
Power-Performance Analysis of JVM Implementations

Hitoshi Oi
Department of Computer Engineering

The University of Aizu,
Aizu Wakamatsu, JAPAN
Email: oi@oslab.biz

Abstract—Java Virtual Machines (JVMs) work between the
Java application programs and the operating systems (and
their underlying hardware platforms) to provide the ’write -
once run-anywhere’ property of the Java language. However,
this property also implies that the runtime efficiency, in terms
of both performance and power-consumption, can be affected
by the implementations of JVM.

In this paper, we present a case study of performance-power
analysis of JVM implementations. We run SPECjvm2008
with OpenJDK and IBM I9 on an Atom-based netbook with
Ubuntu operating system. Our observations are as follows:
(1) the relative performance of OpenJDK ranges from 44 to
289% of J9, (2) the dynamic power consumption ranges from
2.8 to 7.2 Watts among benchmark programs. However, the
power consumptions of two JVMs for the same workload are
relatively similar. Therefore, the power-performance efficiency
is mostly affected by the relative performance. (3) the
effectiveness of multi-threading varies among benchmark
programs as well as among JVMs. In general, running
benchmark with a single-thread loses more in performance
than in power consumption. Exceptions are compress, fft.small
(OpenJDK only) and lu.small. (4) for most benchmark
programs (except scimark), the power consumptions seem to
be correlated to linear and square root of L2 reference and
L2 miss rates, respectively.

Keywords SPECjvm2008, Performance Evaluation, Power
Consumption

I. I NTRODUCTION

Java is one of the most popular and standard programming
languages these days. It runs on various platforms, such as
smart phones, to the data center servers handling a huge
number of requests each second. One of the reasons of Java’s
popularity can be attributed to the Java Virtual Machine
(JVM), which is a virtual instruction set architecture [1] of
Java. Unlike other high-level programming languages, that
are compiled into the machine languages of the underly-
ing processors, Java applications are complied into JVM’s
instructions, called Java bytecodes.

JVMs need to perform the the operations specified by
the bytecodes of the applications. The details of JVM
implementation are left flexible: some are optimized for
the execution time and some others are designed for small
memory footprints. However, due to this flexibility of JVM

implementation, the runtime behavior of Java applications
can be affected by various factors, such as:

(1) When a Java application is started, JVM is invoked and
its own data structures are initialized. (2) JVM plays the role
of memory management, especially the garbage collection.
(3) modern JVMs utilize dynamic compilation techniques:
Consequently, the performance and power-efficiency of Java
applications on the same hardware platform with the same
operating system can be quite different depending on the
JVM.

In this paper, we present a case study of analyzing JVM
implementations in terms of performance and power con-
sumption. As the workload, we use SPECjvm2008, which
is a benchmark suite from SPEC for evaluating client-side
JVMs [2], on two popular open-source JVMs, OpenJDK [3]
and IBM J9 [4]. In addition to the executions in the base
configuration, we present the effects of multi-threading and
slower clock speed and the correlation of cache reference
parameters to the power consumption.

This paper is organized as follows. In the next section, the
workload of SPECjvm2008 is described. The measurement
results and their analysis, including the comparisons between
OpenJDK and J9 and the effects of multi-threading and
clock speed, are presented in Section III. Related work
are introduced in Section IV and the paper concludes in
SectionV.

Disclosure

SPECjvm2008 is a trademark of the Standard Perfor-
mance Evaluation Corp. (SPEC). The use of SPECjvm2008
in this paper falls into the “Research and Academic Usage of
SPECjvm2008” in [5]. The results of running SPECjvm2008
presented in this paper are not audited by SPEC and must not
be compared to any officially published results from SPEC.

II. SPECJVM2008

In this section, a brief description of SPECjvm2008
workload is presented. SPECjvm2008 consists of 38 bench-
mark programs that are classified into the eleven cate-
gories listed in Table I.compiler consists of two bench-
marks, compiler.compiler and compiler.sunflow. The former
compiles javac itself and the latter compiles another

benchmark program, sunflow, in SPECjvm2008.compress
is a compression workload based on Lempel-Ziv method
(LZW). This program is ported from SPEC CPU95 [6],
but the input is a real data rather than the synthesized
one in SPEC CPU95.crypto has three sub-benchmark pro-
grams of encryption, decryption and sign-verification using
different protocols: crypto.aes (AES and DES protocols),
crypto.rsa (RSA) and crypto.signverify (MD5withRSA,
SHA1withRSA, SHA1withDSA and SHA256withRSA).
derby is a database benchmark in Java and it is to replace
the db benchmark in SPEC JVM98. It is designed to
represent a more realistic application than db and to stress
the BigDecimal library.mpegaudiois an mp3 decoding
benchmark and corresponds to the benchmark with the same
name in JVM98. The mp3 library of mpegaudio in JVM98
has been replaced with JLayer [7]. It evaluates the floating-
point operations of the JVM. SciMark is a computational
benchmark suite in Java developed by NIST [8]. It consists
of five sub benchmark programs (fft, lu, montecarlo, sor
and sparse). In SPECjvm2008, they are executed with a large
data set (32MB) for testing the memory hierarchy and a
small (512KB) data set for testing the JVM itself.serial op-
erates in a producer-consumer scenario, where the producer
serializes primitives and objects from JBoss benchmark and
sends them over the socket to the consumer. These data
are deserialized at the consumer. Instartup, a new JVM
is started for each benchmark in SPECjvm2008 and it runs
one iteration of the benchmark. The time from starting up
the JVM to the end of the benchmark iteration is measured.
sunflowis a multi-threaded rendering benchmark program.
It starts with half the number of threads as the number of
logical CPUs, and each of these threads spawns four threads
inside the program.xml is made of two sub-benchmark
programs: xml.transform and xml.validation. The former
evaluates the implementation ofjava.xml.transformof the
JVM under test, while the latter usesjava.xml.validation
to compare the XML files and corresponding XML spec-
ifications in .xsd files. SPEC defines two categories to run
SPECjvm2008: Base and Peak. While no optimization is
allowed in the Base category, any optimizations are allowed
in the Peak category. In this paper, we run the benchmark
in the base category, i. e. no optimization is used, except
limiting the number of threads to one in Section III-C.
Except startup, each benchmark is executed for six minutes:
first two minutes are for warming-up the JVM and the rest
are for the actual measurement.

III. POWER-PERFORMANCEANALYSIS

In this section, we first describe the platform used for the
measurement, and then present the results of measurement
and analysis.

Category Description & Sub-Benchmarks

compiler Compilation of .java files.
compiler.compiler, compiler.sunflow

compress Compression by LZW method.
crypto Encryption and decryption.

crypto.aes, crypto.rsa, crypto.signverify
derby Database focused on BigDecimal.
mpegaudio Mp3 decoding.
scimark.large Floating point benchmark with
scimark.small 32MB and 512KB datasets.

scimark.fft.large, scimark.fft.small
scimark.lu.large, scimark.lu.small
scimark.montecarlo, scimark.sor.large
scimark.sor.small, scimark.sparse.large
scimark.sparse.small

serial Primitive and object (de)serializations.
startup JVM launch time for each benchmark.

startup.compiler.compiler,
startup.compiler.sunflow
startup.compress, startup.crypto.aes
startup.crypto.rsa,
startup.crypto.signverify
startup.helloworld, startup.mpegaudio
startup.scimark.fft, startup.scimark.lu
startup.scimark.montecarlo,
startup.scimark.sor
startup.scimark.sparse, startup.serial
startup.sunflow, startup.xml.transform
startup.xml.validation

sunflow Graphics visualization (rendering).
xml XML transform and validation.

xml.transform, xml.validation

Table I
SPECJVM2008 WORKLOAD CATEGORIES

A. Experimental Environment

Table II shows the specifications of the hardware and
software of the measurement platform. We use a netbook
with an Intel Atom N270 which is a single core CPU with
Hyperthreading [9], running Ubuntu operating system. For
the measurement of power consumption, we use a Watts up ?
Pro 99333 power meter [10]. The monitor screen is darkened
by the screen saver as SPECjvm2008 does not use any
graphics.

We use two JVM implementations, OpenJDK [3] and
IBM J9 [4]. OpenJDK is an open-source implementation
of Java language begun by Sun Microsystems in 2006. We
use IcedTea6 1.9.5 version which came with the Ubuntu
operating system. J9 is an implementation of Java by IBM
available for various platforms, such as Power7 or System Z.

B. Measurement Results of Base Configuration

Table III shows the performance and power consumption
of OpenJDK and J9. For the performance metrics, we use the
number of iterations that each benchmark can execute per
minute (I). When the CPU is running with Hyperthreading,
the measurement platform (Dell Inspiron Mini 9) consumes
6.9W of power in the idle state. W in Table III indicates the
increase of the power consumption from the idle state. I and

Component Specification
Platform Dell Inspiron Mini 9

CPU Atom N270 (1.6GHz, TDP 2.5W)
Cache Sizes 32KB (L1I), 24KB (L1D), 512KB (L2)

Memory 1GB
OS Ubuntu 10.04.2 LTS (kernel 2.6.32-28)

OpenJDK Java 1.6.020 IcedTea6 1.9.5
J9 Java 1.6.0 Build 2.4, SR9-FP1

Power Meter Watts up ? Pro 99333

Table II
MEASUREMENTENVIRONMENT

W in Ratios represent these metrics of OpenJDK divided by
those of J9. Eff is (I/W) of OpenJDK divided by that of J9.

First, we see that the relative performance between JVMs
varies among benchmark programs: OpenJDK is 289%
of J9 for startup.helloworld, but it is only 44% for sci-
mark.montecarlo. Second, the power consumption varies
largely among benchmark programs, but not between two
JVMs. As a result, performance-power ratios are close
to the relative performance. Among benchmark categories,
scimark.* have high power consumptions. The exception is
monte carlo. It is aπ computation program using randomly
generated points in a square. From our past experience [11],
it is known to have shorter loop-bodies in bytecode (on
average, 54 bytecodes while other scimark.* are 300 or
more bytecodes long) that leads to frequent method invo-
cations and fewer chances of local variable reuses. These
two characteristics make montecarlo more similar to other
benchmarks than to scimark.*. In scimark.*, there are two
data sets; large and small. Intuitively, *.large benchmarks
should consume more power than *.small as the former
place more pressure on the memory hierarchy. sparse is
the exception to this intuition: it consumes 24 and 10%
more power for the smaller data sets on OpenJDK and J9,
respectively.

C. Effect of Multi-Threading

By default, SPECjvm2008 workloads spawn the number
of threads equal to the number of logic CPUs of the
system. Since we use an Atom N270 which is a single
core with Hyperthreading, two threads are spawned and
execute workloads. There are two exceptions for this default
number of benchmark threads:startup.* andsunflow
benchmarks. The former is single-threaded and the latter
spawns half the number of logical CPUs (and each of them
splits into four threads inside the benchmark). In this section,
to investigate the effectiveness of multi-threading, we limit
the number of benchmark thread to one with the-bt 1
option.

Table IV shows the measurement results of single-thread
executions. The effectiveness of multi-threading in perfor-
mance varies significantly among benchmark programs as
well as between JVMs. The numbers in parentheses below

OpenJDK J9 Ratios
Benchmark I W I W I W Eff
compiler
compiler 17.2 3.8 21.4 4.1 0.81 0.93 0.87
sunflow 6.3 3.8 8.5 4.0 0.73 0.93 0.79
compress 10.1 4.2 10.6 4.3 0.95 0.98 0.97
crypto
crypto.aes 2.9 3.1 6.3 3.2 0.45 0.99 0.46
crypto.rsa 6.1 3.0 11.7 3.2 0.52 0.95 0.55
crypto.signverify 10.3 3.2 15.4 3.3 0.67 0.97 0.69
derby 7.8 3.5 5.8 3.9 1.35 0.89 1.52
mpegaudio 4.8 3.2 8.1 3.4 0.60 0.94 0.64
scimark
fft.large 4.4 6.5 4.5 6.5 0.98 1.01 0.97
fft.small 8.7 6.5 9.8 6.4 0.89 1.02 0.87
lu.large 1.2 7.2 1.3 7.2 0.90 1.00 0.91
lu.small 10.0 6.2 11.7 6.1 0.86 1.01 0.85
monte carlo 4.6 3.2 10.4 3.1 0.44 1.02 0.43
sor.large 3.0 5.0 4.5 5.6 0.69 0.90 0.76
sor.small 13.5 5.0 20.4 5.5 0.66 0.92 0.72
sparse.large 2.2 5.0 2.4 5.1 0.90 0.98 0.92
sparse.small 10.2 6.2 8.3 5.6 1.22 1.10 1.11
serial 4.6 3.4 5.6 3.7 0.82 0.92 0.89
sunflow 4.0 3.4 4.1 3.5 0.97 0.96 1.01
xml
xml.transform 10.7 3.6 9.0 4.0 1.19 0.89 1.33
xml.validation 15.6 3.5 23.1 3.8 0.67 0.91 0.74
startup
compiler.compiler 3.2 3.5 1.3 4.0 2.53 0.88 2.88
compiler.sunflow 2.7 3.5 1.3 4.0 2.00 0.88 2.29
compress 7.0 3.2 5.3 3.6 1.33 0.90 1.48
crypto.aes 2.0 2.9 2.3 3.5 0.84 0.83 1.01
crypto.rsa 4.2 2.9 3.6 3.6 1.17 0.80 1.46
crypto.signverify 6.5 2.9 3.2 3.4 2.08 0.87 2.39
helloworld 103.2 3.8 35.8 3.8 2.89 1.00 2.89
mpegaudio 2.9 2.8 2.6 3.7 1.15 0.76 1.52
fft 7.2 4.0 6.0 4.2 1.20 0.96 1.24
lu 6.3 3.5 5.5 3.7 1.14 0.92 1.24
monte carlo 2.8 2.9 3.7 3.1 0.75 0.95 0.79
sor 7.0 3.4 7.4 3.5 0.94 0.96 0.98
sparse 6.3 4.3 4.6 4.1 1.37 1.05 1.30
serial 3.0 3.1 2.0 4.0 1.49 0.79 1.88
sunflow 3.4 3.3 1.5 3.6 2.24 0.92 2.42
xml.transform 0.4 2.8 0.3 3.3 1.51 0.84 1.80
xml.validation 6.4 3.3 3.2 3.9 1.97 0.84 2.36

Table III
BASE CONFIGURATION MEASUREMENTRESULTS. I IS THE NUMBER OF
ITERATIONS EACH BENCHMARK RUNS PER MINUTE. W IS THE DYNAMIC

POWER(INCREASE FROM THE IDLE STATE) IN WATTS. I AND W IN

RATIOS REPRESENT METRICS OFOPENJDK DIVIDED BY J9,
RESPECTIVELY. EFF IN RATIOS REPRESENTS THE RATIO OFI/W

BETWEEN OPENJDK AND J9.

I in Table IV represent the relative performance of single-
thread executions. In terms of performance, the smaller the
this number, the more effective to run the benchmark with
two threads. The most typical example is scimark.sor.large
on J9, whose performance is almost halved with a single
thread. For the difference between JVMs, we can see two
extreme cases in xml.transform and scimark.fft.small: in
the former benchmark, multi-threading is more effective in
OpenJDK (71% vs 88%) but the opposite is true for the
latter benchmark (82% vs 74%).

In terms of performance-power consumption balance, the

OpenJDK J9
Benchmark I W Eff I W Eff
compiler
compiler 13.3 3.3 0.89 18.0 3.5 0.98

(0.77) (0.87) (0.84) (0.86)
sunflow 5.1 3.3 0.92 7.0 3.5 0.93

(0.82) (0.88) (0.82) (0.88)
compress 8.0 3.1 1.07 8.3 3.1 1.09

(0.79) (0.74) (0.79) (0.72)
crypto
aes 2.0 2.8 0.78 4.1 2.8 0.74

(0.70) (0.91) (0.65) (0.88)
rsa 4.7 2.9 0.82 8.3 2.8 0.81

(0.77) (0.94) (0.71) (0.88)
signverify 7.8 2.9 0.82 11.4 2.9 0.84

(0.76) (0.92) (0.74) (0.88)
derby 5.2 3.0 0.76 3.6 3.4 0.71

(0.66) (0.88) (0.62) (0.87)
mpegaudio 3.1 2.8 0.74 5.1 2.9 0.73

(0.65) (0.87) (0.62) (0.86)
scimark
fft.large 3.1 5.1 0.89 3.0 5.1 0.83

(0.69) (0.78) (0.66) (0.79)
fft.small 7.1 4.5 1.18 7.3 4.4 1.06

(0.82) (0.69) (0.74) (0.70)
lu.large 0.8 5.6 0.84 0.8 5.4 0.81

(0.65) (0.78) (0.60) (0.75)
lu.small 6.8 3.6 1.17 7.7 3.4 1.18

(0.68) (0.58) (0.66) (0.55)
monte carlo 3.0 2.9 0.72 6.6 2.8 0.71

(0.66) (0.91) (0.64) (0.90)
sor.large 1.7 3.8 0.74 2.4 4.0 0.76

(0.55) (0.75) (0.54) (0.71)
sor.small 7.5 3.3 0.85 11.7 3.4 0.93

(0.56) (0.66) (0.57) (0.61)
sparse.large 1.4 3.9 0.79 1.3 3.8 0.71

(0.62) (0.79) (0.54) (0.76)
sparse.small 6.9 4.9 0.86 6.0 4.5 0.89

(0.68) (0.79) (0.72) (0.81)
serial 3.4 3.1 0.83 3.9 3.3 0.78

(0.75) (0.91) (0.70) (0.89)
sunflow 4.0 3.5 0.97 4.1 3.6 0.98

(1.00) (1.03) (1.00) (1.02)
xml
transform 7.6 3.1 0.80 7.9 3.6 0.97

(0.71) (0.88) (0.88) (0.91)
validation 10.5 3.1 0.75 17.0 3.3 0.85

(0.67) (0.90) (0.74) (0.87)

Table IV
MEASUREMENTRESULTS OFSINGLE-THREAD EXECUTIONS.

NUMBERS IN PARENTHESES BELOWI AND W ARE THE RATIOS OFI AND

W AGAINST THOSE OF DUAL THREAD EXECUTIONS(TABLE III). E FF IS
I/W OF SINGLE-THREAD DIVIDED BY THAT OF DUAL THREAD .

relative performances of single-thread executions have a
different meaning. If the multi-threading is not very effec-
tive in terms of performance, we may choose to run the
program with a single thread to expect power reduction.
Eff columns in Table IV present the ratios between relative
performance and power consumption (ratios of I/W in dual
and single thread executions). In general, we lose more
in performance than in power-consumption. Exceptions are
compress, fft.small (OpenJDK only) and lu.small. Like dual-
thread executions, the difference of power consumption

between JVMs is small and it is the relative performance
which determines the effectiveness of choosing single-thread
execution. The most typical case is fft.small; its relative
performance of single-thread execution on OpenJDK is 84%
which is higher than the relative power consumption (68%).
The relative performance of the same benchmark on J9 is
only 66% and we see that the single-thread execution is
not a feasible option for J9 in terms of performance-power
balance.

D. Effect of Clock Speed

Atom N270 is equipped with the Enhanced Intel Speed-
Step Technology [12], which enables the system to dynam-
ically adjust the clock speed and the voltage. The measure-
ments in the previous sections have all been executed at
Atom N270’s default maximum clock frequency (1.6GHz).
In this section, we limit the clock frequency to 800MHz
usingcpufreq-set [13] and analyze the effect of lower
clock frequency.

Tables V and VI show the performance and power con-
sumption at the clock frequency of 800MHz. We use the
same notations as Table IV for I, W and Eff. With few
exceptions, the relative performance is around 50% of the
1.6GHz execution. First type of exceptions include sci-
mark.fft and scimark.lu whose performance are significantly
higher than 50% (68 to 75%). As we will see in the next
subsection, for scimark.fft, the high L2 miss rates could
be the reason; slowing down the clock frequency makes
the relative speed of memory access faster (i.e. lower miss
penalty). However, this reason is not applicable (at least,
naively) to scimark.lu, since there are seven benchmarks
that have higher L2 miss rates than scimark.lu on both
JVMs. Another type of exception is xml.validation on J9,
whose performance is reduced to 37% of 1.6GHz. Unlike
scimark.fft and scimark.lu, this performance degradation
only happened to J9 as the relative performance of OpenJDK
is 52%.

The relative power consumption ranges from 52% (sci-
mark.sparse.large on J9) to 72% (scimark.fft.large on both
JVMs). As mentioned above, scimark.fft and scimark.lu are
not slowed down as other benchmarks with 800MHz clock
and they have relatively high cache reference and miss rates.
Therefore, it is considered that these workloads have high
utilizations of both functional units and memory hierarchies.
Efficiencies (Eff) are around 90% or higher. Exceptions are
compiler.* and xml.* (and some of startup.*) on J9, which
should be the results of their lower performances than 50%
at 800Mhz clock frequency.

E. Microoperation and Cache Reference

Using Oprofile (version 0.9.6) [14], we have measured the
numbers of retired micro-operation (U), L2 cache reference
(R) and L2 cache miss (M) against 1, 10 and 100 clock
cycles as shown in Table VII. First, we could not have found

OpenJDK J9
Benchmark I W Eff I W Eff
compiler
compiler 9.3 2.2 0.94 9.2 2.4 0.74

(0.54) (0.57) (0.43) (0.58)
sunflow 3.3 2.1 0.93 3.6 2.3 0.73

(0.53) (0.57) (0.42) (0.57)
compress 5.4 2.4 0.94 5.8 2.6 0.93

(0.54) (0.57) (0.55) (0.59)
crypto
aes 1.4 1.7 0.92 3.2 1.8 0.90

(0.50) (0.55) (0.51) (0.56)
rsa 3.0 1.6 0.93 5.7 1.7 0.93

(0.50) (0.54) (0.49) (0.53)
signverify 5.2 1.7 0.93 7.6 1.7 0.93

(0.50) (0.54) (0.50) (0.53)
derby 4.0 2.0 0.90 2.9 2.2 0.86

(0.51) (0.57) (0.50) (0.58)
mpegaudio 2.4 1.7 0.91 4.0 1.9 0.88

(0.50) (0.55) (0.49) (0.55)
scimark
fft.large 3.3 4.7 1.04 3.4 4.7 1.04

(0.75) (0.72) (0.75) (0.72)
fft.small 6.2 4.4 1.06 6.7 4.3 1.02

(0.71) (0.68) (0.68) (0.67)
lu.large 0.7 3.9 1.03 0.8 4.2 1.10

(0.55) (0.53) (0.63) (0.58)
lu.small 5.4 3.4 0.98 6.5 3.5 0.97

(0.54) (0.54) (0.56) (0.58)
monte carlo 2.3 1.7 0.94 5.2 1.7 0.91

(0.50) (0.53) (0.50) (0.55)
sor.large 1.5 2.6 0.98 2.3 2.9 0.98

(0.51) (0.52) (0.51) (0.52)
sor.small 6.8 2.6 0.96 10.3 3.0 0.92

(0.50) (0.53) (0.50) (0.55)
sparse.large 1.2 2.7 0.98 1.0 2.6 0.79

(0.53) (0.54) (0.41) (0.52)
sparse.small 5.2 3.2 0.99 4.2 3.0 0.96

(0.51) (0.51) (0.50) (0.53)
serial 2.3 1.9 0.89 2.4 2.2 0.72

(0.50) (0.57) (0.43) (0.59)
sunflow 2.0 2.0 0.87 2.1 2.1 0.86

(0.50) (0.58) (0.50) (0.58)
xml
xml.transform 5.4 2.0 0.89 4.0 2.3 0.78

(0.51) (0.57) (0.45) (0.57)
xml.validation 8.1 2.0 0.91 8.5 2.3 0.62

(0.52) (0.57) (0.37) (0.60)

Table V
PERFORMANCE ANDPOWER CONSUMPTION AT 800 MHZ CLOCK

potential correlations between U and relative performance
or power consumption. In Java applications, a higher U
does not always mean a higher (application) performance.
This is because, for example, a JVM may have to execute
more native instructions than another JVM for the same Java
bytecode. In other words, a higher U may be the result of
inefficient bytecode interpretation/compilation. For example,
Us for crypto.* in J9 are lower than those in OpenJDK.
However, the performances of J9 for these benchmarks are
better than OpenJDK. Moreover, despite discrepancies in Us,
two JVM consume almost the same power (Table III).

Figure 1 and 2 plot the pairs of the power consumption

OpenJDK J9
Benchmark I W Eff I W Eff
startup
c.compiler 1.7 2.1 0.88 0.6 2.3 0.86

(0.53) (0.60) (0.50) (0.58)
c.sunflow 1.4 2.1 0.88 0.6 2.3 0.84

(0.53) (0.60) (0.48) (0.57)
compress 3.6 1.9 0.87 2.8 2.1 0.94

(0.51) (0.59) (0.54) (0.57)
crypto.aes 1.0 1.7 0.86 1.2 2.0 0.88

(0.50) (0.59) (0.50) (0.57)
crypto.rsa 2.1 1.6 0.89 1.7 2.0 0.84

(0.51) (0.57) (0.48) (0.57)
crypto.signverify 3.3 1.7 0.88 1.8 1.9 0.99

(0.51) (0.58) (0.56) (0.56)
helloworld 54.9 2.1 0.96 21.2 2.2 1.03

(0.53) (0.55) (0.59) (0.58)
mpegaudio 1.5 1.6 0.86 1.2 2.1 0.81

(0.50) (0.58) (0.45) (0.56)
s.fft 4.1 2.6 0.88 3.5 2.7 0.92

(0.56) (0.64) (0.59) (0.64)
s.lu 3.2 2.0 0.87 2.9 2.2 0.89

(0.51) (0.58) (0.52) (0.59)
s.montecarlo 1.4 1.6 0.91 1.9 1.7 0.91

(0.51) (0.56) (0.50) (0.55)
s.sor 3.5 2.0 0.87 3.9 2.1 0.89

(0.50) (0.58) (0.52) (0.59)
s.sparse 3.2 2.5 0.87 2.4 2.4 0.89

(0.51) (0.58) (0.52) (0.58)
serial 1.5 1.8 0.88 1.0 2.2 0.86

(0.51) (0.58) (0.49) (0.57)
sunflow 1.7 1.9 0.89 0.6 2.0 0.74

(0.51) (0.57) (0.41) (0.56)
xml.transform 0.2 1.7 0.84 0.1 2.0 0.81

(0.51) (0.61) (0.48) (0.59)
xml.validation 3.4 2.0 0.87 1.5 2.2 0.81

(0.53) (0.61) (0.46) (0.57)

Table VI
PERFORMANCE ANDPOWER CONSUMPTION AT 800 MHZ CLOCK (2)

and L2 cache reference and miss rates (against clock cy-
cles), respectively. In these graphs, scimark.* (except sci-
mark.montecarlo) and other benchmark programs occupy
different regions (as a result of scimark.*’s higher power
consumption). Intuitively, the power consumptions of non-
scimark benchmarks seem to be correlated to linear and
square root of L2 reference rate and L2 miss rate. Using the
fit command of gnuplot, functions for power consumption by
L2 reference rate (r) and L2 miss rate (m) are obtained and
plotted in Figure 1 and 2, respectively. Generally, data points
look to fit well to the functions with few exceptions such
as startup.mpegaudio at(2.4 × 10−3

, 2.83) for OpenJDK
or startup.scimark.sparse at(4.930 × 10−3

, 4.09) for J9 in
Figure 1.

IV. RELATED WORK

In [15], authors evaluated the performance and power of
Java applications on IA-32 microprocessors with fabrication
technologies ranging from 120nm to 32nm. For the single
and multi-thread benchmarks, they used SPEC JVM98 and
and SPECjbb2005 (and other server applications), respec-

OpenJDK J9
Benchmark U R M U R M
compiler
compiler 0.26 0.14 0.12 0.30 0.12 0.15
sunflow 0.28 0.12 0.09 0.32 0.11 0.12
compress 0.38 0.14 0.23 0.36 0.15 0.25
crypto
aes 0.69 0.01 0.01 0.63 0.01 0.02
rsa 0.73 0.00 0.00 0.62 0.01 0.01
signverify 0.75 0.01 0.01 0.68 0.01 0.02
derby 0.32 0.11 0.07 0.30 0.12 0.11
mpegaudio 0.56 0.03 0.01 0.54 0.04 0.02
scimark
fft.large 0.15 0.08 0.48 0.11 0.09 0.49
fft.small 0.25 0.10 0.42 0.18 0.11 0.41
lu.large 0.49 0.09 0.08 0.32 0.09 0.08
lu.small 0.55 0.07 0.09 0.32 0.08 0.11
monte carlo 0.58 0.00 0.00 0.59 0.00 0.00
sor.large 0.50 0.06 0.02 0.29 0.09 0.03
sor.small 0.56 0.03 0.02 0.31 0.04 0.03
sparse.large 0.39 0.07 0.16 0.31 0.07 0.18
sparse.small 0.63 0.07 0.05 0.67 0.06 0.05
serial 0.37 0.07 0.03 0.38 0.09 0.07
sunflow 0.42 0.04 0.02 0.42 0.04 0.04
xml
transform 0.40 0.09 0.05 0.35 0.10 0.08
validation 0.29 0.15 0.06 0.33 0.13 0.08
startup
compiler.compiler 0.22 0.09 0.10 0.33 0.10 0.11
compiler.sunflow 0.23 0.08 0.09 0.33 0.10 0.11
compress 0.30 0.09 0.06 0.32 0.09 0.08
crypto.aes 0.51 0.01 0.01 0.43 0.05 0.05
crypto.rsa 0.54 0.01 0.01 0.43 0.06 0.06
crypto.signverify 0.53 0.01 0.01 0.42 0.09 0.04
helloworld 0.25 0.06 0.08 0.32 0.07 0.09
mpegaudio 0.38 0.02 0.01 0.43 0.09 0.06
scimark.fft 0.21 0.08 0.22 0.20 0.08 0.20
scimark.lu 0.37 0.05 0.03 0.29 0.06 0.06
scimark.montecarlo 0.39 0.01 0.01 0.35 0.02 0.02
scimark.sor 0.32 0.02 0.02 0.27 0.04 0.05
scimark.sparse 0.42 0.05 0.03 0.43 0.05 0.04
serial 0.26 0.06 0.04 0.35 0.10 0.11
sunflow 0.39 0.05 0.03 0.38 0.07 0.05
xml.transform 0.20 0.07 0.02 0.26 0.10 0.05
xml.validation 0.22 0.10 0.08 0.33 0.10 0.10

Table VII
RATES OFRETIRED M ICROOPERATION(U), L2 CACHE REFERENCE(R)

AND L2 CACHE M ISS (M) PER1, 10AND 100 CLOCK CYCLES,
RESPECTIVELY

.

tively. SPECjvm2008, used in this paper, is targeted to client-
side JVMs but also multi-threaded, to reflect the trend of (si-
multaneous) multi-threading and multi-core implementations
of modern CPUs. [16] proposed a software based power
analyzer for multi-core systems. Their model takes two input
parameters, clock frequency and IPC, which is obtained
from the performance counters, and predicts the dynamic
power dissipation. They used SPECjvm2008 for evaluating
the accuracy of their model.

[17] analyzes the workload of SPECjvm2008 on high-end
desktop processors (Core 2 Duo and Core i7) in various as-
pects, including Base vs Peak comparisons (i. e. without and

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

Number of L2 Refernce per Clock Cycles (r)

OpenJDK
scimark.*

53.9*r + 3.04
J9

scimark.*
66.0*r + 3.19

Figure 1. L2 Cache Reference and Dynamic Power Consumption

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005

P
ow

er
 C

on
su

m
pt

io
n

(W
at

t)

Number of L2 Miss per Clock Cycles (m)

OpenJDK
scimark.*

26.5*sqrt(m) + 2.84
J9

scimark.*
31.0*sqrt(m) + 2.89

Figure 2. L2 Cache Miss and Dynamic Power Consumption

with optimizations), clock per instruction and cache/TLB
miss rates, memory allocation behavior and thread scaling.
Seo et. al., defined a framework to estimate the energy
consumption of pervasive Java-based systems [18]. They
first broke the system into components (one or more related
Java classes). The energy cost of each component is further
divided into computational and communication parts. The
former comprises of costs of bytecode interpretation, native
method invocations and monitor operations, while the latter
is defined by the UDP operation parametrized by the data
size. [19] presents power consumption analysis of Atom-
based a mobile Internet device (MID). The options examined
include C6 Deep Power Down State, video formats (data
rates), Hyperthreading and hardware codec acceleration.

SPECpowerssj2008 is a benchmark from SPEC [20]. The
part of its name, ssj, indicates that it is designed to evaluate

the power and performance of server-side Java application.
Its workload is derived from another benchmark from SPEC,
SPECjbb2005 [21] with significant modifications. Energy-
Bench is a benchmark suite from EEMBC to evaluate the
power consumption of embedded devices [22].

V. CONCLUSION

In this paper, we presented a case study in perfor-
mance and power consumption analysis of JVMs with
SPECjvm2008. We used two JVM implementations, Open-
JDK and J9, running on an Atom-based netbook with
Ubuntu operating system. We observed significant differ-
ences in relative performance between two JVMs which also
varied from workload to workload. The power consumption
of both JVMs for the same workload is relatively similar.
Therefore, the power-performance efficiency is also close to
the relative performance. In other words, the choice of JVM
for the workload is important not only for the performance
but also for the power efficiency.

The relative performance and power consumption of
single-thread executions, again, change significantly among
workloads and between JVMs. With few exceptions, the
loss in performance is more than the savings in the power
consumption. When the clock frequency is lowered to
800MHz (50% of the maximum frequency), the relative
performance is also around 50% for most benchmarks with
two exceptions. scimark.fft and scimark.lu on both JVMs
are significantly faster than 50% while xml.validation on
J9 is only 37% of 1.6GHz. It was observed that the power
consumptions of benchmark programs (except scimark) fit
well with linear and square root functions of L2 reference
and L2 miss rates, respectively.

The future work include as follow. As mentioned above,
scimark benchmark programs have different power con-
sumption characteristics than other benchmark programs in
SPECjvm2008. In this paper, we have only measured retired
microoperations and L2 reference and miss rates. We plan
to measure more workload parameters such as the floating
point operation rates and bus utilization. We also plan to
identify the part of benchmark programs as well as JVM
implementations, which dominate the power consumption of
the workloads. The platform used in this paper, an Atom-
based netbook is a low-end model in today’s standard and
use of more powerful machines, such as many-core CPUs
with larger caches, is another direction for our future work.

REFERENCES

[1] Tim Lindholm and Frank Yellin, “The Java(TM) Virtual
Machine Specification (2nd Edition)”, Addison-Wesley Pro-
fessional, 1999

[2] SPECjvm2008, http://www.spec.org/jvm2008/ .

[3] OpenJDK, http://openjdk.java.net/

[4] developerWorks : JavaTM technology :, http://www.ibm.com/
developerworks/java/

[5] “SPECjvm2008 Run and Reporting Rules, “ http://www.spec.
org/jvm2008/docs/RunRules.html .

[6] SPEC CPU95, http://www.spec.org/cpu95/

[7] “MP3 library for the Java Platform,” http://www.javazoom.
net/javalayer/javalayer.html

[8] “Java SciMark 2.0,” http://math.nist.gov/scimark2/

[9] http://www.intel.com/technology/atom/

[10] Electronic Educational Devices, https://www.wattsupmeters.
com/

[11] Hitoshi Oi, “Local Variable Access Behavior of a Hardware-
Translation Based Java Virtual Machine,” inJournal of Sys-
tems and Software, pp2059–2068, Vol. 81, Issue 11, 2008.
Elsevier.

[12] “Enhanced Intel SpeedStep Technology - How To Document,”
http://www.intel.com/cd/channel/reseller/asmo-na/eng/
203838.htm

[13] “Linux kernel CPUfreq subsystem,” http://www.kernel.org/
pub/linux/utils/kernel/cpufreq/cpufreq.html

[14] Oprofile, http://oprofile.sourceforge.net/news/

[15] Hadi Esmaeilzadeh, et. al., “Power and Performance of Native
and Java Benchmarks on 130nm to 32nm Process Technolo-
gies,” Sixth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS 2010), Saint-Malo, France.

[16] Shinan Wang, Hui Chen and Weisong Shi, “SPAN: A software
power analyzer for multicore computer systems,” inSustain-
able Computing: Informatics and Systems, Vol. 1, Issue 1,
March 2011, pp23-34.

[17] Kumar Shiv, et. al., “SPECjvm2008 Performance Charac-
terization,” in Proceedings of the 2009 SPEC Benchmark
Workshop on Computer Performance Evaluation and Bench-
marking, pp17–35, 2009.

[18] Chiyoung Seo, Sam Malek and Nenad Medvidovic, “Es-
timating the Energy Consumption in Pervasive Java-Based
Systems,” inProceedings of the 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and Com-
munications, March 2008, pp243–247.

[19] Petter Larsson, “Power Efficiency - Analysis and SW De-
velopment Recommendations for Intel Atom based MID
platforms,” White Paper, Intel Corporation, March 2009.

[20] SPECpowerssj2008, http://www.spec.org/powerssj2008/ .

[21] SPECjbb2005, http://www.spec.org/jbb2005/ .

[22] EnergyBench, http://eembc.org/benchmark/powersl.php

