and CR, to represent /a−−,a−/ and /a+,a++/,
respectively. Then

P(Xs|[a−−,a−,a,a+,a++])

=
P(Xs|[a−−,a−,a])P(Xs|[a,a+,a++])

P(Xs|[a])
, (9)

which indicates that pentaphone P(Xs|[a−−,a−,a,a+,a++])
can be composed from left/preceding-triphone-context unit
(L3), right/following-triphone-context unit (R3), and mono-
phone unit (C1). We call this composition C1L3R3.

Then, we can further extend C1L3R3 with gender (G) and
accent (A) information. We call this composition C1L3R3-
AG. The likelihood function is obtained using the same con-
sideration and is expressed as

P(Xs|[a−−,a−,a,a+,a++],A,G)

=
P(Xs|[a−−,a−,a],A,G)P(Xs|[a,a+,a++],A,G)

P(Xs|[a],A,G)
,

(10)

which indicates that P(Xs|[a−−,a−,a,a+,a++],A,G) can
be calculated by factorizing probabilities P(Xs|[a],A,G),
P(Xs|[a−−,a−,a],A,G), and P(Xs|[a,a+,a++],A,G).

5. USE OF PROPOSED MODEL

We used the proposed models by rescoring the N-best list
generated from a standard and unmodified triphone ASR sys-
tem to avoid decoding complexity, as summarized in Fig. 4.
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Figure 4: Rescoring procedure with proposed models.

N-best recognition (on the word level) was carried out for
all utterances in the test data using a conventional HMM
model and standard two-pass decoding based on a Viterbi al-
gorithm. Each N-best hypothesis included an acoustic score,
a language modeling (LM) score, and a Viterbi segmentation
of all phonemes. Each phoneme segment in each hypothe-
sis was then rescored using the pentaphone C1L3R3 models,
summarized in Fig. 5. These updated acoustic scores were
combined with the LM score for this hypothesis. The hypoth-
esis achieving the highest total utterance score of the N-best
hypothesis was eventually selected as the new recognition
output.

The parameter estimation of the proposed pentaphone
model may become unreliable, if there are insufficient train-
ing data, as will state output. We used deleted interpolation
to improve reliability, which allowed us to fall back to a more
reliable model when the supposedly more precise model was,
in fact, unreliable [12]. The concept usually involves interpo-
lating two (or more) separately trained models, one of which
is more reliably trained than the other. Instead of interpo-
lating two models, we applied this approach to interpolat-
ing two phonetic likelihoods, where the phonetic likelihood
of the proposed pentaphone model, P(Xs|λpentaphn), was the
more precise, while the triphone likelihood, P(Xs|λtriphn),
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Figure 5: N-best rescoring mechanism.

was the more reliable. Consequently, the interpolation pho-
netic likelihood, P(Xs|λ ), is obtained as

P(Xs|λ ) = αP(Xs|λpentaphn)+(1−α)P(Xs|λtriphn), (11)

where α represents the weight of the HMM phonetic like-
lihood of the proposed pentaphone model, and (1−α) rep-
resents the weight of the HMM phonetic likelihood of the
triphone model. If the amount of training data is sufficiently
large, P(Xs|λpentaphn) becomes more reliable and α is ex-
pected to tend to 1.0. However, if it is not, α will tend to 0.0
so as to fall back to the more reliable model, P(Xs|λtriphn).

6. EXPERIMENTS

The experiments were conducted using feature extraction pa-
rameters that were a sampling frequency of 16 kHz, a frame
length of a 20 ms Hamming window, a frame shift of 10
ms, and 25-dimensional feature parameters consisting of 12-
order MFCC, ∆ MFCC and ∆ log power. The speech corpus
used here was an accented English speech corpus based on
travel domain expressions. It consisted of American (US)
and Australian (AUS) English accents, with about 45k utter-
ances ( 44 speech hours) spoken by 100 speakers (50 males,
and 50 females) for each accent. About 40k utterances (90%
of the data) spoken by 80 speakers (40 males, and 40 fe-
males) was used as the training data. Two hundred utter-
ances randomly selected from the remaining 10% were used
as the test data. We used both bi-gram and tri-gram language
models, which were trained on about 150,000 travel-related
sentences. The available pronunciation dictionary consisted
of about 37k words and was based on US pronunciations.

Three states were used as the initial HMM for each
phoneme. A shared state HMnet topology was then obtained
using a successive state splitting (SSS) training algorithm.
Since the SSS algorithm used was based on the minimum
description length (MDL) optimization criterion, the number
of shared HMM states was determined automatically by the
algorithm. Details on MDL-SSS can be found in [13]. A
context-dependent triphone system having 2,126 total states
with four different versions of Gaussian mixture components
per state, i.e., 5, 10, 15, and 20, was used as the baseline. Ad-
ditional knowledge such as gender and accent can also be in-
corporated in the conventional triphone acoustic model (AM)
by training gender and/or accent dependent AMs. Only an
embedded training procedure was conducted with specific
accent or gender training data to create the same topology
structure for all models. Thus, in total, we obtained one

single triphone AM (without any additional knowledge) and
four accent-gender-dependent triphone AMs (for US males
and females, and AUS males and females).

Each component of the C1L3R3 model was trained sepa-
rately using the same amount of training data and the same
SSS training algorithm. There was a total of 3,403 states
(sum of C1: 132 st., L3: 1,645 st., R3: 1,626 st.) and the
same number of Gaussian mixture components as the base-
line. An embedded training procedure was then carried out
on C1L3R3-AG on specific accent or gender training data.

We first evaluated the advantages of incorporating ad-
ditional knowledge sources in multi-accented test data.
Rescoring was done using a 10-best list, and a 0.3 weight
parameter, α , for deleted interpolation was used, which had
been optimized using a development set as in our previous
study [14]. We also conducted additional experiments with
a conventional pentaphone HMM model with 2,202 states,
which was trained from scratch using MDL-SSS, for com-
parison. Accent- and gender-dependent pentaphone models
were also obtained using an embedded training procedure on
all specific accents or gender training data. They were im-
plemented by rescoring the N-best list as in the case of the
proposed pentaphone C1L3R3.

Figure 6: Comparison of recognition accuracy rates of dif-
ferent systems triphone HMM baselines, pentaphone HMM
baselines, and proposed pentaphone models.

The performance of models having five mixture compo-
nents per state is depicted in the bar graph in Fig. 6. The tri-
phone baseline without any additional knowledge achieved
83.60% word accuracy. However, this decreased to 82.11%
word accuracy for accent-gender-dependent models. This
might be due to the size of the training data which is much
smaller than that for the other baseline models. Performance
could improve up to 83.96% word accuracy by rescoring
with more precise model such the conventional pentaphone
HMM. There was no decrease performance when gender and
accent were incorporated, as in the case of triphone baseline,
which is probably due to the use of deleted interpolation.
However, as can be seen, the proposed pentaphone C1L3R3
model could considerably outperform the conventional pen-
taphone HMM. This might be because, given the amount of
training data, training the conventional pentaphone model us-
ing the MDL-SSS algorithm resulted in a model with 2,202
total states, which is not so different from the total number
of states in the triphone HMM. As many different penta-
phone contexts may have shared the same Gaussian compo-
nents, the context resolution was reduced. Thus, approximat-
ing a pentaphone model using a composition of several less
context-dependent C1L3R3 models could help to reduce the
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loss of context resolution and improve performance. Over-
all, the best word accuracy that was achieved was 84.38%
with C1L3R3-AG, which incorporated additional knowledge
of accent A, gender G, second preceding context CL and suc-
ceeding context CR.

We next investigated the improvements in performance in
more detail using pentaphone C1L3R3-AG on each accented
test data, with the N-best (N=10) list. We used the 0.3 weight
parameter λ for deleted interpolation as in our previous study
[14]. Here, we also measured both the relative improvement
(Rel-Imp) and a relative rescoring improvement (Rel-Resc-
Imp) as used in [6]

RelRescImp =
Rescoring result−Baseline

Nbest list upper bound−Baseline
, (12)

where the N-best list upper bound is the N-best recognition
result when the best match candidates are chosen.

The results obtained using the different mixture compo-
nent numbers are summarized in Table 1 for US test data and
Table 2 for AUS test data. As can be seen, the proposed pen-
taphone model consistently improved the performance of the
ASR system. The largest Rel-Resc-Imp achieved 37.92% for
the US model with 15 mixture components per state, along
with 38.04% for the AUS model with 15 mixture components
per state.

Table 1: Recognition accuracy rates for pentaphone
C1L3R3-AG on US test data.

Upper Triphn Proposed Rel- Rel-
# Mix bound baseline pentaphn Imp Resc-Imp

5 87.52 84.30 85.19 5.67 27.64
10 87.94 84.66 85.79 7.37 34.45
15 87.76 84.78 85.91 7.42 37.92
20 87.78 85.25 85.91 4.47 26.09

Table 2: Recognition accuracy rates for pentaphone
C1L3R3-AG on AUS test data.

Upper Triphn Proposed Rel- Rel-
# Mix bound baseline Pentaphn Imp Resc-Imp

5 85.79 82.33 83.76 8.09 41.33
10 85.37 82.21 82.81 3.37 18.99
15 86.93 83.46 84.78 7.98 38.04
20 86.39 82.63 83.58 5.47 25.27

7. CONCLUSION

We introduced a general framework to incorporate additional
knowledge sources into statistical HMM acoustic models.
We also demonstrated the implementation of this new frame-
work by integrating accent, gender, and wide-phonetic con-
text information. The framework is based on a junction tree
algorithm and allows us to construct wider context models
from several other models with a narrower context. As this
leads to a reduction in the number of context units to be es-
timated, the loss of context resolution can be considerably
reduced. We applied these composition models at the post-
processing stage with N-best rescoring. Their performance
was evaluated on an LVCSR task using two different types of
accented English speech data. Experimental results demon-
strated that our method improved word accuracy with respect
to the standard HMM with or without additional knowledge

sources. The best performance was obtained by a model that
incorporated additional knowledge on accent A, gender G,
second preceding context CL and succeeding context CR.
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