Chapter 2

Processes and Threads

2.1 Processes

2.2 Threads

2.3 Interprocess communication
2.4 Classical IPC problems

2.5 Scheduling




Processes
The Process Model

One program counter
Four program counters

Process
A switch
B
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@) (b)

(a) Multiprogramming of four programs

(b) Conceptual model of 4 independent, sequential processes

(c) Only one program active at any instant




Process Creation

Principal events that cause process creation
. System initialization

. Execution of a process creation system call by a running

process
. User request to create a new process
. Initiation of a batch job

Parent and child processes do not share address space




Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)

2. Error exit (voluntary)

e Error caused in the application

3. Fatal error (involuntary)

4. Killed by another process (involuntary)




Process Hierarchies

Parent creates a child process, child processes can create its

OWIl Process

Forms a hierarchy

— UNIX calls this a “process group”

Windows has no concept of process hierarchy
— all processes are created equal
Init

— 1st process created after boot




Process States (1)

1. Process blocks for input
2. Scheduler picks another process
3. Scheduler picks this process

Blocked 4. Input becomes available

e Possible process states
— running
— blocked
— ready

e Transitions between states shown




Process States (2)

Processes

Scheduler

e Lowest layer of process-structured OS

— handles interrupts, scheduling

e Above that layer are sequential processes




Implementation of Processes (1)

Process management
Registers

Program counter
Program status word
Stack pointer

Process state

Priority

Scheduling parameters
Process ID

Parent process
Process group

Signals

Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Memory management
Pointer to text segment
Pointer to data segment
Pointer to stack segment

File management
Root directory
Working directory
File descriptors
User ID

Group ID

Fields of a process table entry




Implementation of Processes (2)

Hardware stacks program counter, etc.

Hardware loads new program counter from interrupt vector.
Assembly language procedure saves registers.

Assembly language procedure sets up new stack.

C interrupt service runs (typically reads and buffers input).
Scheduler decides which process is to run next.

. C procedure returns to the assembly code.

. Assembly language procedure starts up new current process.

1.
2.
3.
4.
5.
6.
7
38

Skeleton of what lowest level of OS does when an interrupt occurs

(context switching)




Threads
The Thread Model (1)

Process 1 Process 1 Process 1 Process

\ | | I

|

VOOl ¢

Thread

Kernel K |
space Kernel erne

(@) (b)
(a) Three processes each with one thread
(b) One process with three threads

e Process
— Resource grouping

— Execution




The Thread Model (2)

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers
Accounting information

e [tems shared by all threads in a process

e Items private to each thread




The Thread Model (3)

Thread 2

Thread 1 Thread 3
\ /

‘P |_~ Process

/

Thread 3's stack

(¢
Threadkl's > E E‘

Kernel

Each thread has its own stack




Thread Usage

Four score and seven | [nation, or any nation|[lives that this nation| [who struggled here] [here to the unfinished | [they gave the last full
years ago, our fathers || so conceived and so| might live. It is| |have consecrated it, far| |work which they who [ [measure of devotion,
brought forth upon this || dedicated, can long || altogether fitting and| [ above our poor power| |fought here have thus [[that we here highly
continent a new nation: || endure. We are met on || proper that we should| | to add or detract. The| |far so nobly advanced. | [resolve that these dead
conceived in liberty, ||a great battlefield of || do this. world will little note, | [t is rather for us to be | |shall not have died in
and dedicated to the || that war But, in a larger sense,| [ nor long remember, | |here dedicated to the || vain that this nation,
proposition that all || We have come to|| we cannot dedicate, we| | what we say here, but| [great task remaining | |under God, shall have
men are created equal. | [ dedicate a portion of || cannot consecrate we|[it can never forget| [before us, that from ||a new birth of freedom
Now we are engaged || that field as a final|| cannot hallow this| | what they did here. these honored dead we | |and that government of
in a great civil war||resting place for those|| ground. The brave|| Itis for us the living, | [take increased devotion | |the people by  the
testing  whether that || who here gave their | men, living and dead, | | rather, to be dedicated at cause f h | [people, for the people

L J
'

Kernel

Keyboard

A word processor with three threads




Thread Usage (2)

Web server process

Y

,2 W Worker thread

Dispatcher thread

Web page cache

Network
connection

A multithreaded Web server

/

Kernel
space




Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff _work(&buf); look for_page in_cache(&buf, &page);
} if (page_not_in_cache(&page))
read page_from_disk(&buf, &page);
return_page(&page);
}
(b)

e Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread




Thread Usage (4)

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

Three ways to construct a server




Implementing Threads(1)

Process Process Thread

\_/

/ Kernel

/

Bun-ime Thread Process Process Thread
system table table table table

e Implementing Threads in User Space

— A user-level threads package

e Implementing Threads in the Kernel

— A threads package managed by the kernel




Implementing Threads(2)

Implementing Threads in User Space

o Adv.

— Thread scheduling and switching are fast
(low overhead)

— flexible scheduling algorithm

e Disadvantage
— A system call blocks all threads in the same process
— Page fault of a thread

— No fairness granted in thread scheduling




Implementing Threads(3)

Implementing Threads in the Kernel

e Advantage
— System call causes switching between thread
— Kernel controls thread scheduling
(e.g. thread from same or different process)
e Disadvantage

— Higher overhead in thread switching



Hybrid Implementations

Multiple user threads
on a kernel thread

\_

Kernel S*— Kernel thread }

Multiplexing user-level threads onto kernel- level threads




Scheduler Activations

Goal - mimic functionality of kernel threads

— gain performance of user space threads
Avoids unnecessary user/kernel transitions

Kernel assigns virtual processors to each process
— lets runtime system allocate threads to processors
Problem:

Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)




Pop-Up Threads

Pop-up thread
Process created to handle

o incoming message
\ Existing thread

Incoming message  J

Network

(@) (b)

e Creation of a new thread when message arrives
(a) before message arrives

(b) after message arrives




Making Single-Threaded Code Multithreaded
(1)

Thread 1 Thread 2

%

Access (errno set)

|

Open (errno overwritten)

%

;

Errno inspected

Conflicts between threads over the use of a global variable




Making Single-Threaded Code Multithreaded (2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack

Thread 2's
stack

Thread 1's
globals

Thread 2's
globals

Threads can have private global variables




Interprocess Communication

Race Conditions (Def. on Page 102)

Spooler
directory

Two processes want to access shared memory at same time




Critical Regions (1)

Four conditions to provide mutual exclusion
. No two processes simultaneously in critical region
. No assumptions made about speeds or numbers of CPUs

. No process running outside its critical region may block
another process

. No process must wait forever to enter its critical region




Critical Regions (2)

A enters critical region » .
A leaves critical region

/

Process A

B attempts to B enters B Ieaves_
enter critical critical region critical region
region

Process B

Mutual exclusion using critical regions




Mutual Exclusion with Busy Waiting (1)

while (TRUE) { while (TRUE) {
while (turn !'=0) [* loop */ ; while (turn != 1) /% loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;

noncritical _region(); noncritical _region();
(a) (b)

Proposed solution to critical region problem
(Strict Alternation)

(a) Process 0. (b) Process 1.




Mutual Exclusion with Busy Waiting (2)

#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */

int turn; [* whose turn is it? x/
int interested[N]; /% all values initially O (FALSE) %/

void enter_region(int process); /[* process is O or 1 %/

{

int other; /* number of the other process */

other = 1 — process; /* the opposite of process */
interested[process] = TRUE;  /x show that you are interested */

turn = process; /% set flag %/

while (turn == process && interested[other] == TRUE) /% null statement */ ;

}

void leave _region(int process) /% process: who is leaving */

{
}

interested[process] = FALSE; /x indicate departure from critical region */

Peterson’s solution for achieving mutual exclusion




Mutual Exclusion with Busy Waiting (3)

enter__region:
TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop
RET | return to caller; critical region entered

leave region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the TSL instruction
TSL: Test and Set Lock Instruction.

Atomicity is guaranteed by hardware.




Sleep and Wakeup

#define N 100
int count = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
if (count == N) sleep();
insert_item(item);
count = count + 1,
if (count == 1) wakeup(consumer);

void consumer(void)

{

int item;

while (TRUE) {
if (count == 0) sleep();
item = remove_item();
count = count — 1;

[* number of slots in the buffer %/
[* number of items in the buffer »/

I* repeat forever /

/* generate next item */

I* if buffer is full, go to sleep */

/* put item in buffer x/

/* increment count of items in buffer */
I* was buffer empty? */

I* repeat forever /

/% if buffer is empty, got to sleep */

[+ take item out of buffer %/

[+ decrement count of items in buffer x/

if (count == N - 1) wakeup(producer); /* was buffer full? x/

consume_item(item);

[* print item %/

Producer-consumer problem with fatal race condition




Semaphores

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
down(&empty);
down(&mutex);
insert_item(item);
up(&mutex);
up(&full);

void consumer(void)

{

int item;

while (TRUE) {
down(&full);
down(&mutex);
item = remove_item();
up(&mutex);
up(&empty);
consume _item(item);

The producer-consumer

[+ number of slots in the buffer x/

[+ semaphores are a special kind of int */
/% controls access to critical region */

/* counts empty buffer slots */

/% counts full buffer slots */

/* TRUE is the constant 1 /

/% generate something to put in buffer */
[+ decrement empty count */

/* enter critical region */

/% put new item in buffer %/

/% leave critical region */

/* increment count of full slots x/

% infinite loop */

[+ decrement full count */

% enter critical region */

/% take item from buffer */

/% leave critical region /

/* increment count of empty slots %/
/* do something with the item */

problem using semaphores




Mutexes
(Binary Semaphore)

mutex __lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex __lock | try again later

ok: RET| return to caller; critical region entered

mutex __unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

Implementation of mutex_lock and mutex_unlock
with TSL Instruction




Example of a monitor

monitor example
integer i;
condition c;

procedur e producer ( );

end;

procedur e consumer ( );

end;
end monitor:

Monitors (1)

Monitor is a collection of
e procedures
e condition variables

e data structures




Monitors (2)

monitor FroducerConsumer
condition full, empty,
integer count,
procedure insert(item: integerl,
begin
if count = N then wait{full),
ingert__itemfitem)
count 1= count + 1,
if count = | then signal{ empiv)
end,
function remove: integer,
begin
if count = 0 then waitfempty),
CCMOVE = remave _item,
count = count — 1,
if count = N — | then signal(fil{)
end.;
count =0,
end monitor,

procedure prodiucer,
begin
while true do
begin
item = produce_item;
ProducerConswum er. insert{item)
end
end;
procedure consumer,
begin
while true do
begin
item = ProducerConsion er.remave,
cansume _item( ifem)
end
end:

e QOutline of producer-consumer problem with monitors

— only one monitor procedure active at one time

— buffer has N slots




Monitors (3)

public class ProducerConsumer {
stafic final int N = 100; /i constant giving the buffer size
static producer p = new producer( ); // instantiate a new producer thread
stafic consumer ¢ = new consumer{ )./ instantiate a new consumer thread
static our _monitor mon = new our_monitor( ); // instantiate a new monitor
public static void main{String args[]) {
p.start( ); /i start the producer thread
c.start(); Ml start the consumer thread
}
static class producer extends Thread {
public void runi ) 4 M run method contains the thread code
int item:
while (true) { M producer loop
item = produce _item( J;
mon.insertiitem);
}
}
private int produce_item{) {...1 / actually produce
}
stafic class consumer extends Thread {
public void runi | 4 run method contains the thread code
int iterm:
while (true) { M consumer loop
item = mon.remowve( ):
consume_item (item):
}
}

private void consume_item{int item) {... ]  // actually consume

]

Solution to producer-consumer problem in Java (part 1)




Monitors (4)

static class our_monitor { !/ this is a monitor
private int buffer[ ] = new int[N]:
private int count =0, lo = 0, hi = 0; // counters and indices
public synchronized void insert{int val) {
if (count ==N) go_to_sleep(): //ifthe buffer is full, go to sleep
buffer [hi] = val; Ml insert an item into the buffer
hi={hi+1)% N: /l slotto place next itemin
count = court + 1 /f one more item in the buffer now
if (count == 1) notify( }: M if consumer was sleeping, wake it up
1
public synchronized int remove( | {
int val;
if (count ==0) go_to_sleep(). //if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer
lo=(lo+ 1) % N: /I slot to fetch next item from
count = count — 1 /I one few items in the buffer
if (count == N —1) notify( ): /1if producer was sleeping, wake it up
return val;
1
private void go_to sleep() { try{waiti )} catch{ InterruptedException exc) {}.

]
}

Solution to producer-consumer problem in Java (part 2)




Message Passing
(applicable to distributed systems)

#define N 100 /* number of slots in the buffer x/

void producer(void)
{
int item;
message m; /* message buffer */

while (TRUE) {
item = produce_item(); /* generate something to put in buffer x/
receive(consumer, &m); /% wait for an empty to arrive */
build_message(&m, item); [* construct a message to send */
send(consumer, &m); /* send item to consumer */

}

void consumer(void)
{
int item, i;
message m;

for (i = 0; i < N; i++) send(producer, &m); /* send N empties */

while (TRUE) {
receive(producer, &m); /* get message containing item */
item = extract_item(&m); [* extract item from message */
send(producer, &m); /% send back empty reply */
consume _item(item); /* do something with the item */

The producer-consumer problem with N messages




Barriers

Process

e Use of a barrier
— processes approaching a barrier
— all processes but one blocked at barrier

— last process arrives, all are let through




Dining Philosophers (1)

R, Philosophers eat/think

o s Eating needs 2 forks

<

D)

JI

G

Pick one fork at a time

{

%

\‘\\““’I

sy, How to prevent deadlock 7
\ (Deadlock example:
everyone takes left fork

and wait for right one)




Dining Philosophers (2)

#define N 5

void philosopher(int i)
{
while (TRUE) {
think();
take fork(i);

take _fork((i+1) % N);

eat();
put_fork(i);
put_fork((i+1) % N);

/* number of philosophers */

/* i philosopher number, from 0 to 4 %/

/* philosopher is thinking */

/* take left fork */

/* take right fork; % is modulo operator */
/* yum-yum, spaghetti x/

/* put left fork back on the table */

/* put right fork back on the table %/

A nonsolution to the dining philosophers problem




Dining Philosophers (3)

#define N 5 /* number of philosophers */

#define LEFT (I+MN—1]%N ! number of i's left neighbor */

#define RIGHT (I+1)%MN /* number of i's right neighbor */

#define THINKING 0 /* philosopher is thinking */

#define HUNGRY 1 /* philosopher is trying to get forks */
#define EATING £ /* philosopher is eating */

typedef int semaphore; /* semaphores are a special kind of int */
int state[N]. /* array to keep track of everyone's state */
semaphore mutex = 1; /* mutual exclusion for critical regions */
semaphore s[NJ: /* one semaphore per philosopher */

void philosopher(int i) /* i: philosopher number, from 0 to N—1 */
{
while (TRLUE] { /* repeat forever */
think( ) /* philosopher is thinking */
take forks(i); /* acquire two forks or block */
eat( | [* yum-yum, spaghetti */
put forks(i): /* put both forks back on table */

Solution to dining philosophers problem (part 1)




Dining Philosophers (4)

void take forks(int i ™ i: philosopher number, from 0 to N—1 */
{
down{&mutex) {* enter critical region */
state[i] = HUNGRY': /* record fact that philosopher i is hungry */
testii): /* try to acquire 2 forks */
up( &mutex) ; /* exit critical region */
down{ &s[i]); /* block if forks were not acquired */

]
void put_forks(i) /* i: philosopher number, from 0 to N—1 */
{
down{ &mutex) {* anter critical region */
state[i] = THINKING: {* philosopher has finished eating */
test{LEFT): /* see if left neighbor can now eat */
testi RIGHT): /* see If right neighbor can now eat */
up( &mutex): /* exit critical region */

]

void test{i) f* i philosopher number, from 0 to N—1 */

{
if (state[i] == HUNGRY && state[LEFT] |= EATING && state[RIGHT] = EATING) {
state[i] = EATING:

up(&s[i]):

Solution to dining philosophers problem (part 2)




The Readers and Writers Problem

typedef int semaphore;
semaphore mutex = 1;
semaphore db = 1,
intrc =0;

void reader(void)

while (TRUE) {
down(&mutex);
rc=rc+1;
if (rc == 1) down(&db);
up(&mutex);
read_data_base();
down(&mutex);
rc=rc-1,
if (rc == 0) up(&db);
up(&mutex);
use_data_read();

void writer(void)
{
while (TRUE) {
think_up_data();
down(&db);
write_data_base();
up(&dby);

A solution to the (multiple) readers and writers problem

/* use your imagination */

/* controls access to 'rc’ */

/* controls access to the database */

/% # of processes reading or wanting to %/

/* repeat forever */

/* get exclusive access to 'rc’ x/

/* one reader more now */

[* if this is the first reader ... %/

/* release exclusive access to 'rc’ */
/* access the data */

/* get exclusive access to 'rc’ x/

/* one reader fewer now */

/% if this is the last reader ... */

/* release exclusive access to 'rc’ */
/* noncritical region */

/* repeat forever */

/* noncritical region */

/* get exclusive access */

/* update the data */

/* release exclusive access */




The Sleeping Barber Problem (1)




The Sleeping Barber Problem

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers = 0;
semaphore mutex = 1;

int waiting = 0;

void barber(void)

while (TRUE) {
down(&customers);
down(&mutex);
waiting = waiting — 1;
up(&barbers);
up(&mutex);
cut__hair();

void customer(void)
{
down(&mutex);
if (waiting < CHAIRS) {
waiting = waiting + 1;
up(&customers);
up(&mutex);
down(&barbers);
get__haircut();
}else {
up(&mutex);
}

/% # chairs for waiting customers */
/* use your imagination x/

/% # of customers waiting for service */

/% # of barbers waiting for customers */

/% for mutual exclusion /

/* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

/% acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/% release 'waiting’ */

/% cut hair (outside critical region) */

/% enter critical region */

/% if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/% release access to 'waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/% shop is full; do not wait */

Solution to sleeping barber problem.




Scheduling
Introduction to Scheduling (1)

I

/!

PU burst

e Bursts of CPU usage alternate with periods of /O wait
— a CPU-bound process

— an I/O bound process

e Multiprograming environment (keep CPU busy)

— Necessitates process scheduling




Introduction to Scheduling (2)

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour

Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Scheduling Algorithm Goals




Scheduling in Batch Systems (1)

(a) First come first served scheduling (FCFS)
(b) Shortest job first scheduling (SJF)

Average Turnaround Time: FCFS 14min, SJF 11min




Scheduling in Batch Systems (2)

Amriving
job

: >

| |

Admission @ Memory
scheduler scheduler

(D

Three level scheduling




Scheduling in Interactive Systems (1)

Current Next Current
process process process

N S N

B F D F

(@)

e Round Robin Scheduling
(a) list of runnable processes

(b) list of runnable processes after B uses up its quantum

e (Quantum

— A time interval assigned to each process to run
Too long — slow response

Too short — waste CPU time for switching




Scheduling in Interactive Systems (2)

Queue
headers

Priority 4

Runable processes

A

r

Priority 3

N

Priority 2

Priority 1

(Highest priority)

(Lowest priority)

A scheduling algorithm with four priority classes

No priority adjustment leads to starving of lower priority processes

Estimate execution time from past behavior (1/f)




Scheduling in Real-Time Systems

Schedulable real-time system

e Hard real time, Soft real time
— Time constraint on program execution

— Behavior is predictable and known in advance.

e Given
— m periodic events

— event i occurs within period Pi and requires Ci seconds
e Then the load can only be handled (= schedulable) if
m Cz
— <

IEES

1=1




Policy versus Mechanism

e Separate what is allowed to be done with how it is done
— a process knows which of its children threads are important
and need priority
e Scheduling algorithm parameterized
— mechanism in the kernel
(e. g. priority scheduling)
e Parameters filled in by user processes

— policy set by user process

(e. g. how to set each process’s priority)




Thread Scheduling(1)

Process A Process B Process A Process B
Order in which l

threads run \

2. Runtime
system
picks a — .
thread J

Ll. Kernel picks a process 1 Kernel picks a thread E

Possible: Al, A2, A3, Al, A2, A3 Possible: Al, A2, A3, Al, A2, A3
Not possible: Al, B1, A2, B2, A3, B3 Also possible: A1, B1, A2, B2, A3, B3

(a) (b)
e Possible scheduling of user-level threads

— 50-msec process quantum

— threads run 5 msec/CPU burst

e Possible scheduling of kernel-level threads

— 50-msec process quantum

— threads run 5 msec/CPU burst




Thread Scheduling(2)

e Possible scheduling of user-level threads

— Application specific scheduling possible
(can be a disadvantage if one thread does not yield the

CPU)

— Thread switching is inexpensive

e Possible scheduling of kernel-level threads
— Thread switching = full (process) context switching

— Can switch to any thread irrespective of parent process




