Chapter 4

Memory Management

4.1 Basic memory management

4.2 Swapping

4.3 Virtual memory

4.4 Page replacement algorithms

4.5 Modeling page replacement algorithms
4.6 Design issues for paging systems

4.7 Implementation issues

4.8 Segmentation

Memory Management

e Ideally programmers want memory that is
— large
— fast

— non volatile

e Memory hierarchy
— small amount of fast,expensive memory - cache
— some medium-speed,medium price main memory

— gigabytes of slow,cheap disk storage

e Memory manager handles the memory hierarchy

Basic Memory Management

Monoprogramming without Swapping or Paging

User
program

OXFFF ...

Operating
system in
RAM

(@)

Operating
system in
ROM

Device

drivers in ROM

User
program

User
program

(b)

Operating
system in
RAM

()

e Three simple ways of organizing memory

— an operating system with one user process

Multiprogramming with Fixed Partitions

Multiple
input queues

[H - Partition 4 Partition 4

Partition 3 ~ Single Partition 3
input queue

Partition 2 Partition 2

Partition 1 Partition 1

Operating Operating
system system

(@) (b)

e Fixed memory partitions
(a) separate input queues for each partition

(b) single input queue

Modeling Multiprogramming

20% 1/O wait

=
o
o

50% 1/0O wait

80% |/O wait

=
c
)
(&)
S
o
o
c
<
c
9
e
©
N
E
-]
)
ol
@)

| | | | | |
4 5 6 7 8 9
Degree of multiprogramming

CPU utilization as a function of number of processes in memory

CPUutil =1 — p™, where n: # Processes, p: 1/O Wait Prob.

Analysis of Multiprogramming System Performance

CPU
Arrival minutes # Processes
time needed 1 2 3

10:00 4 CPU idle .80 | .64 | .51
10:10 CPU busy 20| 36| 48 | .

3
10:15 2 CPU/process | .20 | .18 | .16 | .
10:20 2

(a) (b)

2.0 .8

2

/Job 1 finishes

Job 2 starts —_ 9 .11

1

|
9 k;
|
!

T

|
|
|
|
3 8
|
|

| |
T T
| |
L) T
| |
| |
|

| |
] 1

I
T
I
I
I
|
I
|
I
|

[

|

|

|

| |

10 15 20 22 276 282 3
Time (relative to job 1's arrival)

(c)

|
!
I
|
|
|
1
1.

7

(a) Arrival and work requirements of 4 jobs
(b) CPU utilization for 4 jobs with 80% I/0O wait

(¢) Sequence of events as jobs arrive and finish
(numbers show amount of CPU time jobs get in each interval)

Relocation and Protection

e Cannot be sure where program will be loaded in memory

— address locations of variables,code routines cannot be
absolute

— must keep a program out of other processes’ partitions

e Use base and limit values

— address locations added to base value to map to physical
addr

— address locations larger than limit value is an error

Swa

Time —>

pping (1)

w2

2

W

v

v

C

C

C

C

B

B

A

.
2

_

D

Operating
system

Operating
system

Operating
system

Operating
system

Operating
system

Operating
system

Operating
system

(@)

(b)

(€)

(d)

e Memory allocation changes as

— processes comme into memory

— leave memory

(e)

e Shaded regions are unused memory

(f)

)

Swapping (2)

B-Stack
» Room for growth
} Room for growth

______ b |

~ Actually in use

B-Program

7777, /7

A-Stack

A » Actually in use

» Room for growth
} Room for growth

A-Program

Operating Operating
system system

(@) (b)

e Allocating space for growing data segment

e Allocating space for growing stack & data segment

Memory Management with Bit Maps

[~ [VA .o =77

[

11111000 |P|0|5|-%—>|H|5|3|-%—>|P|8|6|-%—>|P|M14|-+>
11111111
11001111

11111000 (IHI18|2|+>|PI20I6|+>|P|26I3I+>|H|29|3IX|
/A f

T — T Hole Starts Length Process

at18 2
(b) (©

(a) Part of memory with 5 processes,3 holes
— tick marks show allocation units

— shaded regions are free
(b) Corresponding bit map

(c) Same information as a list

Memory Management with Linked Lists

Before X terminates After X terminates

@| A | x | B becomes INW/BE
o Al x VA vecomes | & V77
O x | 8] veemes V7777 B
& 4 x T veeomes 1777777

Four neighbor combinations for the terminating process X

Basic Allocation Algorithms

e Best Fit e Worst Fit

e First Fit e Quick Fit
e Next Fit

Virtual Memory

Paging (1)

The CPU sends virtual
CPU addresses to the MMU

package

-
—

/ Memory Disk

| management controller
unit

N L .

The MMU sends physical
addresses to the memory

The position and function of the MMU

Keywords: Virtual and physical addresses (spaces), paging, overlay

Paging (2)

The relation between virtual
addresses and physical memory

addresses given by page table

64KB Virtual Address
32KB Physical Memory
4KB Page Size

Mapping Example:
V: MOV RO, 8192
P: MOV RO, 24576

Virtual
address
space

60K-64K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
OK-4K

} Virtual page

N|RP|O|O|R|W|I XXX X]|IN]IX]X]|X]Xx

Physical
memory
address

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K

}\OK-4K

Page frame

Page Tables (1)

+ Outgoing
[1[1]o]ofo]o]ofo]o|ofo]of1]0]0] physical
" . address

A A (24580)

15| 000
14| 000
13| 000
12| 000
11| 1
000
101
000
000
000
011
100
000
110
001
010

[E=Y
o

12-bit offset
copied directly
from input

to output

| 110 |

| .—Present/
absent bit

Ll Ll Ll el Ll el el o) ol | Ul (o} | Ul [o} o} (o} I

9
8
7
6
5
4
3
2
1
0

Virtual page = 2 is used
as an index into the

page table Incoming
A virtual

|o|o|1|0|0|0|0|0|i|0|0|0|0|1|0|0| 5106,

Internal operation of MMU with 16 pages

Page Tables (2)

Second-level
page tables

Top-level
page table

7

—

Bits 10 10 12

(@)

32-bit address space
4KB page size

Page Table Overhead

Assumption:

(Only 3K pages are used)
1-Level: 22 = 1M entries

2-Levels: 29 (Level 1) +
3 x 219 (Level 2)

— 4K entries

Page Tables (3)

Caching
disabled Modified Present/absent

[/ /

N\

Referenced Protection

Z

Page frame number

Typical page table entry

TLBs - Translation Lookaside Buffers

Where to store the page table ?
Special hardware registers: too large to store entire page table

Main memory: doubles the number of memory access

(also the page table itself may be swapped out).

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31

20 R X 38

130 RW 29

129 62

19 R X 50

21 R X 45

860 14

861 RW 75

A TLB to speed up paging by access locality

Inverted Page Tables

Traditional page
table with an entry
for each of the 252
pages
52 .1 [|
2°2-1 = 1

~

|

Indexed
by virtual

page

256-MB physical
memory has 216
4-KB page frames
16 -1 | |
2 1»1, L

~N— ~No

Hash table
16 1 | —
216 1 b <+

N N

—]
OT — I]
Indexed / \
by hash on Virtual Page

virtual page page frame

Comparison of a traditional page table (V — P) with an inverted
page table (V — P). Hash table to accelerate the search.

Page Replacement Algorithms

e Page fault forces choice
— which page must be removed

— make room for incoming page

e Modified pages must be written back to the disk

— unmodified pages are just overwritten

e Better not to choose an often used page

— will probably need to be brought back in soon

Optimal Page Replacement Algorithm

e Replace page needed at the farthest point in future

— Optimal but unrealizable

e Listimate by ...
— logging page use on previous runs of process

— although this is impractical

Not Recently Used Page Replacement Algorithm

e Each page has Reference bit,Modified bit

— bits are set when page is referenced,modified

e Pages are classified in four classes
0 not referenced, not modified
1 not referenced, modified (previously Class 3)
2 referenced, not modified

3 referenced, modified

e NRU removes page at random
— from lowest numbered non empty class

— prefers not referenced pages to not modified

FIFO Page Replacement Algorithm

e Maintain a linked list of all pages

— in order they came into memory
e Page at beginning of list replaced

e Disadvantage

— page in memory the longest may be often used
(the first access determines the position of the page in the
list).

Second Chance Page Replacement Algorithm

Page loaded first

Most recently
\ Ve loaded page

A is treated like a
P newly loaded page

(b)

e Operation of a second chance: same as FIFO but skips the
pages with R =1 for the first round (R-bits are cleared and
loading times are updated when skipped) .

(a) Pages sorted in FIFO order
(b) Page list if fault occurs at time 20, A has R bit set

(numbers above pages are loading times)

The Clock Page Replacement Algorithm

Eliminate the cost of list manipulation in the Second Chance
Algorithm

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
R = 0: Evict the page
R = 1: Clear R and advance hand

Least Recently Used (LRU)

e Assume pages used recently will be used again soon

— throw out page that has been unused for longest time

e Must keep a linked list of pages
— most recently used at front,least at rear

— update this list every memory reference !!

e Alternatively keep counter in each page table entry
— choose page with lowest value counter (must find it !)

— periodically zero the counter

Simulating LRU in Software (1)

Page Page Page Page Page
1 2 1 2 1 2 1 2 1 2

0
0
1
1

0
0
0
0

0 0o
0 0|0
1 110
0 111

0
0
0
0

1
1
0
0

1)1
010
010
010

(9 (h)

LRU using a matrix
For an access to page 1, set i-th column and clear :-th row
Choose the least numbered page (take the row as a binary number)

Example: pages referenced in order 0,1,2,3,2,1,0,3,2,3

Simulating LRU in Software (2)

R bits for R bits for R bits for
pages 0-5, pages 0-5, pages 0-5,
clock tick 0 clock tick 1 clock tick 2

R bits for
pages 0-5,
clock tick 3

R bits for
pages 0-5,
clock tick 4

o|1]of2 1]o]o]1 1]o]1]o 1| |1 olofo|1 o| |o 1|1]o]o o|

10000000 11000000 11100000 | 11110000 | 01111000 |

00000000 10000000 11000000 | 01100000 | 10110000 |

10000000 01000000 00100000 | | 10001000 |

00000000 00000000 10000000 | 01000000 | 00100000 |

10000000 11000000 01100000 | 10110000 | 01011000 |

01010000

|
|
| 00100000
|
|
|

10000000 01000000 10100000 | | 00101000 |

@ | (b) | (©) (d) (e)
e The aging algorithm simulates LRU in software
Shift-in the R-bits from left at every clock tick.
e Example: 6 pages for 5 clock ticks, (a) - (e)

e Not Real LRU: access order within a clock tick is lost and

counters have a limited length.

The Working Set Page Replacement Algorithm (1)

k
e The working set is the set of pages used by the k¥ most recent

memory references (locality of access)
e w(k,t)is the size of the working set at time, ¢

e Evict a page not in the working set on a page fault

The Working Set Page Replacement Algorithm (2)

| 2204 | Current virtual time

Information about { / R (Referenced) bit
one page 2084 1

2003

Time of last use ———>- 1980 Scan all pages examining R bit:
if (R==1)
set time of last use to current virtual time

Page referenced 1213

during this tick

2014

if (R ==0and age > 1)
remove this page

2020

2032 if (R ==0and age <1)
Page not_ referenced — remember the smallest time
during this tick 1550 5

Page table

The working set algorithm. Pages accessed within 7 virtual time

are considered to be in the working set.

The WS Clock Page Replacement Algorithm (1)

Cumrer sirua fime

"

1z13|o 1z13|o

iz)

Operation of the WS clock algorithm

(a) Not replaced since R =1
(b) R-bit cleared and the hand is advanced

The WS Clock Page Replacement Algorithm (2)

/

1z 13| zzou4 1

(=) d)

Operation of the WS clock algorithm

(c) Page selected for replacement since R = 0
(d) R-bit is set and access time is updated

and the hand is advanced

Review of Page Replacement Algorithms

Algorithm

Comment

Optimal

Not implementable, but useful as a benchmark

NRU (Not Recently Used)

Very crude

FIFO (First-In, First-Out)

Might throw out important pages

Second chance

Big improvement over FIFO

Clock

Realistic

LRU (Least Recently Used)

Excellent, but difficult to implement exactly

NFU (Not Frequently Used)

Fairly crude approximation to LRU

Aging

Efficient algorithm that approximates LRU well

Working set

Somewhat expensive to implement

WSClock

Good efficient algorithm

Modeling Page Replacement Algorithms Belady’s Anomaly

All pages frames initially empty

01 2 3 0 4
Youngest page oj1]2
011
Oldest page 0
I

3
2
1
=)

0
3
2
P 9 Page faults

Youngest page

QOldest page

10 Page faults

e FIFO with 3 page frames
e FIFO with 4 page frames

e 32 P’s show which page references show page faults

Stack Algorithms

Reference string 0
0

OIN|PJW|OI |~]|O] O
OoIN|PJO || |W] W

olNvIR|lOlo|lwlNl~] &
o|N|rRr|lO]lo|lw]|~]|N] N
o|N|r|lolold|IN]|wW] W
o|N|rRrOo|d~|N]|W] W
ol|lNvlir|lolnlN|lw|lo] o
ol|lNlrr|lola|N|O|lw] w
o|lv]io|d]IN|lO|lwW]R] -~
o|Nv]|o|dNlO|lW]R] -
o|lv]o|lrlolwlr Nl N
oMol lO|W|N]|F]
olNv]jo|dlO|N|FR|W] W
o|lNvolo]~N|lW]|R | P

T |O|IN|IPIOIRAIO|WIN]L N

Page faults P

8

o T lolN|~lolalNlw|lo] o
O TVloINvIoO|l~INIOlWIFRL] -
o Ulo|Nvo|lalNlR|lw]lR] &

Distance string o 4 4 2 3

[EEN

1 2 1 14 2 3

State of memory array,M ,after each item in reference string is

processed

M(m, r) € M(m+1, r)
m: number of frames

r: index into reference string

The Distance String

i

d

=\

Probability density functions for two hypothetical distance strings

d: distance of accessed page from top of stack

The Distance String

times
1 occurs in

4~ distance string

~—C,+C,+C,+ ... +C_|

<—C,+C,+Cg+...+C,

~<~—C,+C +Cy+ ... +C_,

times
6 occurs in -—— # of page faults with 5 frames

/ distance string

O[OlOIO]ITO]ITO]IO] O

e Computation of page fault rate from distance string
— the C vector
— the F' vector

Design Issues for Paging Systems

Local versus Global Allocation Policies (1)

Age
A0 10

Al
A2
A3
A4
A5
BO
Bl
B2
B3
B4
B5
B6
Cl
C2
C3

(@)

\‘

O UTWEFRPOUNO P OWO MO

e Original configuration
e Local page replacement

e (Global page replacement

Local versus Global Allocation Policies (2)

&)
)
2]
~~
n
=
-
©
Y—
&)
(@))
)
ol

Number of page frames assigned
Page fault rate as a function of the number of page frames assigned

A: pagefault rate too high
B: too much memory allocated

Load Control

e Despite good designs,system may still thrash

e When PFF(Page Fault Frequency) algorithm indicates
— some processes need more memory

— but no processes need less

e Solution :

— swap one or more to disk,divide up pages they held

— reconsider degree of multiprogramming

Page Size (1)

Small page size

e Advantages
— less internal fragmentation
— better fit for various data structures,code sections

— less unused program in memory

e Disadvantages

— programs need many pages,larger page tables

Page Size (2)

Overhead due to page table and internal fragmentation
S *x €

p

. page table pace, g: internal fragmentation

overhead =

S *x e

Where
— 8 = average process size in bytes
— p = page size in bytes Optimized when

— e = page entry

Optimized when : p =+/2se

di overhead = 0
p

Separate Instruction and Data Spaces

D32

Program {
0

e One address space

Single address
space

Program {

e Separate I and D spaces

} Unused page

0

Shared Pages

Process
table

Program
.

VT
Page tables

Two processes sharing same program sharing its page table

Cleaning Policy

Need for a background process,paging daemon

— periodically inspects state of memory

When too few frames are free

— selects pages to evict using a replacement algorithm

It can use same circular list (clock)

— as regular page replacement algorithm but with diff ptr

one for eviction

— flush if it points to a dirty page

another for replacement

Implementation Issues
Operating System Involvement with Paging

Four times when OS involved with paging

1. Process creation
e determine program size

e create page table

2. Process execution

e MMU reset for new process
e TLB flushed

3. Page fault time

e determine virtual address causing fault

e swap target page out, needed page in
4. Process termination time

e release page table, pages

Page Fault Handling (1)

. Hardware traps to kernel

. General registers saved

. OS determines which virtual page needed

. OS checks validity of address,seeks page frame

. If selected frame is dirty,write it to disk

Page Fault Handling (2)

OS brings new page in from disk

Page tables updated

Faulting instruction backed up to when it began
Faulting process scheduled

Registers restored

Program continues

Instruction Backup

MOVE.L #6(A1), 2(A0)

€ 16 Bits >

MOVE } Opcode

6 } First operand
2 |

Second operand

An instruction causing a page fault
— auto increment R, R++
A index register(s) save the instruction that caused pagefault
(which register have already been inc/dec)

Locking Pages in Memory

e Virtual memory and I/O occasionally interact

e Proc issues call for read from device into buffer
— while waiting for I/O,another processes starts up
— has a page fault
— buffer for I/O DMA for the first proc may be chosen to be
paged out
e Need to specify some pages locked

— exempted from being target pages

Backing Store

Main memory Main memory

Pages Pages

Swap area

(a)Paging to static swap area (only vpn is needed)

(b)Backing up pages dynamically
need map (vpn — disk block)

Separation of Policy and Mechanism

. 3. Request page
Main memory

User
process

2. Needed

External
pager

4. Page
arrives

1. Page

page
fault I

¢

5. Here

Kernel
space

is page
Fault
handler 6. Map
page in

Page fault handling with an external pager

— No access to modify and accessed bits
e Adv - more modular design

e Disadv - message overhead

Segmentation (1)

Virtual address space

Call stack *

} Free

Address space

allocated to the Space currently being

parse tree Parse tree used by the parse tree

Constant table *

Source text *

J Symbol table has
Symbol table bumped into the
source text table

e One-dimensional address space with growing tables
e One table may bump into another

Example - Compiler program

Segmentation (2)

Source
text

Constants

Segment Segment Segment Segment Segment
0 1 2 3 4

Allows each table to grow or shrink,independently

Segmentation (3)

Consideration

Paging

Segmentation

Need the programmer be aware
that this technigue is being used?

Yes

How many linear address
spaces are there?

Many

Can the total address space
exceed the size of physical
memory?

Yes

Can procedures and data be
distinguished and separately
protected?

Can tables whose size fluctuates
be accommodated easily?

No

Yes

Is sharing of procedures
between users facilitated?

No

Yes

Why was this technique
invented?

To get a large
linear address
space without
having to buy
more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

Comparison of paging and segmentation

Implementation of Pure Segmentation

Segment 4
(7K)

Segment 3
(8K)

Segment 4
(7K)

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

Segment 1
(8K)

Segment 2
(5K)

Segment 3
(8K)

Segment 5
(4K)

U

712072

_

Segment 2
(5K)

Segment 6
(4K)

Segment 5
(4K)

Segment O
(4K)

Segment 7
(5K)

Segment 2
(5K)

Segment 6
(4K)

Segment O

(@)

Segment 7
(5K)

(4K)

Segment O

(b)

Segment 7
(5K)

Segment 2
(5K)

(4K)

Segment O

(©)

Segment 7
(5K)

(4K)

Segment O

(d)

(a)-(d)Development of checker boarding

(e)Removal of the checker boarding by compaction

(4K)

(€)

Segmentation with Paging:MULTICS (1)
4

36 bits

Page 2 entry

Page 1 entry

Segment 6 descriptor Page 0 entry

Segment 5 descriptor Page table for segment 3

Segment 4 descriptor

Segment 3 descriptor l

Segment 2 descriptor

Segment 1 descriptor Page 2 entry

Segment 0 descriptor Page 1 entry

Descriptor segment Page 0 entry

Page table for segment 1

18 9

Main memory address Segment length
of the page table (in pages)

Page size:
0 = 1024 words
1 =64 words

0 = segment is paged
1 = segment is not paged

Miscellaneous bits

Protection bits

(b)

e Descriptor segment points to page tables

e Segment descriptor - numbers are field lengths

Segmentation with Paging:MULTICS (2)

Address within
the segment

Al

Page Offset within

Segment number aumber the page

18 6 10

A 34-bit MULTICS virtual address

Segmentation with Paging:MULTICS (3)

MULTICS virtual address

Page

Segment number
number

Descriptor Page frame

Segment Page

number Descriptor number Page Page

segment table

Conversion of a 2-part MULTI S address into a main memory

address

Segmentation with Paging:MULTICS (4)

Comparison Is this
field entry
A used?

Segment Virtual Page
number page frame Protection Age l

4 1 7 Read/write 13
6 0 2 Read only 10
12 3 1 Read/write 2

Execute only

1
1
1
0
1
1

Execute only

—

e Simplified version of the MULTICS TLB

e Existence of 2 page sizes makes actual TLB more complicated

Segmentation with Paging:Pentium (1)

/N

0=GDT/1=LDT Privilege level (0-3)

A Pentium selector

Y
Loaded into one of segment registers (DS, CS, etc)

Segmentation with Paging:Pentium (2)

0: 16-Bit segment [0: Segment is absent from memory
1: 32-Bit segment | 1: Segment is present in memory
Privilege level (0-3)

0: Liis in bytes 0: System

1: Liis in pages 1: Application

Segment type and protection
{h g yp p

Base 24-31 G Type Base 16-23 4

Base 0-15 Limit 0-15 0

. Relative
address

e Pentium code segment descriptor

e Data segments differ slightly

Segmentation with Paging:Pentium (3)

Selector

Descriptor

Offset

Base address

Limit

Other fields

Y

32-Bit linear address

Conversion of a (selector,offset)pair to a linear address

Limit > Offset

Segmentation with Paging:Pentium (4)

Linear address
10

12

Page

Offset

Page directory

N 1

/

Directory entry
points to
page table

(@)

Page table

Page table
entry points
to word

(b)

Word
selected

Page frame

s

“

Mapping of a linear address onto a physical address

Segmentation with Paging:Pentium (5)

er progra
Us Ms Typical uses of

D7 the levels

Level
Protection on the Pentium

