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ABSTRACT This paper presents a novel algorithm that leverages cutting-edge machine-learning techniques
to accurately and efficiently detect AI-generated texts. Rapid advancements in natural language processing
models have led to the generation of text closely resembling human language, making it increasingly difficult
to differentiate between human and AI-generated content. However, misuse of such texts presents a serious
and imminent threat to the quality of academic publishing. This underscores the urgent need for robust
detection mechanisms to ensure information quality, maintain trust, and preserve the integrity of research
publications. Our proposed model outperformed existing algorithms for accuracy with less computational
complexity. The proposed model is a feature-based hybrid deep learning network that leverages part-
of-speech tagging and integrates Bidirectional Long Short-Term Memory (Bi-LSTM) networks with
Attention modules. The initial module extracts local contextual features using convolutional layers, followed
by Bi-LSTM layers that capture long-term dependencies from past and future sequences. An attention
mechanism highlights critical sequence components, enhancing the model’s focus on relevant data. The
outputs from the attention and initial modules are concatenated through a residual connection, ensuring
comprehensive feature representation. This combination is then fed into dense layers for final classification,
effectively balancing feature richness and computational efficiency. The proposed model was evaluated on
two benchmark datasets, achieving 85.00% and 88.00% accuracy, respectively.

INDEX TERMS AI-generated text detection, authorship analysis, authorship verification, machine-
generated text detection.

I. INTRODUCTION
Radical innovations, such as artificial intelligence, big data
and robotics, may be classed as disruptive technologies [1],
overturning established models, systems or practices. Large
Language Models (LLMs) are the latest disruptive technol-
ogy. LLMs can not only read, paraphrase, and simplify digital
texts but also generate human-like texts. The transformer
model [2] marked a major milestone in the domain of
deep learning and Natural Language Processing (NLP).
Since its creation, various forms of state-of-the-art (SOTA)
transformer models, such as the Generative Pre-Training
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model (GPT) [3], Bidirectional Encoder Representations
from Transformers (BERT) [4] and Transformer-XL [5],
have been introduced and utilized for a wide range of
NLP tasks. Transformer models have produced outstanding
results in many domains and on many tasks, including
inter alia Natural Language Generation (NLG) [6], text
classification [7], [8], machine translation [9], and text
summarization [10].

Powerful LLMs, such as ChatGPT [11], can solve complex
problems, write essays and create short answers in response
to assignment questions. Until now, short answers and
essays have served as appropriate assessment instruments for
school teachers and university faculty to evaluate students’
ability to draft logical, evidence-based answers. Conventional
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plagiarism in such assignments could be checked using
similarity detection tools, such as iThenticate for research
articles and Turnitin for academic essays [12], but these
plagiarism detection systems were not designed to detect
AI-generated content, and so currently perform poorly at
detecting texts created by LLMs.

LLMs are now able to create highly technical and scientific
research articles, which, to a lay audience, may be indistin-
guishable from those written by renowned domain experts.
Success in academia is gained primarily through publishing
in top-tier journals, and since most top-tier journals use
English as the lingua franca, this means ‘‘publish (in English)
or perish’’ [13]. However, the advent of LLMs means that
non-specialists can now generate generically appropriate sci-
entific articles [14], and so non-experts can simply input a few
prompts to an LLM and create a research article. However,
given that AI-generated articles may contain factual inaccu-
racies, such as hallucinations, and non-specialists lack the
domain knowledge needed to verify the accuracy of the con-
tent of the generated texts, this may lead to a proliferation of
error-ridden research studies, which, in turn, places a higher
burden on the academic gatekeepers, i.e. editors and review-
ers, of academic journals; and may result in a devaluing of the
authority of experts. Until now, the authors shared the ethical
responsibility jointly and severally for the veracity of the con-
tent of scientific papers. Axiomatically, LLMs are unable to
share such responsibility, which explains why many publish-
ers have announced policies banning the attribution of author-
ship to LLMs. For example, Springer Nature declared that
‘‘attribution of authorship carries with it accountability for the
work, which cannot be effectively applied to LLMs’’ [14].

A. RESEARCH NICHE
Cabanac and Labbé [15] discovered numerous scientific
articles generated using outdated textual generation models,
such as SciGen1. These models harness Context-Free Gram-
mar (CFG), which tends to produce nonsensical, incoherent
paragraphs and phraseologies that substantially deviate from
expected or unmarked usage [16], exhibiting low vocabulary
richness and high degrees of markedness. The weirdly para-
phrased versions of scientific terms created by such models
have been termed ‘‘tortured phrases’’ [17]. As such, texts
generated by CFGs are relatively easy to automatically detect
through intertextual distance and automatic clustering [18].
In contrast, newer text generation models based on LLMs,

such as the GPT series, have significantly improved the
quality of AI-generated texts. For example, the GPT-2
model [6] can produce texts that closely resemble those
written by humans [19] while the performance of GPT-
4 released by OpenAI in 2023 surpasses previous releases
and displays ‘‘human-like performance’’ [20]. When used
appropriately and ethically, the automatic generation of texts
may have a beneficial role in the article creation process,
and streamline the writing-up process. There is, however,
cause for concern regarding potential risks associatedwith the

misuse of such models by less scrupulous users. For example,
these models may be misused for malicious tasks, such as
fake news generation [21], [22], fake review generation [23],
and viral story generation [24], [25]. In academia, these
models have been applied to automatically generate research
articles [26], reviews [27], and theses [28]. AI-generated
research articles pose a serious threat to the research
community. Readers of research articles may doubt their
authenticity; editors and reviewers do not just have to check
the novelty, substance, rigour and significance of research
articles but also need to ascertain whether articles were AI-
generated, AI-enhanced, or human-created [29], [30].

Therefore, there is an urgent need for a tool that can detect
AI-generated academic texts. Nguyen and Labbé demon-
strated the importance of detecting and removing nonsensical
AI-generated papers from the scientific domain [31]. They
identified a huge number of nonsensical CFG-generated
articles that were published in various reputed journals. They
also explain that AI-generated content is problematic for the
scientific community and adds bias to publication metrics of
journals (e.g. impact factor) and researchers (e.g. h-index).
A central problem is that these papers interweave factual and
fake information, adopting coherent structures incorporating
tables, figures, and formulas; thus giving the appearance
of bonafide articles, which may mislead inexperienced
researchers.

In addition, such biased publication metrics and publi-
cations of fake results have appeared in scientific journals
and conference proceedings in well-known bibliographic
indexes such as Web of Science, Scopus, and Google
Scholar. Moreover, IEEE and Springer withdrew more than
120 papers because of the AI-generated content, figures
and fake tables [18]. The dissemination of disinformation
or misinformation harms both the scientific community and
society in general, resulting in a loss of trust due to the lack of
faith in the findings of research and increasing scepticism on
scientific progress. Thus, AI-generated papers can potentially
cause significant harm to the scientific community and
society as a whole. To maintain high standards of integrity
and transparency, it is essential to prevent the publication of
such fraudulent research. An effective and efficient detection
method for AI-generated texts is needed to protect both
scientists and society.

B. RESEARCH CONTRIBUTION
Although advances in developing AI-generated text detection
approaches have been made in recent years, current systems
exhibit several drawbacks and limitations. These include poor
performance accuracy and limited contextual understanding.
While many text detection methods can identify individual
words or characters, they may be unable to grasp the meaning
in context. This can be a limitation in situations where context
is important for accurate analysis. Another notable weakness
is the necessity for high computational complexity, which
must be addressed to improve the accuracy and usefulness of
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a detection system. To address these challenges, we propose
a novel part-of-speech (POS) tagging-based bidirectional
Long Short-TermMemory (LSTM) and attention mechanism
to detect AI-generated texts. This method can increase the
contextual understanding ability of the model and increase
the performance efficiency while maintaining accuracy.

Rule-based models were first applied to extract POS tag-
ging in the study. Based on the POS tagging features, a deep
learning model was built using the Keras library, tailored
for sequence classification tasks. The model architecture
includes various enhancements for optimized performance.
Specifically, a feature-based hybrid deep learning network
was integrated that combines Bi-LSTM networks with an
attention mechanism.

The input to the model is a sequence of integers of length
maxlen representing tokens in a text. These tokens are
embedded into dense vectors via an embedding layer. The
embedded sequence is processed through a bidirectional
LSTM layer with 64 units, enabling the model to capture
dependencies from both past and future contexts, which
allows the model to learn from the sequence in both
forward and backward directions. To refine the focus of
the model on significant elements within the sequence,
an attention mechanism was incorporated to highlight critical
components. In addition, the initial module, which consists of
convolutional layers, extracts local contextual features. The
outputs from the attention mechanism and the initial module
are concatenated using a residual connection, ensuring
a comprehensive feature representation that enhances the
model’s learning capability. This combination is fed into
the classificationmodule, balancing computational efficiency
and feature richness.

This architecture demonstrated strong performance when
evaluated on benchmark datasets, achieving accuracy scores
of 85.00 % and 88.00%, confirming its robustness and
superiority over existing methods in terms of accuracy and
computational cost.

The remainder of the paper is organized as follows.
Section II provides the literature review of the related works
in the field of both human and automated detection of AI-
generated texts. Section III introduces the datasets sourced
for the evaluation of our model. Section IV details the key
aspects of the proposed model, while Section V presents the
results of the evaluation. This is followed by a conclusion,
which briefly summarizes the contributions of this research
and identifies future work.

II. RELATED WORKS
AI-generated texts may be detected by humans or automated
systems, both of which have benefits and drawbacks.
The primary drawback of human detection is the lack of
scalability while drawbacks in automated detection include
accuracy, reliability and explainability. It should be noted
that these three aspects also impinge on human detection to
varying degrees.

A. HUMAN DETECTION OF AI-GENERATED TEXT
Many researchers have investigated human detection of AI-
generated content. Liyanage et al. [32] visualized different
techniques to detect malicious or fake scientific texts. This
work used two artificially generated research articles: a
partial text substitution and a completely synthetic text.
Bakhtin et al. [33] proposed an auto-regressive model to
distinguish human-created text from AI-generated text. They
claimed their model achieved more sensitivity compared to
the existing models. Ippolito et al. [34] demonstrated that
based on semantic errors, human detectors could detect
AI-generated text easily with high performance accuracy
without the assistance of any tools. To investigate this, they
considered different factors, such as sampling techniques for
the length of the text excerpt. The main drawback of these
human detection models is that they only use the length
of the sentence and semantic error. Gehrmann et al. [30]
proposed a Giant Language model Test Room (GLTR) tool
for human detectors to detect the AI-generated text with
statistical techniques. They claimed that human detectors
could improve the detection of artificially generated content
from 54% to 72%. Dugan et al. [35] demonstrated that
AI-generated fake texts could deceive the human detector for
two or more sentences with some techniques. To overcome
this problem, they proposed Real or Fake Text (RoFT)
tools to improve the human detector performance. However,
as the power of GPT improved, Clark et al. [36] concluded
that untrained human detectors could only differentiate
between GPT3-authored and human-authored text at random
chance levels. The problem of detecting AI-generated texts is
further exacerbated by the numerous models that have been
developed to generate texts and the ongoing improvement in
the quality of the output of the latest models.

B. AUTOMATIC AI-GENERATED TEXT DETECTION
In recent years, numerous language models and systems
have been developed to both generate and detect scientific
paper content. One notable model is the GLTR proposed by
Gehrmann et al. [30], which serves as a fake text detector.
The updated version of GLTR leverages three core concepts:
word probability, absolute rank based on probability values,
and the entropy of the predicted distribution to calculate a
likelihood value for each token. These values are then visual-
ized to assist human detectors in judging whether a text is AI-
generated. Building on the GLTR model, Kadhimi et al. [37]
developed a deep-learning model to automatically classify
scientific papers as AI-generated or human-written. The
GROVER model, which generates political news articles that
are difficult to detect, was countered by Zellers et al. [21]
with a defence model that achieved 92% accuracy against
both GROVER [38] and GPT-2 systems [6].
Additional language models, such as fastText [39],

RoBERTa [40], and BERT [4], have also been harnessed
for AI-generated content detection. Solaiman et al. [19]
demonstrated that RoBERTa outperformed GPT-2 in the
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detection of AI-generated texts. Despite being primarily
a language generator, RoBERTa showed higher efficiency
as a detector compared to other models [40], [41]. How-
ever, its need for large data sets remains a significant
drawback. RoBERTa also struggled with content generated
by more advanced models, such as those proposed by
Wolf et al. [42]. Pegoraro et al. [43] recently declared that
current methods fail to accurately detect text generated
by ChatGPT-4. Research by Bakhtin et al. [33] explored
updated fake text detection using quantitative system results,
while Dugan et al. [34] utilized fine-tuned BERT models to
address the impacts of text excerpt length and sampling
strategy. Varshney et al. [44] introduced formal hypothesis
testing with error exponent limits based on cross-entropy
and perplexity to tackle challenges from GPT-2 and later
models. Maronikolakis et al. [45] achieved 85.7% accuracy
with a transformer-based model using multiple classification
techniques to detect AI-generated content.

Other approaches include the use of word2vec and Term
Frequency-Inverse Document Frequency (TF-IDF) with deep
learning for fake content detection by Vijayaraghavan et
al. [46] and Jahwahr et al. [47] who focused on styles and
discourse models to distinguish AI-generated text from
human-written text. Conversely, Bhat et al. [48] highlighted
the limitations of discourse and style-based models in this
context. Perez’s model [49] emphasized the importance
of syntactic and semantic textual features for detection
purposes.

Some researchers [50], [51] have concentrated on the ref-
erences section for detecting AI-generated scientific papers.
Amancio et al. [52] proposed a topological system, while
Nguyen et al. [31] introduced the SciDetect system, which
uses an intertextual distance formula to classify content based
on its textual features. Their methods involved segmenting
long paragraphs and ignoring paragraphs containing fewer
than 1000 characters to improve detection accuracy. Cabanac
et al. [15] employed rule-based POS tagging in conjunction
with a search engine to discover fake scientific papers, though
their method was limited to grammar-based detection. The
necessity for a corpus of AI-generated text for accurate
detection is echoed by Xiong and Huang [50]. Additionally,
SCIgen has been used to generate nonsensical computer
science research articles for classification purposes. Recently,
the attention mechanism has proven its efficiency across
various fields [53], [54], [55], [56], [57], with many
researchers now combining it with Bidirectional LSTM
methods for improved performance in detecting AI-generated
text [58], [59], [60].

III. DATASET
To the best of our knowledge, there are few publicly available
corpora suitable for use as benchmark datasets to conduct
experiments on the detection of AI-generated academic
content. However, a benchmark dataset is a prerequisite for
any research in the field of generated text detection. Two

publicly available datasets1 were discovered: (1) the Kaggle
DAGPap22 dataset and (1) the Liyanage Benchmark dataset.
Each of these datasets is described below.

A. KAGGLE DAGPAP22 DATASET
This dataset was placed online on Kaggle for the shared task,
namely Detecting Automatically Generated scientific Papers
(DAGPap22), of the third workshop on scholarly document
processing, a workshop held at the 29th International
Conference on Computational Linguistics (COLING 2022).
To protect the research from misleading and damaging
the scientific community, they created the dataset with a
series of concerns [61]. Each scientific paper is labelled
with a binary classification: AI-generated or human-written.
In the dataset from the AI-generated paper, 5000 excerpts
were collected based on Cabanac et al.’s work [17]. They
also provided an accessible fivefold larger human-written
corpus and AI-generated paper from the common scientific
domains and the same documents. In the dataset from the
scientific paper, there is a text excerpt which indicates
whether the content is AI-generated or human-written. This
dataset comes from retracted Scopus and published papers,
and in total, 5327 papers are available in the training dataset
and 21310 papers for the testing dataset records. There are
two columns in each record in which the text or paper content
is contained in the first column, and the value of fake or
real is provided in the second column, with 1 standing for
the generated content and 0 for the human-created texts. The
dataset used in this study was obtained from the follow-
ing source: https://www.kaggle.com/competitions/detecting-
generated-scientific-papers/overview.

B. LIYANAGE BENCHMARK DATASET
The second publicly-available dataset for the AI-generated
scientific paper detection for research was compiled by
Liyanage [32], using a mix of natural human-written text and
AI-generated text. The AI-generated texts were designed to
be difficult to detect and masquerade as original content to
an uninformed reader. They included two types of corpora.
One corpus consisted of a hybrid dataset that included
original human-written scientific paper content in which
AI-generated sentences replaced some sentences. The second
corpus consisted of only AI-generated scientific papers. Each
of the corpora was collected by considering the situation
in which an author created a full text of the paper for
submission to a journal. The length of both individual
sentences and various sections is not fixed. The mean length
of the hybrid dataset was 177 words, while the AI-generated
dataset mean was 1247 words. The papers include abstracts,
introductions, literature reviews, the proposed approaches
and future works. Because of the presence of figures and
tables in full papers, they eliminated some sections of the
paper before constructing the dataset. In addition, they also

1Neither of these datasets is named online, and sowe have taken the liberty
of naming them.
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FIGURE 1. Word cloud of nouns in the Kaggle DAGPap22 dataset.

FIGURE 2. Word cloud of the nouns in the Liyanage Benchmark dataset.

considered a situation where authors are not malicious but use
AI-generated text to complete certain parts of their papers.
There are more than 5000 records in the dataset. As with
the Kaggle DAGPap22 dataset, each record contains two
columns, one column containing the text of the paper and
the other column containing the label of the paper, namely
1 standing for the AI-generated content and 0 standing for
human-written content.

Figure 1 shows aword cloud for the 40most frequent nouns
in the Kaggle DAGPap22 dataset. Moreover, the Liyanage
Benchmark dataset also has a graph similar to this. Figure 2
shows a word cloud for the 40 most frequent nouns for the
Liyanage Benchmark dataset.

Figure 3 shows the frequency of the top 40 word tokens in
the Kaggle DAGPap22 benchmark dataset, while the Liyange
Benchmark dataset frequency profile is shown in Figure 4.
The charts show some shared high-frequency lexical items,
such as use, model and performance.

IV. PROPOSED MODEL
In the proposed model, rule-based models were first applied
to extract POS tagging. Based on the POS tagging, a deep
learning model built with the Keras library was employed
specifically for sequence classification tasks. The workflow
is given in Figure 5. A different variant of a bidirectional
LSTM model with an attention mechanism added on top was
included. Our proposed model draws on the literature review
by combining (1) rule-based POS tagging [15], (2) initial
module, (3) an attention mechanism [53], [54], [55], [56],
[57], (4) a Bidirectional LSTM method [58], [59], [60], (5)
feature concatenation, and (6) classification.

The input to the model is a sequence of integers (of length
maxlen) representing tokens in a text. These integers are
first converted into low-dimensional dense vectors using an
embedding layer. The embedded sequence is then passed
through the initial module and fed into a bidirectional LSTM
layer with 64 units, which allows the model to learn from the
sequence in both forward and backward directions.

The final hidden state of the bidirectional LSTM layer is
fed into the attention mechanism that operates on the output
of the bidirectional LSTM layer. The attention mechanism
assigns weights to each time step of the output sequence
based on its relevance to the final classification task.

Then, the output of the attention mechanism was con-
catenated with the initial module output. The concatenated
output is then fed into the classification module; in the
classification module, features are passed through a dense
layer with a sigmoid activation function to obtain a binary
classification prediction. The attention class defines the
attention mechanism used in the model. It consists of three
dense layers: two with the same number of units as specified
by the input argument ‘‘units’’ and one with a single output
unit. The method first applies a tanh activation function to
a sum of the two dense layers applied to their respective
inputs [59], [62]. This produces a score for each time step
in the output sequence. The scores are then passed through
a softmax function to produce a weight for each time step,
representing the relevance of that time step to the final
classification task. These weights are then used to compute
a context vector, which is a weighted sum of the output
sequence. Finally, the context vector and attention weights
are returned as outputs and details as visualized in Figure 6.

In summary, in the first stage part of speech (POS) tags
were extracted. The maximum length of 5000 was selected
based on the sentence length distribution of the text dataset
included. The next step was the application of a feature-
based hybrid deep learning network that utilizes part-of-
speech tagging and combines Bidirectional Long Short-Term
Memory (Bi-LSTM) networks with Attentionmodules. In the
Bi-LSTM layer on both sides, where ours selected the
output vectors based on the sentence length, it performed
better compared to the Bidirectional GRU and others. The
initial module extracts local contextual features through
convolutional layers, followed by Bi-LSTM layers that cap-
ture long-term dependencies in both forward and backward
directions. The attention mechanism emphasizes essential
sequence elements, improving the model’s focus on relevant
data. The outputs from the attention and initial modules are
concatenated via a residual connection for comprehensive
feature representation, which is then passed to dense layers
for final classification. This approach strikes a balance
between feature richness and computational efficiency.

A. PREPROCESSING
To preprocess the data, the built-in pos_tag function of
the Natural Language Toolkit (NLTK) library [63] (version
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FIGURE 3. Frequency of top 40 words in the Kaggle DAGPap22 dataset.

FIGURE 4. Frequency of top 40 words in the Liyanage Benchmark dataset.

FIGURE 5. Working procedure of the proposed method.

3.8.1) was used for rule-based POS tagging. This function
applies a tagging algorithm based on the Penn Treebank
tagset [64], which assigns each word token a grammatical

POS label (e.g., noun NN, verb VB, adjective JJ, adverb
RB) by leveraging lexical and contextual rules. First, each
sentence was tokenized, splitting it into individual word

71568 VOLUME 13, 2025



J. Blake et al.: Detection of AI-Generated Texts: A Bi-LSTM and Attention-Based Approach

FIGURE 6. Details of the Bi-LSTM and attention layer.

tokens. POS tagging was then performed on these tokens to
assign a grammatical POS label to each word. This tagging
was conducted on each sentence separately, after which lists
for all sentences in both the training and testing sets were
compiled. Next, a set of all unique tokens in the tagged
sentences was created, which included both word tokens and
punctuation marks. Using this set, a dictionary to map each
unique word to a numerical index was created, starting at 1,
with 0 reserved for padding. For each POS tag, a numerical
index was assigned to facilitate its use in the model, focusing
on the tags for nouns NN, verbs VB, adjectives JJ, and
adverbs RB, resulting in the following mapping: ‘NN’: 1,
‘VB’: 2, ‘JJ’: 3, ‘RB’: 4. Finally, the maximum length of each
text was standardized to 5000 tokens. Sentences longer than
this were truncated, while shorter sentences were padded to
ensure uniform sequence lengths across all inputs.

B. INITIAL MODULE (EMBEDDING AND CNN WITH
MAXPOOLING)
The initial module consists of an embedding layer followed
by a 1D convolutional layer and max-pooling. The embed-
ding layer maps input words to dense vector representations,
which capture semantic meaning. The Conv1D layer extracts
local features from these embeddings, effectively identifying
n-gram patterns within the data. MaxPooling reduces the
dimensionality of the feature maps and helps retain the most
significant information while reducing computational costs.
The main reason and novelty of this model is that this
initial module ensures that the model efficiently captures
local dependencies in the input data, which are essential
for understanding the context of word sequences. This
approach enhances feature extraction capabilities, improves
generalization, and reduces overfitting by condensing the
feature space. Suppose the input sequence x is first passed
through an embedding layer, followed by a convolutional and
max-pooling operation:

E = Embedding(x) (1)

FInitial = MaxPooling(ReLU(Conv1D(E))) (2)

The output of the initial module fed into the Bidirectional
LSTM module.

C. BIDIRECTIONAL LSTM
In this study, we proposed using a Bidirectional LSTM
because LSTMs have achieved excellent performance on text
classification tasks. Treating an LSTM as a cell allows it to
be conceptualized as a closed box, simplifying understanding
without requiring an in-depth explanation [60]. This closed
box consists of an input and output module and processes the
t-th word of a sentence at time step t . After that, it utilizes
some internal processing to extract various features, including
long-range dependencies, using a number of hidden states,
which can be written as ht and ct (see Fig. 6). In the RNN,
they used only one hidden state ht , and that can not extract
the long-range dependencies feature. The output of LSTM
is stacked and applied as input vectors for the forward and
backward layer, which makes it a Bidirectional LSTM [58].
The Bi-LSTM processes the output of the initial module
FInitial to capture sequential dependencies:

FBi-LSTM = Bi-LSTM(FInitial) (3)

D. ATTENTION MODULE
As previously mentioned, RNN is unable to extract
long-range dependencies because of its internal mechanism,
but LSTM can extract these features effectively. However,
it may occasionally be challenging for LSTM cells to extract
long-term dependencies in features because of the non-
uniform (i.e., variable) length of the input. The performance
of the LSTM may fluctuate if the length of the sentence
increases above 30. To overcome the challenges of the
LSTM model, an attention mechanism was utilized, which
is also capable of extracting long-range dependencies, while
offering some feature selection functionality. Rather than
concentrating on the entire sequence, the attention mech-
anism selectively emphasizes specific segments within the
arbitrary-length input sequence. Consider a text processing
task where ht represents the number which is passed to the
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attention mechanism as input attention (see Fig. 6); attention
will not consider all heads coming from the previous layer.
It chooses efficient vectors among all input vectors using
the probability calculation, which are known as attention
weight values. After that, the attention module calculates the
context vector by summing the product of input and weight
values. It actually calculates the global attention and then
employs general scoring criteria to calculate the attention
score (see Eq. 4). Scoring criteria mainly indicate how many
vectors among all input vectors should be focused on or
highlighted. After that, the score is converted into attention
weights using the softmax function on scores (see Eq. 5).
Finally, the head ht concatenated with context vector softmax
function tanh is applied to obtain the output [58], [59]. The
attention mechanism computes a context vector by weighting
the Bi-LSTM outputs.

AttentionScore(ht , h̄s) =


hTt h̄s dot
hTt Wα h̄s general
vTα tanh

(
Wα[ht ; h̄s]

)
concat

(4)

FAtt = αs(s) = align(ht , h̄s) =
exp

(
score(ht , h̄s)

)∑
s̄ exp

(
score(ht , h̄s̄)

) (5)

E. FEATURE CONCATENATION AND CLASSIFICATION
The output of the attention module is concatenated with the
flattened production from the initial CNN module, forming
a residual connection that integrates the original feature
representations with those enhanced by the attention mech-
anism. This approach ensures that the network retains access
to high-level and detailed features, effectively preserving
valuable information that could be lost through sequential
processing alone. By combining local features extracted by
the CNN with the long-range dependencies captured by
the Bi-LSTM-attention module, the model achieves a richer
and more robust representation, enhancing the depth and
effectiveness of the overall feature set. The context vector
from the attention module is concatenated with the initial
module:

FConcatenation = FInitial
⊕

FAtt (6)

The concatenated feature set FConcatenation is then passed
through a dense layer with a ReLU activation function,
followed by a dropout layer to introduce regularization.
This prevents overfitting and ensures the model remains
resilient during training. The final output layer is a dense
layer with a sigmoid activation function designed for binary
classification by outputting a probability score for the target
class. This combination enables the model to learn complex
patterns through the ReLU activation while maintaining
generalizability through dropout, resulting in improved
performance on unseen data. The combined features are

passed through a dense layer with dropout for classification:

Fdense = ReLU(W1FConcatenation + b1) (7)

ŷ = Sigmoid(W2Fdense + b2) (8)

where, W1 and W2 are weight matrices for the dense layers.
b1 and b2 are bias vectors. ŷ is the final predicted probability
for the target class.

V. EXPERIMENTAL EVALUATION
To evaluate the proposed model, two datasets collected from
GitHub and Kaggle were harnessed, namely the Liyanage
Benchmark dataset and the Kaggle DAGPap22 dataset.

A. ENVIRONMENTAL SETTING
Each dataset was split into 70% for training and 30% for
testing. Based on this ratio, for the Kaggle DAGPap22
dataset, the training set comprises 3584 samples and the
testing 1766 samples, while the Liyanage Benchmark dataset
comprises 205 and 101 samples, respectively. The Tensor-
Flow framework of Python programming [65] was used to
implement the experiment in the Google Colab Pro edition
environment. There are 25GB GPU in the processing RAM
in the environment, known as Tesla P100 [66]. Tensorflow is
considered a boon to the deep learning model due to its open-
source nature, the concept of the computational graph, and
its adaptability and compatibility with minimum resources.
The OpenCV Python package was used for the initial image
processing task [67]. Various graphs were plotted using the
Matplotlib library [67].

B. HYPERPARAMETER TUNING
To optimize the performance and efficiency of our model,
key hyperparameters were carefully tuned based on the
characteristics of the dataset and the requirements of
AI-generated text detection. The maximum sequence length
MAX_LENwas set to 5000 tokens to ensure sufficient context
coverage without excessive computational complexity. The
embedding dimension was set to 32, providing compact
word representations while maintaining generalization. The
attention mechanism, which uses 64 dense units, was
incorporated to focus on relevant features within each
sequence, enhancing the model’s ability to differentiate
between human- and AI-generated text. We also included
a Conv1D layer with 128 filters and a kernel size of 3,
allowing the model to capture local dependencies within
text sequences before passing them to bidirectional LSTM
layers. In the bidirectional LSTM layers, we used 64 units
and applied a dropout rate of 0.3 to mitigate overfitting and
improve robustness. We set the recurrent activation function
to tanh for stability and used glorot_uniform initialization to
support efficient gradient flow. Furthermore, the learning rate
was set to 0.0001, which provided stable convergence, while
gradient clipping with a clip value of 1.0 prevented gradient
explosion. Lastly, a dense layer with 64 units and a dropout
rate of 0.3 further refined the extracted features before the
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TABLE 1. Ablation study of the proposed model.

TABLE 2. State of the art comparison of the proposed model.

final output layer, which uses sigmoid activation for binary
classification.

These hyperparameters were chosen after extensive exper-
imentation to balance accuracy, computational cost, and
model stability, enabling our approach to achieve high
accuracy with reduced training and inference times. The
training is performed for each dataset for 1000 epochs while
0.000005 was used as the initial learning rate on account of
higher fluctuation during the Adam optimizer with Nesterov
momentum [68], [69]. Various parameter tuning operations
were used for the learning rate and optimizer for the two
classes of the study.

C. ABLATION STUDY
An ablation study was conducted to analyze the effects of
various components of the proposed model by systematically
altering or omitting them and recording the resulting perfor-
mance. Table 1 summarizes the results of five different model
configurations tested on the Kaggle DAGPap22 dataset,
including the required parameters, training time, and memory
usage for each configuration.

In Study No. 1, the model without the initial module
and with a single Bi-LSTM layer achieved an accuracy of
68.23%, with 1.16 million trainable parameters, a training
time of 1.04 seconds per batch, and a memory requirement
of 4.43 MB. Study No. 2, which incorporated two Bi-LSTM
layers without the initial module, showed an improvement in
accuracy to 80.00%, accompanied by 1.26 million trainable

parameters, a training time of 1.08 seconds per batch, and
a memory usage of 4.81 MB. Study No. 3 included the
initial module but lacked residual concatenation, resulting
in an accuracy of 78.23%, with 1.2 million parameters,
a reduced training time of 0.63 seconds per batch, and
a memory requirement of 4.90 MB. Study No. 4, which
removed Bi-LSTM layers entirely, reached an accuracy of
81.82%, with 1.1 million parameters, the lowest training time
of 0.08 seconds per batch, and 4.24 MB of memory. Study
No. 5 combined the initial module, two Bi-LSTM layers, and
a residual connection, achieving an accuracy of 84.60%. This
configuration, however, had a significant increase in trainable
parameters at 41.30 million, a training time of 0.26 seconds
per batch, and a memory requirement of 157.55 MB.

The complete proposed model, integrating the initial
module, a single Bi-LSTM, an attention mechanism, and
a residual connection, achieved the highest accuracy at
85.00 %. It maintained 41.20 million trainable parameters,
a training time of 0.2325 seconds per batch, and a memory
usage of 157.17 MB. This demonstrates that incorporating
attention, residual connections, and Bi-LSTM optimizes the
model’s performance, highlighting the importance of these
components in achieving the best results.

D. PERFORMANCE RESULT
The evaluation metric used to evaluate the accuracy, pre-
cision, recall and F1 score of the proposed model as an
identification model is calculated using Equation 9, 10,11,12
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FIGURE 7. Confusion matrix (a) Kaggle DAGPap22 dataset (b) Liyanage Benchmark dataset.

in which TN denotes true negatives, TP denotes true positives,
FN false negatives, and FP denotes false positives.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

(12)

The proposed model was evaluated with two datasets and
the performance accuracy for various models was calculated
for each dataset. Table 2 shows the performance accuracy
of the proposed model and various other models. Initially,
experiments on various machine learning algorithms with
different combinations of the module, including TF-IDF and
key phrase vectorizer module, were carried out.

We selected TF-IDF as a feature extraction technique due
to its effectiveness in highlighting distinctive terms within a
document by considering their relative frequency across the
dataset. This approach enhances the ability of the model to
detect subtle differences indicative of AI-generated content.
TF-IDF is widely used in text classification and is particularly
beneficial for identifying contextually significant words.

The KeyPhrase module was selected to extract significant
phrases that encapsulate a document main themes or topics
of a document. Unlike single-word features, key phrases
capture high-level concepts, providing valuable contextual
information for classification. This enables the model to
differentiate human-written from AI-generated documents
by emphasizing semantically rich and contextually relevant
terms.

We employed different machine learning algorithms based
on the POS-tagging and achieved 85.00 % and 88.00% accu-
racy with artificial neural networks for Kaggle DAGPap22
and the Liyanage Benchmark datasets, respectively.

The precision-recall and F1 Score were also calculated
for both datasets. For the evaluation of our proposed
model on the Kaggle DAGPap22 dataset, we calculated
key performance metrics, including precision, recall, and
F1-score. The results demonstrated consistent and balanced
performance across these metrics, with a precision of 83.5,
a recall of 83.00, and an F1-score of 83.00. These findings
indicate that the model maintains high accuracy in correctly
identifying positive cases while minimizing false positives
and false negatives. In addition, for the Liyanage Benchmark
datasets, precision, recall and f1-score produced near 88.00%
accuracy, which comes from the two classes human written
in most cases 88.00% and AI-generated cases 88.00% or
vice versa. The balanced precision and recall suggest that the
model effectively captures relevant instances and accurately
represents the dataset’s characteristics, leading to a robust
F1 score. This comprehensive evaluation underscores the
reliability and efficiency of the proposed model in handling
complex data and achieving stable results. Figure 7 shows the
confusion matrix for each of the datasets.

E. DISCUSSION
The performance of our proposed model, evaluated on
two benchmark datasets, demonstrates its effectiveness in
distinguishing AI-generated texts from human-generated
content. Achieving accuracies of 85.00% and 88.00%, the
model not only surpasses existing algorithms in accuracy but
also does so with reduced computational complexity.

Figure 7 (a) shows the confusion matrix for the Kaggle
DAGPap22 dataset. This accuracy matrix summarizes the
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performance of a classifier on the Kaggle DAGPap22
dataset, which consists of human-generated scientific articles
(Class 0) and AI-generated articles (Class 1). The classifier
demonstrates a precision of 73.00% for human-generated
articles and 91.00% for AI-generated articles, with recall
rates of 83.00% and 86.00%, respectively. The resulting
F1-scores are 78.00% for human-generated articles and
89.00% for AI-generated articles.With 561 human-generated
articles and 1205AI-generated articles, the classifier achieves
an overall accuracy of 85.00% across 1766 instances.
The macro average for precision, recall, and F1-score
are 82.00%, 84.00%, and 83.00%, respectively, while the
weighted averages for these metrics are consistently around
85.00%. Moreover, the classifier correctly classified 82.71%
of human-generated articles and 85.81% of AI-generated
articles.

The strengths of this classifier are highlighted by its
performance metrics. The high precision for AI-generated
articles (91.00%) indicates that the classifier effectively
identifies AI-generated content with a low false-positive
rate. The balanced recall rates for both classes (83.00%
for human-generated and 86.00% for AI-generated articles)
show that the classifier is also efficient at minimizing false
negatives. The overall accuracy of 85.00% demonstrates
the classifier’s robustness in handling a large dataset with
diverse types of articles. The consistent macro and weighted
averages for precision, recall, and F1-score reflect the
classifier’s balanced performance across different classes.
These metrics collectively highlight the classifier’s reliability
and effectiveness in distinguishing between human-generated
and AI-generated scientific articles in the Kaggle DAGPap22
dataset.

Figure 7 (b) shows the confusion matrix for the Liyanage
Benchmark dataset. This matrix summarizes the performance
of a classifier on the Liyanage Benchmark dataset, which
consists of human-generated scientific articles (Class 0) and
AI-generated articles (Class 1). The classifier demonstrates
high precision (87.00% for Class 0 and 89.00% for Class
1) and recall (87.00% for Class 0 and 89.00% for Class
1), resulting in strong F1-scores (87.00% for Class 0 and
89.00% for Class 1). With 31 human-generated articles and
35 AI-generated articles, the classifier achieves an overall
accuracy of 88.00% across 66 instances. The macro and
weighted averages for precision, recall, and F1-score are
all consistently 88.00%, indicating balanced performance
across both classes. Additionally, the classifier correctly
classified 87.10% of human-generated articles and 88.57%
of AI-generated articles. The strengths of this classifier are
evident from its performance metrics. High precision and
recall for both classes indicate that the classifier effectively
distinguishes between human-generated and AI-generated
articles with a low rate of false positives and false negatives.
The balanced performance metrics, as reflected in the macro
and weighted averages, suggest that the classifier performs
consistently well across different types of articles. The
high overall accuracy of 88.00% and the close F1-scores

for both classes highlight the classifier’s robustness and
reliability. The specific correct classification rates provide
clear evidence of its effectiveness, making it a strong tool for
accurately identifying the nature of scientific articles in the
Liyanage Benchmark dataset. This performance highlights
the potential of the proposed approach to be implemented
in real-world applications where resource efficiency is as
critical as detection accuracy.

One of the key strengths of this model is its hybrid
architecture, which integrates part-of-speech tagging, Bi-
LSTM networks, and attention modules. By leveraging
convolutional layers to extract local contextual features
and Bi-LSTM layers to capture long-term dependencies,
the model effectively understands the nuances of text
sequences from both past and future contexts. The attention
mechanism further enhances this capability by emphasizing
critical components of the sequences, allowing the model
to focus on the most relevant data for classification. This
comprehensive feature extraction process ensures that the
model can accurately identify subtle differences between
human and AI-generated texts.

The integration of a residual connection to concatenate the
outputs from the attention and initial modules plays a vital
role in maintaining a rich feature set while preventing the loss
of important information. This architecture ensures that the
model can handle complex patterns in text data, balancing
feature richness with computational efficiency.

The final classification through dense layers provides a
robust decision-making process, culminating in the high
accuracy observed in the evaluations. The implications
of this study are significant, especially in the context
of academic publishing. The ability to accurately detect
AI-generated texts is vital for maintaining the integrity of
research publications.With the rapid advancements in natural
language processing, the misuse of AI to generate fraudulent
or low-quality content poses a serious threat to the academic
community.

Our model offers a robust solution to this problem,
providing a tool that can help publishers and researchers
ensure the authenticity and quality of published works.
Furthermore, the reduced computational complexity of the
model makes it accessible for implementation in various
settings, from academic institutions to large-scale publishing
platforms. This efficiency does not compromise its accuracy,
making it a viable option for continuous monitoring and
detection of AI-generated texts in real-time applications.

The proposed model represents a significant advancement
in the detection of AI-generated texts, combining high accu-
racy with computational efficiency. Its hybrid architecture
and comprehensive feature extraction process enable it to
effectively differentiate between human and AI-generated
content. This study highlights the importance of developing
robust detection mechanisms to safeguard the quality and
integrity of academic publishing, and our model stands as a
promising solution tomeet this pressing need. Future research
could further enhance this model by exploring additional
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linguistic features and expanding its applicability to other
domains where AI-generated content poses a risk.

VI. CONCLUSION
In the study, we introduce a novel algorithm that employs
advanced machine learning techniques to effectively detect
AI-generated texts, addressing the increasing difficulty in
distinguishing between human and AI-generated content
due to rapid advancements in natural language processing.
The misuse of such texts poses significant threats to the
quality and integrity of academic publishing, highlighting the
urgent need for reliable detection mechanisms to safeguard
information quality and trust.

The proposed feature-based hybrid deep learning model
incorporates part-of-speech tagging and integrates Bidi-
rectional Long Short-Term Memory (Bi-LSTM) networks
with an attention mechanism. The initial module leverages
convolutional layers to extract local contextual features, while
the Bi-LSTM layers capture long-term dependencies from
both past and future sequences. The attention mechanism
further refines the model by emphasizing critical sequence
components, enhancing focus on relevant data. Residual
concatenation of features from the attention and initial
modules ensures a comprehensive representation, which is
passed through dense layers for final classification. This
structure balances feature richness and computational effi-
ciency. The model’s evaluation on two benchmark datasets—
Kaggle DAGPap22 and the Liyanage Benchmark—showed
it outperformed existing algorithms, achieving high accuracy
rates of 85.00% and 88.00%, respectively, with reduced
computational complexity.

A key limitation of this model is its reliance on part-
of-speech tagging designed specifically for English, which
may reduce its effectiveness for other languages. Adapting
the tagging protocol is necessary for languages with distinct
syntactic structures, while for those with less-developed part-
of-speech tagging tools, the model may be less applicable.
In addition, although the model performs well on current
datasets, further refinement may be required to handle
domain-specific texts such as medical or legal documents,
where specialized terminology could affect accuracy.

Future work will focus on expanding the model to multiple
languages by incorporating language-specific or multilingual
embeddings and retraining with appropriate part-of-speech
tagging schemes. Testing on multilingual datasets will
help refine the approach to accommodate diverse syntactic
structures and improve cross-linguistic performance. Future
work will also include expanding the dataset pool and
further comparisons with real-time systems to reinforce the
effectiveness of this approach.

ABBREVIATIONS
ANN Artificial Neural Networks
BERT Bidirectional Encoder Representations from

Transformers

Bi-LSTM Bidirectional Long Short-Term Memory
CFG Context-Free Grammar
CNN Convolutional Neural Network
ETC Extra Trees Classifier
GCN Graph Convolutional Network
GPT Generative Pre-Training
GLTR Giant Language model Test Room
GRU Gated Recurrent Unit
LLM Large Language Model
LR Logistic Regression
LSTM Long Short-Term Memory
PCA Principal Component Analysis
POS Part Of Speech
RNN Recurrent Neural Network
RoBERTa Robustly optimized BERT approach
RoFT Real or Fake Text
SGD Stochastic Gradient Descent
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
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