Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan

Today's Topics

- Grammars
- Right-Linear Grammars
- Left-Linear Grammars
- Regular Grammars
- · Context-free Grammars
- · Derivation: Leftmost & Rightmost
- Derivation Tree

3

Grammars

Definition

Given a grammar G = (V, T, P, S)

For a string w=uxv we can apply the production rule $x\rightarrow y$ to w so we get a string z=uyv.

In this case we write $w \longrightarrow z$, which reads w drives z.

If
$$w_1 \longrightarrow w_2 \longrightarrow \dots \longrightarrow w_n$$
,
we say that w_1 drives w_n and we write $w_1 \longrightarrow^* w_n$

Grammars

Example

Given a grammar G = (V, T, P, S)

V={A, B, C} T={a, b, x} S= A And P is:

AaBx→aBAaBb CaBx→aBAaCb ABC→λ

6

Grammars

Definition

Let G=(V, T, P, S) be a grammar.

- $w \in (V \cup T)^*$ is a sentential form, if $S \Rightarrow_G^* w$
- $w \in T^*$ is a sentence, if $S \Rightarrow_G^* w$
- The language of G,

$$L(G) = \{ w \in T^* | S \Rightarrow_G^* w \}$$

Grammars

Some Remarks

The language L(G) = { $w \in T^* : S \Rightarrow^* w$ } contains only strings of terminals, not variables.

Notation: We summarize several rules for one variable:

 $A \rightarrow B$ $A \rightarrow 01$ by $A \rightarrow B \mid 01 \mid AA$

 $A \rightarrow AA$

Grammars

Example

Given the grammar:

$$G = \{\{S\}, \{a,b\}, \{S \rightarrow \lambda, S \rightarrow aSb\}, S\}$$

The language generated by this grammar is:

$$L(G) = \{a^n b^n \mid n \ge 0\}$$

q

11

Right-Linear Grammars

Definition

A Grammar G= (V, T, P,S) is called **rightlinear grammar** if every production is of the form $A \rightarrow xB$, or $A \rightarrow x$ where

 $A,B \in V, x \in T^*$

Example: The grammar

 $x \rightarrow 0x \mid 1y$

 $y \to 0x \mid 1z$ $z \to 0x \mid 1z \mid \lambda$

Is a right-linear grammar.

10

Left-Linear Grammars

Definition

A Grammar G= (V, T, P,S) is called **leftlinear grammar** if every production is of the form $A \rightarrow Bx$, or $A \rightarrow x$ where

 $A,B\in V,\,x\in T^*$

Example: The grammar

 $x \to x0 \mid y1$ $y \to x0 \mid z1$

 $y \rightarrow x0 \mid z1$ $z \rightarrow x0 \mid z1 \mid \lambda$

Is a left-linear grammar.

Definition

A Grammar G= (V, T,P,S) is called **regular grammar** if its is left- or right-linear

Regular Grammars

Example: The grammar

Example: The grammar

 $x \rightarrow x0 \mid y1$ $y \rightarrow x0 \mid z1$ $x \rightarrow 0x \mid 1y$ $y \rightarrow 0x \mid 1z$

 $z \rightarrow x0 \mid z1 \mid \lambda$ $z \rightarrow 0$ Is a left-linear grammar, hence is Regular Grammar Hence

 $z \rightarrow 0x \mid 1z \mid \lambda$ Is a right-linear grammar, Hence is Regular Grammar

15

Context-free Grammars

Definitio

CFG = (V, T, P, S)

- V : Finite set of variables/non-terminals
- T : Alphabet/Finite set of terminals
- P : Finite set of rules/productions
- S: Start symbol

S∈V

 $V \cap T = \phi$

Rule: $A \rightarrow \omega$

 $A \in V \quad \omega \in (V \cup T)^*$

Definition

Context-freeness: An A-rule can be applied whenever A occurs in a string, irrespective of the context (that is, non-terminals and terminals around A).

17

Context-free Grammars

Derivation

• One-step Derivation

$$uAv \underset{A \to \omega}{\Longrightarrow} u\omega v$$

 w is derivable from v in CFG, if there is a finite sequence of rule applications such that:

$$v \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n = w$$

In this case we can write this derivation as $v \longrightarrow w$

40

Context-free Grammars

Derivation

The derivation as $v \rightarrow w$ is called:

Leftmost derivation: if in every step the leftmost variable is selected for reduction

Rightmost derivation: if in every step the rightmost variable is selected for reduction

19

Context-free Grammars

Example 1

Let $G = (\{S\}, \{a,b\},S,P)$ with for P:

- •S \rightarrow aSa, and S \rightarrow bSb, and S \rightarrow λ .
- •Some *derivations* from this grammar:
- S ⇒ aSa ⇒ aaSaa ⇒ aabSbaa ⇒ aabbaa • S ⇒ bSb ⇒ baSab ⇒ baab, and so on.
- •In general $S \Rightarrow \Rightarrow ww^R$ for $w \in \{a,b\}^*$.

L(G)={ww^R : w∈{a,b}*}

Example 2

$$G = (\{S, A, B\}, \{a, b\}, \{S \to AB, A \to aA \mid \lambda, B \to Bb \mid \lambda\},$$

$$S)$$

$$L(G) = L(a * b*)$$

Leftmost Derivation:

$$S \Rightarrow AB \Rightarrow aAB \Rightarrow aBb \Rightarrow ab$$

Rightmost Derivation:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aAb \Rightarrow ab$$

Context-free Grammars

Example 3

Take the CFG S \rightarrow 0 | 1 | ¬(S) | (S)v(S) | (S)A(S), which generates all proper Boolean formulas that use "0", "1", "¬", "v", "A", "(" and ")".

Then " $(0)v((0)\wedge(1))$ " can be derived in the following ways...

[leftmost]
$$S \Rightarrow (S)v(S) \Rightarrow (0)v(S) \Rightarrow (0)v((S)\wedge(S))$$

 $\Rightarrow (0)v((0)\wedge(S)) \Rightarrow (0)v((0)\wedge(1))$

 $[rightmost] \ S \Rightarrow (S)v(S) \Rightarrow (S)v((S) \wedge (S)) \Rightarrow (S)v((S) \wedge (1)) \\ \Rightarrow (S)v((0) \wedge (1)) \Rightarrow (0)v((0) \wedge (1))$

[something else] $S \Rightarrow (S)v(S) \Rightarrow (0)v(S) \Rightarrow (0)v((S)\wedge(S))$ $\Rightarrow (0)v((S)\wedge(1)) \Rightarrow (0)v((0)\wedge(0))$

Context-free Grammars

Example 4

Consider the CFG:

$$G = \{\{S\}, \{a,b\}, \{S \rightarrow \lambda, S \rightarrow aSb\}, S\}$$

• Derivation of aabb is

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

Context-free Grammars

Example 5

Consider the CFG G:

$$S \to aSa \mid aBa$$
$$B \to bB \mid b$$

$$L(B) = \{b^m \mid m > 0\}$$

$$L(S) = \{a^n b^m a^n \mid n > 0 \land m > 0\}$$

$$L(G) = L(S)$$

Example 6

$$S \rightarrow aSa \mid B$$

Consider the CFG G₁:

$$B \rightarrow bB \mid \lambda$$

The language generated by G₁ is:

$$L(G_1) = \{a^n b^m a^n \mid n \ge 0 \land m \ge 0\}$$

Consider the CFG G_2 : $S \rightarrow abSc \mid \lambda$

$$S \rightarrow abSc \mid \lambda$$

The language generated by G₂ is:

$$L(G_2) = \{ (ab)^n c^n \mid n \ge 0 \}$$

Context-free Grammars

Example 7 Consider the CFGs G_1 and G_2 :

$$G_{1}: \begin{bmatrix} S \to AB \\ A \to aA \mid a \\ B \to bB \mid \lambda \end{bmatrix} \qquad G_{2}: \begin{bmatrix} S \to aS \mid aB \\ B \to bB \mid \lambda \end{bmatrix}$$

$$S \to aS \mid aB$$
$$B \to bB \mid \lambda$$

The language generated by G₁ and G₂ is:

$$L(G_1) = L(G_2) = L(S)$$

$$L(S) = \{a^n b^m \mid m \ge 0 \land n > 0\}$$

$$L(S) = L(a^+b^*)$$

Context-free Grammars

Example 8

Write a CFG to generate the language: a*ba*ba*

$$S \to AbAbA$$
$$A \to aA \mid \lambda$$

$$S \to AbAbA$$

$$A \to aA \mid \lambda$$

$$S \to aS \mid B$$

$$B \to bA$$

$$A \to aA \mid bC$$

$$C \to aC \mid \lambda$$

Left to right generation of string.

Context-free Grammars

Exercise 1

WRITE A CFG FOR THE EMPTY SET

$$G = \{ \{S\}, \Sigma, \emptyset, S \}$$

Exercise 2

What is the CFG ({S},{(,)}, P, S) that produces the language of correct parentheses like (), (()), or ()(())?

 $S{\rightarrow} (S)|SS|\lambda$

Context-free Grammars

Example

Consider the CFG G=({S,Z},{0,1}, P, S) with

P: S → 0S1 | 0Z1

 $Z \rightarrow 0Z \mid \lambda$

What is the language generated by G?

Answer: $L(G) = \{0^{i}1^{j} | i ≥ j \}$

Specifically, S yields the $0^{j+k}1^{j}$ according to:

 $S \Rightarrow 0S1 \Rightarrow ... \Rightarrow 0^{j}S1^{j} \Rightarrow 0^{j+k}E1^{j} \Rightarrow 0^{j+k}E1^{j}$

Context-free Grammars

Exercise

- Can you make Context Free Grammars for the following?
- a) $\{0^n1^n : n \ge 0\}$
- b) { 0ⁿ1^m : n,m≥0}
- c) Arithmetic a,b,c formulas like a+b×c+a (without ())
- Answers:
- a) S \rightarrow 0S1 | λ
- b) S \rightarrow 0S | R and R \rightarrow 1R | λ
- c) S \rightarrow a | b | c | S+S | S×S

Context-free Grammars

Derivation Tree

For a CFG G=(V,T,S,P) a derivation tree has the following properties:

Example

- 1) The root is labeled S
- 2) Each leaf is from T∪{λ}
- 3) Each interior node is from V
- 4) it node has label A∈V and its children a₁...a₁ (from L to R), then P must have the rule $A \rightarrow a_1...a_n$ (with $a_i \in V \cup T \cup \{\lambda\}$)

5) A leaf labeled λ is a single child (has no siblings).

For partial derivation trees we have: 2a) Each leaf is from $V \cup T \cup \{\lambda\}$

Derivation Tree: Example

Take the CFG S \rightarrow 0 | 1 | ¬(S) | (S)v(S) | (S)∧(S), which generates all proper Boolean formulas that use "0", "1", "¬", "v", "∧", "(" and ")".

The derivation $S \Rightarrow^* (0) \vee ((0) \wedge (1))$ can be expressed by the following derivation tree:

Context-free Grammars

Derivation Tree: Notes

Application of a production rule $A \rightarrow x$ is represented by node A with children x. (Note that the tree is ordered:

the ordering of the nodes matters.)

The root has variable S.

The **yield** of S is expressed by the leaves of the tree.

Context-free Grammars

Derivation Tree: Notes

- •Looking at a tree you see the derivation without the unnecessary information about its order.
- •Theorem: Let G be a CFG. We have $w{\in}L(G)$ if and only if there exists a derivation tree of G with yield w.
- •Also, y is a sentential form of G if and only if there exists a partial derivation tree for G.
- •Remember: the root always has to be S.

Consider the CFG G: $G = \{\{S\}, \{a,b\}, \{S\}\}$

Example 1

 $G = \{\{S\}, \{a,b\}, \{S \rightarrow \lambda, S \rightarrow aSb\}, S)$

Context-free Grammars

• The derivation of *aabb* is:

 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

• Derivation tree is

Exercise

WRITE A CFG FOR EVEN-LENGTH PALINDROMES over Σ ={a,b,c,d}?

 $S \to aSa$ for all $a \in \Sigma$

 $\boldsymbol{S} \to \boldsymbol{\lambda}$