Proceedings of the Sth International Conference on
IT & Multimedia at UNITEN (ICIMU 2011) Malaysia

14 — 16 November 2011

Power-Performance Analysis of JVM Implementations

Hitoshi Oi
Department of Computer Engineering
The University of Aizu,
Aizu Wakamatsu, JAPAN

Emai | :

Abstract—Java Virtual Machines (JVMs) work between the
Java application programs and the operating systems (and
their underlying hardware platforms) to provide the 'write -
once run-anywhere’ property of the Java language. However,
this property also implies that the runtime efficiency, in tams
of both performance and power-consumption, can be affected
by the implementations of JVM.

In this paper, we present a case study of performance-power
analysis of JVM implementations. We run SPECjvm2008
with OpenJDK and IBM 19 on an Atom-based netbook with
Ubuntu operating system. Our observations are as follows:
(1) the relative performance of OpenJDK ranges from 44 to
289% of J9, (2) the dynamic power consumption ranges from
2.8 to 7.2 Watts among benchmark programs. However, the
power consumptions of two JVMs for the same workload are
relatively similar. Therefore, the power-performance effciency
is mostly affected by the relative performance. (3) the
effectiveness of multi-threading varies among benchmark
programs as well as among JVMs. In general, running
benchmark with a single-thread loses more in performance
than in power consumption. Exceptions are compress, fft.sail
(OpenJdDK only) and lu.small. (4) for most benchmark
programs (except scimark), the power consumptions seem to
be correlated to linear and square root of L2 reference and
L2 miss rates, respectively.

Keywords SPECjvm2008, Performance Evaluation, Power
Consumption

I. INTRODUCTION

oi @sl ab. bi z

implementation, the runtime behavior of Java applications
can be affected by various factors, such as:

(1) When a Java application is started, JVM is invoked and
its own data structures are initialized. (2) JVM plays thiero
of memory management, especially the garbage collection.
(3) modern JVMs utilize dynamic compilation techniques:
Consequently, the performance and power-efficiency of Java
applications on the same hardware platform with the same
operating system can be quite different depending on the
JVM.

In this paper, we present a case study of analyzing JVM
implementations in terms of performance and power con-
sumption. As the workload, we use SPECjvm2008, which
is a benchmark suite from SPEC for evaluating client-side
JVMs [2], on two popular open-source JVMs, OpenJDK [3]
and IBM J9 [4]. In addition to the executions in the base
configuration, we present the effects of multi-threading an
slower clock speed and the correlation of cache reference
parameters to the power consumption.

This paper is organized as follows. In the next section, the
workload of SPECjvm2008 is described. The measurement
results and their analysis, including the comparisons betw
OpenJdDK and J9 and the effects of multi-threading and
clock speed, are presented in Section Ill. Related work
are introduced in Section IV and the paper concludes in
SectionV.

Java is one of the most popular and standard programmingisclosure

languages these days. It runs on various platforms, such as SPECjvm2008 is a trademark of the Standard Perfor-
smart phones, to the data center servers handling a hugsance Evaluation Corp. (SPEC). The use of SPECjvm2008
number of requests each second. One of the reasons of Javiisthis paper falls into the “Research and Academic Usage of
popularity can be attributed to the Java Virtual MachineSPECjvm2008” in [5]. The results of running SPECjvm2008
(JVM), which is a virtual instruction set architecture [1] 0 presented in this paper are not audited by SPEC and must not
Java. Unlike other high-level programming languages, thabe compared to any officially published results from SPEC.
are compiled into the machine languages of the underly-
ing processors, Java applications are complied into JVM’s Il. SPECVM2008
instructions, called Java bytecodes. In this section, a brief description of SPECjvm2008
JVMs need to perform the the operations specified byworkload is presented. SPECjvm2008 consists of 38 bench-
the bytecodes of the applications. The details of JVMmark programs that are classified into the eleven cate-
implementation are left flexible: some are optimized forgories listed in Table l.compiler consists of two bench-
the execution time and some others are designed for smatharks, compiler.compiler and compiler.sunflow. The former
memory footprints. However, due to this flexibility of JVM compiles j avac itself and the latter compiles another

978-1-4577-0989-0/11/$26.00 ©2011 IEEE

Category

Description & Sub-Benchmarks |

benchmark program, sunflow, in SPECjvm20@8mpress

. . . compiler Compilation of .java files.
is a compression workload based on Lempel-Ziv method compiler.compiler, compiler.sunflow
(LZW). This program is ported from SPEC CPU95 [6], compress Compression by LZW method.
but the input is a real data rather than the synthesized crypto Encrtyptlon and :iecryptlon.t _]
. _ _ crypto.aes, crypto.rsa, crypto.signverify
one in SPEC CP_UQB:rypto hz_:\s three s_ub benghm_ark pro derby Database focused on Bigbecimal.
grams of encryption, decryption and sign-verification gsin mpegaudio Mp3 decoding.
different protocols: crypto.aes (AES and DES protocols), scimark.large | Floating point benchmark with
crypto.rsa (RSA) and crypto.signverify (MD5withRSA, scimark.small ggi'r\]"qg“f’]}f‘:lgrlgzeKBSC‘;';t:fke]Efst-sma”
derbyis a database benchmark in Java and it is to replace scimark.montecarlo, scimark.sor.large
the db benchmark in SPEC JVM98. It is designed to scimark.sor.small, scimark.sparse.large
.. .. scimark.sparse.small
represent a more realistic application than db and to stress seral Primitive and object (de)seralizations
the BigDecimal library.mpegaudiois an mp3 decoding startup JVM Taunch time for each benchmark.
benchmark and corresponds to the benchmark with the same startup.compiler.compiler,
. . . startup.compiler.sunflow

name in JVM98. The_ mp3 library of mpegaudio in JVM98 startup.compress, startup.crypto.aes
has been replaced with JLayer [7]. It evaluates the floating- startup.crypto.rsa,
point operations of the JVM. SciMark is a computational startup.crypto.signverify .
bench k suite in Java developed by NIST [8]. It consists startup.helloworld, startup.mpegaudio

en.c mark suite | p y : startup.scimark.fft, startup.scimark.lu
of five sub benchmark programs (fft, lu, mont¢arlo, sor startup.scimark.montearlo,
and sparse). In SPECjvm2008, they are executed with a large startup.scimark.sor .

. . startup.scimark.sparse, startup.serial
data set (32MB) for testing the memory r_nerarc_hy and a startup.sunflow, startup.xml.transform
small (512KB) data set for testing the JVM itsedkrial op- startup.xml.validation
erates in a producer-consumer scenario, where the producer SUT'OW SS‘ETCS Vf'SUE"'ZE‘SO“ I((fjeft‘_de”“g)-

T PR . xm ransiorm and valiaation.
serializes primitives and objects from JBoss benchmark and sml.transform, xml.validation

sends them over the socket to the consumer. These data
are deserialized at the consumer. dtartup a new JVM

is started for each benchmark in SPECjvm2008 and it runs
one iteration of the benchmark. The time from starting up
the JVM to the end of the benchmark iteration is measured.
sunflowis a multi-threaded rendering benchmark program
It starts with half the number of threads as the number o
logical CPUs, and each of these threads spawns four threadsTable Il shows the specifications of the hardware and
inside the programxml is made of two sub-benchmark software of the measurement platform. We use a netbook
programs: xml.transform and xml.validation The former Wwith an Intel Atom N270 which is a single core CPU with
evaluates the implementation @va.xml.transformof the Hyperthreading [9], running Ubuntu operating system. For
JVM under test, while the latter usgava.xml.validation the measurement of power consumption, we use a Watts up ?
to compare the XML files and corresponding XML spec- Pro 99333 power meter [10]. The monitor screen is darkened
ifications in .xsd files. SPEC defines two categories to rurPy the screen saver as SPECjvm2008 does not use any
SPECjvm2008: Base and Peak. While no optimization isgraphics.

allowed in the Base category, any optimizations are allowed We use two JVM implementations, OpenJDK [3] and
in the Peak category. In this paper, we run the benchmarkBM J9 [4]. OpenJDK is an open-source implementation
in the base category, i. e. no optimization is used, excepef Java language begun by Sun Microsystems in 2006. We
limiting the number of threads to one in Section III-C. use IcedTea6 1.9.5 version which came with the Ubuntu
Except startup, each benchmark is executed for six minutegperating system. J9 is an implementation of Java by IBM
first two minutes are for warming-up the JVM and the restavailable for various platforms, such as Power7 or System Z.
are for the actual measurement.

Table |
SPEQVM2008 WORKLOAD CATEGORIES

'fA. Experimental Environment

B. Measurement Results of Base Configuration

Table Il shows the performance and power consumption
of OpenJDK and J9. For the performance metrics, we use the
number of iterations that each benchmark can execute per
minute (1). When the CPU is running with Hyperthreading,

In this section, we first describe the platform used for thethe measurement platform (Dell Inspiron Mini 9) consumes
measurement, and then present the results of measureméh®W of power in the idle state. W in Table Il indicates the
and analysis. increase of the power consumption from the idle state. | and

IIl. POWER-PERFORMANCEANALYSIS

Component Specification OpenJDK J9 Ratios
Platform Dell Inspiron Mini 9 Benchmark [W [W [[W [Ef
CPU Atom N270 (1.6GHz, TDP 2.5W) compiler
Cache Sizes| 32KB (L1l), 24KB (L1D), 512KB (L2) compiler 172 | 38| 21.4] 41| 0.81] 0.93 [0.87
Memory 1GB sunflow 6.3 38| 85 | 40| 0.73| 093 | 0.79
0S Ubuntu 10.04.2 LTS (kernel 2.6.32-28 compress 101 | 42 | 106 | 43 | 0.95| 0.98 | 0.97
OpenJDK Java 1.6.020 IcedTea6 1.9.5 crypto
J9 Java 1.6.0 Build 2.4, SR9-FP1 crypto.aes 29 [31] 63] 32]045] 099 0.46
Power Meter Watts up ? Pro 99333 crypto.rsa 6.1 30| 11.7| 3.2 | 0.52 | 0.95| 0.55
Table Il crypto.signverify 10.3 | 3.2 | 154 | 3.3 | 0.67 | 0.97 | 0.69
MEAS a E o derby 78 | 35| 58 | 39| 1.35| 0.89 | 1.52
EASUREMENTENVIRONMENT mpegaudio 48 | 32| 81 | 34| 060 004 | 0.64
scimark
fft.large 4.4 65| 45 [65 098] 1.01] 0.97
fft.small 87 | 65| 9.8 | 64| 089 1.02 | 0.87
_ _ _ o lu.large 12 | 72| 13 | 72| 090 | 1.00| 0.91
W in Ratios represent these metrics of OpenJDK divided by lu.small 100 | 62| 11.7| 6.1 | 0.86 | 1.01 | 0.85
; N monte carlo 4.6 32| 104 | 31| 044 | 1.02 | 0.43
thos_e of J9. Eff is (/W) of OpenJDK divided by that of J9. sorlarge 30 | 50| a5 | 561 069 | 096 | 076
First, we see that the relative performance between JVME sor.small 135 | 50| 2041 55| 066 | 092 | 0.72
varies among benchmark programs: OpenJDK is 2899% sparse.large 22 | 50| 24 151|090 098 092
[0 i | sparse.small 102 | 62| 83 | 56| 1.22| 1.10| 1.11
of J9 for startup.helloworld, but it is only 44@ for SCI- I —erar T3 es 37 o085 5051089
mark.montecarlo. Second, the power consumption varieS—gnfiow 20 1321 21 357097096 1.01
largely among benchmark programs, but not between twg xml
JVMs. As a result, performance-power ratios are closg xml-transform 10.7 1 36| 90 | 40} 119} 089} 1.33
. . xml.validation 156 | 35| 23.1| 3.8 | 0.67 | 0.91 | 0.74
to the relative performance. Among benchmark categonewStartup
scimark.* have high power consumptions. The exception i$ compiler.compiier] 3.2 | 35| 1.3 | 4.0 | 253 | 0.88 | 2.88
monte carlo. It is ar computation program using randomly | compiler.sunflow % gg ég g-g igg 8-33 iig
H H : compress
_ge_nerated points in a square. From our pas_t experience [1]],Crypt0_aes 20 | 29| 23 | 35| 084l 083 | 101
it is known to have shorter loop-bodies in bytecode (on crypto.rsa 42 | 29| 36 | 36| 1.17| 0.80 | 1.46
average, 54 bytecodes while other scimark.* are 300 of Ef&;FtO-Si%nveﬂfy 13-352 g-g ??5;28 g-g g-gg 2-2(7) g-gg
. ellowor
more bytecodes long) that leads to frequent method inva- mpegaudio 20 | 28| 26 | 371 115 | 076 | 152
cations and fewer chances of local variable reuses. Thesett 72 | 40| 60 | 42| 120| 096 | 1.24
two characteristics make montearlo more similar to other | lu | g-g gg g? gz éég 8-32 é’%’
. * . % monte carlo
benchmarks than to scimark.*. I_n_smmark. , there are twg _ - 70 | 32| 724 | 35| 094! 0.96 | 0.98
data sets; large and small. Intuitively, *.large benchreark| sparse 63 | 43| 46 | 41| 1.37| 1.05| 1.30
should consume more power than *.small as the former Serigl 2-2 g% ig g-g %-‘212 8-;2 %-ig
H sunftiow
place more pressure on f[he memory hierarchy. sparse Semi.transform o4 | 28| 03 | 33| 151 084 | 1380
the exception to this intuition: it consumes 24 and 10% xml.validation 64 | 33| 32 (39| 197|084 2.36
more power for the smaller data sets on OpenJDK and J9, Table Il

reSpeCtlveW- BASE CONFIGURATIONMEASUREMENTRESULTS. | IS THE NUMBER OF
ITERATIONS EACH BENCHMARK RUNS PER MINUTEW IS THE DYNAMIC
POWER(INCREASE FROM THE IDLE STATH IN WATTS. | AND W IN
RATIOS REPRESENT METRICS O©OPENJDKDIVIDED BY J9,
RESPECTIVELY EFF IN RATIOS REPRESENTS THE RATIO OF/W
BETWEENOPENJDKAND J9.

C. Effect of Multi-Threading

By default, SPECjvm2008 workloads spawn the number
of threads equal to the number of logic CPUs of the
system. Since we use an Atom N270 which is a single
core with Hyperthreading, two threads are spawned and
execute workloads. There are two exceptions for this defaul
number of benchmark threadst ar t up. * andsunfl ow | in Table IV represent the relative performance of single-
benchmarks. The former is single-threaded and the lattethread executions. In terms of performance, the smaller the
spawns half the number of logical CPUs (and each of thenthis number, the more effective to run the benchmark with
splits into four threads inside the benchmark). In thisise¢t two threads. The most typical example is scimark.sor.large
to investigate the effectiveness of multi-threading, weiti on J9, whose performance is almost halved with a single
the number of benchmark thread to one with thet 1 thread. For the difference between JVMs, we can see two
option. extreme cases in xml.transform and scimark.fft.small: in

Table IV shows the measurement results of single-threathe former benchmark, multi-threading is more effective in
executions. The effectiveness of multi-threading in perfo OpenJDK (71% vs 88%) but the opposite is true for the
mance varies significantly among benchmark programs aktter benchmark (82% vs 74%).
well as between JVMs. The numbers in parentheses below In terms of performance-power consumption balance, the

OpenJDK J9
Benchmark | | W [Eff | W [Eff
compiler
compiler 13.3 3.3 0.89 | 18.0 35 0.98
(0.77) | (0.87) (0.84) | (0.86)
sunflow 5.1 3.3 0.92 7.0 35 0.93
(0.82) | (0.88) (0.82) | (0.88)
compress 8.0 3.1 1.07 8.3 3.1 1.09
(0.79) | (0.74) (0.79) | (0.72)
crypto
aes 2.0 2.8 0.78 4.1 2.8 0.74
(0.70) | (0.91) (0.65) | (0.88)
rsa 4.7 2.9 0.82 8.3 2.8 0.81
(0.77) | (0.94) (0.71) | (0.88)
signverify 7.8 2.9 082 | 114 2.9 0.84
(0.76) | (0.92) (0.74) | (0.88)
derby 5.2 3.0 0.76 3.6 34 0.71
(0.66) | (0.88) (0.62) | (0.87)
mpegaudio 3.1 2.8 0.74 5.1 2.9 0.73
(0.65) | (0.87) (0.62) | (0.86)
scimark
fft.large 3.1 5.1 0.89 3.0 5.1 0.83
(0.69) | (0.78) (0.66) | (0.79)
fft.small 7.1 4.5 1.18 7.3 4.4 1.06
(0.82) | (0.69) (0.74) | (0.70)
lu.large 0.8 5.6 0.84 0.8 5.4 0.81
(0.65) | (0.78) (0.60) | (0.75)
lu.small 6.8 3.6 1.17 7.7 34 1.18
(0.68) | (0.58) (0.66) | (0.55)
monte carlo 3.0 2.9 0.72 6.6 2.8 0.71
(0.66) | (0.91) (0.64) | (0.90)
sor.large 1.7 3.8 0.74 2.4 4.0 0.76
(0.55) | (0.75) (0.54) | (0.72)
sor.small 7.5 3.3 0.85 | 11.7 34 0.93
(0.56) | (0.66) (0.57) | (0.61)
sparse.large| 1.4 3.9 0.79 1.3 3.8 0.71
(0.62) | (0.79) (0.54) | (0.76)
sparse.small| 6.9 4.9 0.86 6.0 4.5 0.89
(0.68) | (0.79) (0.72) | (0.81)
serial 34 3.1 0.83 3.9 3.3 0.78
(0.75) | (0.91) (0.70) | (0.89)
sunflow 4.0 35 0.97 4.1 3.6 0.98
(2.00) | (2.03) (2.00) | (1.02)
xml
transform 7.6 3.1 0.80 7.9 3.6 0.97
(0.71) | (0.88) (0.88) | (0.91)
validation 10.5 3.1 0.75| 17.0 3.3 0.85
(0.67) | (0.90) (0.74) | (0.87)
Table IV

MEASUREMENTRESULTS OFSINGLE-THREAD EXECUTIONS.

NUMBERS IN PARENTHESES BELOW AND W ARE THE RATIOS OF| AND
W AGAINST THOSE OF DUAL THREAD EXECUTIONYTABLE Ill). EFF IS

I/W OF SINGLETHREAD DIVIDED BY THAT OF DUAL THREAD.

between JVMs is small and it is the relative performance
which determines the effectiveness of choosing singleattir
execution. The most typical case is fft.small; its relative
performance of single-thread execution on OpenJDK is 84%
which is higher than the relative power consumption (68%).
The relative performance of the same benchmark on J9 is
only 66% and we see that the single-thread execution is
not a feasible option for J9 in terms of performance-power
balance.

D. Effect of Clock Speed

Atom N270 is equipped with the Enhanced Intel Speed-
Step Technology [12], which enables the system to dynam-
ically adjust the clock speed and the voltage. The measure-
ments in the previous sections have all been executed at
Atom N270’s default maximum clock frequency (1.6GHz).
In this section, we limit the clock frequency to 800MHz
usingcpuf req- set [13] and analyze the effect of lower
clock frequency.

Tables V and VI show the performance and power con-
sumption at the clock frequency of 800MHz. We use the
same notations as Table IV for I, W and Eff. With few
exceptions, the relative performance is around 50% of the
1.6GHz execution. First type of exceptions include sci-
mark.fft and scimark.lu whose performance are signifigantl
higher than 50% (68 to 75%). As we will see in the next
subsection, for scimark.fft, the high L2 miss rates could
be the reason; slowing down the clock frequency makes
the relative speed of memory access faster (i.e. lower miss
penalty). However, this reason is not applicable (at least,
naively) to scimark.lu, since there are seven benchmarks
that have higher L2 miss rates than scimark.lu on both
JVMs. Another type of exception is xml.validation on J9,
whose performance is reduced to 37% of 1.6GHz. Unlike
scimark.fft and scimark.lu, this performance degradation
only happened to J9 as the relative performance of OpenJDK
is 52%.

The relative power consumption ranges from 52% (sci-
mark.sparse.large on J9) to 72% (scimark.fft.large on both
JVMs). As mentioned above, scimark.fft and scimark.lu are
not slowed down as other benchmarks with 800MHz clock
and they have relatively high cache reference and miss.rates
Therefore, it is considered that these workloads have high
utilizations of both functional units and memory hieraehi

relative performances of single-thread executions have E&fficiencies (Eff) are around 90% or higher. Exceptions are
different meaning. If the multi-threading is not very effec compiler.* and xml.* (and some of startup.*) on J9, which
tive in terms of performance, we may choose to run theshould be the results of their lower performances than 50%
program with a single thread to expect power reductionat 800Mhz clock frequency.

Eff columns in Table IV present the ratios between relative))

performance and power consumption (ratios of I/W in dualE- Microoperation and Cache Reference

and single thread executions). In general, we lose more Using Oprofile (version 0.9.6) [14], we have measured the
in performance than in power-consumption. Exceptions ar@mumbers of retired micro-operation (U), L2 cache reference
compress, fft.small (OpenJDK only) and lu.small. Like dual (R) and L2 cache miss (M) against 1, 10 and 100 clock
thread executions, the difference of power consumptiorcycles as shown in Table VII. First, we could not have found

OpenJDK J9 OpenJDK J9
Benchmark I | W [Eff I | W [Eff Benchmark I | W [Ef I | W [Ef
compiler startup
compiler 9.3 2.2 0.94 9.2 2.4 0.74 c.compiler 1.7 2.1 0.88 0.6 2.3 0.86
(0.54) | (0.57) (0.43) | (0.58) (0.53) | (0.60) (0.50) | (0.58)
sunflow 3.3 21 | 093] 36 23 | 073 c.sunflow 1.4 21 | 088| 06 23 | 0.84
(0.53) | (0.57) (0.42) | (0.57) (0.53) | (0.60) (0.48) | (0.57)
compress 5.4 2.4 0.94 5.8 2.6 0.93 compress 3.6 1.9 0.87 2.8 2.1 0.94
(0.54) | (0.57) (0.55) | (0.59) (0.51) | (0.59) (0.54) | (0.57)
crypto crypto.aes 1.0 1.7 0.86 1.2 2.0 0.88
aes 14 1.7 1092 32 1.8 [0.90 (0.50) | (0.59) (0.50) | (0.57)
(0.50) | (0.55) (0.51) | (0.56) crypto.rsa 2.1 1.6 0.89 1.7 2.0 0.84
rsa 3.0 1.6 | 093| 5.7 1.7 | 093 (0.51) | (0.57) (0.48) | (0.57)
(0.50) | (0.54) (0.49) | (0.53) crypto.signverify | 3.3 1.7 088 | 1.8 1.9 0.99
signverify 5.2 1.7 | 093] 7.6 1.7 | 0.93 (0.51) | (0.58) (0.56) | (0.56)
(0.50) | (0.54) (0.50) | (0.53) helloworld 54.9 21 096 | 21.2 2.2 1.03
derby 4.0 20 [090 29 22 | 0.86 (0.53) | (0.55) (0.59) | (0.58)
(0.51) | (0.57) (0.50) | (0.58) mpegaudio 15 16 | 086| 12 21 | 081
mpegaudio 24 17 | 091] 4.0 19 | 0.88 (0.50) | (0.58) (0.45) | (0.56)
(0.50) | (0.55) (0.49) | (0.55) s.fft 4.1 2.6 0.88 3.5 2.7 0.92
scimark (0.56) | (0.64) (0.59) | (0.64)
ffit large 33 | 47 [1.04| 34 | 47 | 104 s.lu 32 | 20 | 087 29 | 22 | 089
(0.75) | (0.72) (0.75) | (0.72) (0.51) | (0.58) (0.52) | (0.59)
fft.small 6.2 44 | 1.06| 67 43 | 1.02 s.montecarlo 14 16 | 091 19 1.7 | 091
(0.71) | (0.68) (0.68) | (0.67) (0.51) | (0.56) (0.50) | (0.55)
lu.large 0.7 39 | 1.03| 08 | 42 | 110 s.sor 3.5 20 | 087 3.9 2.1 1089
(0.55) | (0.53) (0.63) | (0.58) (0.50) | (0.58) (0.52) | (0.59)
Ju.small 54 3.4 0.98 6.5 3.5 0.97 s.sparse 3.2 2.5 0.87 2.4 2.4 0.89
(0.54) | (0.54) (0.56) | (0.58) , (0.51) | (0.58) (0.52) | (0.58)
monte carlo 2.3 1.7 | 094| 52 1.7 | 0.91 serial 1.5 18 | 088 10 2.2 | 0.86
(0.50) | (0.53) (0.50) | (0.55) (0.51) | (0.58) (0.49) | (0.57)
sor.large 1.5 26 0.98 23 29 0.98 sunflow 1.7 1.9 0.89 0.6 2.0 0.74
(0.51) | (0.52) (0.51) | (0.52) (0.51) | (0.57) (0.41) | (0.56)
sor.small 6.8 26 0.96 | 10.3 3.0 0.92 xml.transform 0.2 1.7 084 | 0.1 2.0 0.81
(0.50) | (0.53) (0.50) | (0.55) o (0.51) | (0.61) (0.48) | (0.59)
sparse.large 1.2 27 0.98 1.0 26 0.79 xml.validation 34 2.0 0.87 1.5 2.2 0.81
(0.53) | (0.54) (0.41) | (0.52) (0.53) | (0.61) (0.46) | (0.57)
sparse.small 5.2 3.2 0.99 4.2 3.0 0.96 Table VI
. (0.51) | (0.51) (0.50) | (0.53) PERFORMANCE ANDPOWER CONSUMPTION AT800 MHz CLOCK (2)
serial 23 1.9 0.89 24 22 0.72
(0.50) | (0.57) (0.43) | (0.59)
sunflow 2.0 20 | 087 21 21 | 0.86
(0.50) | (0.58) (0.50) | (0.58)
xml
xmltransform | 5.4 20 [089 40 23 [0.78 and L2 cache reference and miss rates (against clock cy-
| (051 | (057) (0:45) | (0.57) cles), respectively. In these graphs, scimark.* (except sc
xmivalidation | 81 20| 091 85 23| 062 mark.montecarlo) and other benchmark programs occ
(0.52) | (0.57) (0.37) | (0.60) 1ark. ec _ progr upy
Table v different regions (as a result of scimark.*’s higher power
PERFORMANCE ANDPOWER CONSUMPTION AT 800 MHz CLOCK consumption). Intuitively, the power consumptions of non-

scimark benchmarks seem to be correlated to linear and
square root of L2 reference rate and L2 miss rate. Using the
fit command of gnuplot, functions for power consumption by
L2 reference rate (r) and L2 miss rate (m) are obtained and
potential correlations between U and relative performancelotted in Figure 1 and 2, respectively. Generally, datan{soi
or power consumption. In Java applications, a higher Uook to fit well to the functions with few exceptions such
does not always mean a higher (application) performancess startup.mpegaudio 2.4 x 10~3,2.83) for OpenJDK
This is because, for example, a JVM may have to executer startup.scimark.sparse &t.930 x 10~3,4.09) for J9 in
more native instructions than another JVM for the same Javgigure 1.
bytecode. In other words, a higher U may be the result of
inefficient bytecode interpretation/compilation. For eyze, IV. RELATED WORK
Us for crypto.* in J9 are lower than those in OpenJDK. |n [15], authors evaluated the performance and power of
However, the performances of J9 for these benchmarks argava applications on IA-32 microprocessors with fabriati
better than OpenJDK. Moreover, despite discrepancies,in Usechnologies ranging from 120nm to 32nm. For the single
two JVM consume almost the same power (Table Ill). and multi-thread benchmarks, they used SPEC JVM98 and
Figure 1 and 2 plot the pairs of the power consumptionand SPECjbb2005 (and other server applications), respec-

OpenJDK J9
Benchmark UT R M U R M
compiler 7.5 T T T T T T
compiler 026] 014] 012] 030 0.12| 0.15 2L P A«
sunflow 0.28 | 0.12 | 0.09 | 0.32 | 0.11 | 0.12 53.9*r +3.04 -
compress 0.38[0.14] 023 0.36 | 0.15 | 0.25 - 65 Xgox o390 x4
=) scimark. o
crypto S 6l X o 66.0% +3.19 -~ |
aes 069 | 0.01| 0.01] 0.63 | 0.01 | 0.02 <
rsa 0.73 | 0.00 | 0.00 | 0.62 | 0.01 | 0.01 S 55} o ° © .
signverify 0.75| 0.01| 0.01| 0.68 | 0.01 | 0.02 g 5
derby 0.32] 0.11] 0.07] 0.30 | 0.12 | 0.11 5 5T x o 1
mpegaudio 0.56 | 0.03 | 0.01 | 0.54 | 0.04 | 0.02 S a5t i
- o
scimark 5 X* x « + X
fit large 015 [0.08 [0.48 [0.11 [0.09 | 0.49 : 4r gox KK T T
fit.small 0.25| 0.10 | 0.42 | 0.18 | 0.11 | 0.41 L—_ KX fi$+ - o
lu.large 0.49 | 0.09 | 0.08 | 0.32 | 0.09 | 0.08 e +++*++* X4 X
lu.small 0.55| 0.07 | 0.09 | 0.32 | 0.08 | 0.11 3 i%;;x B
monte carlo 0.58 | 0.00 | 0.00 | 0.59 | 0.00 | 0.00 s |+)) *))))
sor.large 0.50 | 0.06 | 0.02 | 0.29 | 0.09 | 0.03 '
sor.small 056 | 003! 002! 031 | 004 | 0.03 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
sparse.large 0.39 | 0.07 | 0.16 | 0.31 | 0.07 | 0.18 Number of L2 Refernce per Clock Cycles (1)
sparse.small 0.63 | 0.07 | 0.05 | 0.67 | 0.06 | 0.05 Figure 1. L2 Cache Reference and Dynamic Power Consumption
serial 0.37 | 0.07 | 0.03 | 0.38 | 0.09 | 0.07
sunflow 0.42 | 0.04 | 0.02 | 0.42 | 0.04 | 0.04
xml
transform 0.40 | 0.09 | 0.05| 0.35 | 0.10 | 0.08
validation 0.29 | 0.15 | 0.06 | 0.33 | 0.13 | 0.08 7.5 T T T T T T T T T
startup 0 OpendDK +
- - 7+ scimark.* x B
compiler.compiler 022 | 0.09] 0.10| 0.33| 0.10 | 0.11 26.5*sqrt(m) + 2.84 -
compiler.sunflow 0.23 | 0.08 | 0.09 | 0.33 | 0.10 | 0.11 6.5 - J% ¥ X
compress 0.30 | 0.09 | 0.06 | 0.32 | 0.09 | 0.08 g x % g __scimark* 0o
crypto.aes 0.51 | 0.01 | 0.01 | 0.43 | 0.05 | 0.05 2 6f 31.0%sqrt(m) +2.89 -~~~
crypto.rsa 0.54 | 0.01 | 0.01| 0.43 | 0.06 | 0.06 § 55l 5o i
crypto.signverify 0.53 | 0.01| 0.01 | 0.42| 0.09 | 0.04 8
helloworld 0.25| 0.06 | 0.08 | 0.32 | 0.07 | 0.09 % 5 x B B
mpegaudio 0.38 | 0.02 | 0.01 | 0.43 | 0.09 | 0.06 2
scimark. fft 0.21| 0.08 | 0.22 | 0.20 | 0.08 | 0.20 S 451, ey 1
scimark.lu 0.37 | 0.05| 0.03 | 0.29 | 0.06 | 0.06 8 4L ox . o R]
scimark.montecarlo | 0.39 | 0.01 | 0.01 | 0.35 | 0.02 | 0.02 S BT e
scimark.sor 0.32 | 0.02 | 0.02 | 0.27 | 0.04 | 0.05 35 g’jﬁi% + R
scimark.sparse 0.42 | 0.05| 0.03 | 0.43 | 0.05 | 0.04 gﬁfﬂ *
serial 0.26 | 0.06 | 0.04 | 0.35 | 0.10 | 0.11 3 Bt]
sunflow 0.39 | 0.05| 0.03 | 0.38 | 0.07 | 0.05 25 - - - - - - - - -
xml.transform 0.20 | 0.07 | 0.02 | 0.26 | 0.10 | 0.05 0 0.00050.0010.00150.0020.00250.003 0.00350.004 0.0045 0.005
xml.validation 0.22 0.10 0.08 0.33 0.10 0.10 Number of L2 Miss per Clock Cycles (m)
Table VII Figure 2. L2 Cache Miss and Dynamic Power Consumption

RATES OFRETIRED MICROOPERATION(U), L2 CACHE REFERENCE(R)
AND L2 CACHE MIss(M) PER1, 10AND 100 Q.0CK CYCLES,
RESPECTIVELY

with optimizations), clock per instruction and cache/TLB
miss rates, memory allocation behavior and thread scaling.
Seo et. al.,, defined a framework to estimate the energy
consumption of pervasive Java-based systems [18]. They
tively. SPECjvm2008, used in this paper, is targeted totlie first broke the system into components (one or more related
side JVMs but also multi-threaded, to reflect the trend of (si Java classes). The energy cost of each component is further
multaneous) multi-threading and multi-core implememwtasi divided into computational and communication parts. The
of modern CPUs. [16] proposed a software based poweformer comprises of costs of bytecode interpretation veati
analyzer for multi-core systems. Their model takes two tnpu method invocations and monitor operations, while the tatte
parameters, clock frequency and IPC, which is obtaineds defined by the UDP operation parametrized by the data
from the performance counters, and predicts the dynamisize. [19] presents power consumption analysis of Atom-
power dissipation. They used SPECjvm2008 for evaluatindased a mobile Internet device (MID). The options examined
the accuracy of their model. include C6 Deep Power Down State, video formats (data
[17] analyzes the workload of SPECjvm2008 on high-endrates), Hyperthreading and hardware codec acceleration.
desktop processors (Core 2 Duo and Core i7) in various as- SPECpowerssj2008 is a benchmark from SPEC [20]. The
pects, including Base vs Peak comparisons (i. e. without angart of its name, ssj, indicates that it is designed to evalua

the power and performance of server-side Java application[4] developerWorks : Jav¥technology :, http://www.ibm.com/

Its workload is derived from another benchmark from SPEC,
SPEC|jbb2005 [21] with significant modifications. Energy-
Bench is a benchmark suite from EEMBC to evaluate the

power consumption of embedded devices [22].

V. CONCLUSION

In this paper, we presented a case study in perfor—[
mance and power consumption analysis of JVMs with
SPECjvm2008. We used two JVM implementations, Open- [8]
JDK and J9, running on an Atom-based netbook with
Ubuntu operating system. We observed significant differ-
ences in relative performance between two JVMs which alsg)
varied from workload to workload. The power consumption
of both JVMs for the same workload is relatively similar.
Therefore, the power-performance efficiency is also close ¢[11
the relative performance. In other words, the choice of JVM
for the workload is important not only for the performance

but also for the power efficiency.

The relative performance and power consumption ofl12]
single-thread executions, again, change significantlyramo
workloads and between JVMs. With few exceptions, the

developerworks/java/

“SPECjvm2008 Run and Reporting Rules, “ http://www.spe
org/jvm2008/docs/RunRules.html .

SPEC CPU95, http://www.spec.org/cpu95/

“MP3 library for the Java Platform,” http://www.javapm.
net/javalayer/javalayer.html

“Java SciMark 2.0,” http://math.nist.gov/scimark2/
http://www.intel.com/technology/atom/

Electronic Educational Devices, https://www.wafimeters.
com/

] Hitoshi Oi, “Local Variable Access Behavior of a Hardwa

Translation Based Java Virtual Machine,” Journal of Sys-
tems and Softwarepp2059-2068, Vol. 81, Issue 11, 2008.
Elsevier.

“Enhanced Intel SpeedStep Technology - How To Docurhent
http://www.intel.com/cd/channel/reseller/asmo-nalen
203838.htm

loss in performance is more than the savings in the powefi3] “Linux kerel CPUfreq subsystem,” hitp://www.kerreig/

consumption. When the clock frequency is lowered to
800MHz (50% of the maximum frequency), the relative
performance is also around 50% for most benchmarks wit

pub/linux/utils/kernel/cpufreq/cpufreq.html

|{14] Oprofile, http://oprofile.sourceforge.net/news/

two exceptions. scimark.fft and scimark.lu on both JVMS[15] Hadi Esmaeilzadeh, et. al., “Power and Performanceaifid

are significantly faster than 50% while xml.validation on
J9 is only 37% of 1.6GHz. It was observed that the power
consumptions of benchmark programs (except scimark) fit
well with linear and square root functions of L2 reference

and L2 miss rates, respectively.

The future work include as follow. As mentioned above,
scimark benchmark programs have different power con-
sumption characteristics than other benchmark programs in
SPECjvm2008. In this paper, we have only measured retired "]
microoperations and L2 reference and miss rates. We plan
to measure more workload parameters such as the floating
point operation rates and bus utilization. We also plan to
identify the part of benchmark programs as well as JVM[18]
implementations, which dominate the power consumption of
the workloads. The platform used in this paper, an Atom-
based netbook is a low-end model in today’s standard and
use of more powerful machines, such as many-core CPUs
with larger caches, is another direction for our future work [19]

REFERENCES

[1] Tim Lindholm and Frank Yellin, “The Java(TM) Virtual

Machine Specification (2nd Edition)”, Addison-Wesley Pro-

fessional, 1999
[2] SPECjvm2008, http://www.spec.org/jvm2008/ .

[3] OpendDK, http://openjdk.java.net/

and Java Benchmarks on 130nm to 32nm Process Technolo-
gies,” Sixth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS 2010), Saint-Malo, France.

Shinan Wang, Hui Chen and Weisong Shi, “SPAN: A software
power analyzer for multicore computer systems,"Sastain-
able Computing: Informatics and Systenw®l. 1, Issue 1,
March 2011, pp23-34.

Kumar Shiv, et. al., “SPECjvm2008 Performance Charac-
terization,” in Proceedings of the 2009 SPEC Benchmark
Workshop on Computer Performance Evaluation and Bench-
marking ppl17-35, 2009.

Chiyoung Seo, Sam Malek and Nenad Medvidovic, “Es-

timating the Energy Consumption in Pervasive Java-Based
Systems,” inProceedings of the 2008 Sixth Annual IEEE

International Conference on Pervasive Computing and Com-
munications March 2008, pp243-247.

Petter Larsson, “Power Efficiency - Analysis and SW De-
velopment Recommendations for Intel Atom based MID
platforms,” White Paper, Intel Corporation, March 2009.

[20] SPECpowerssj2008, http://www.spec.org/powesj2008/ .
[21] SPECjbb2005, http://www.spec.org/jbb2005/ .

[22] EnergyBench, http://eembc.org/benchmark/powkphp

