Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Definition

A nondeterministic finite automaton with empty moves (λ -NFA) M is defined by a 5-tuple M=(Q, Σ , δ ,q₀,F), with

- Q: finite set of states
- **Σ**: finite input alphabet
- \Box δ : transition function $\delta:Q\times(\Sigma\cup\{\lambda\})\to P(Q)$
- \square q₀ \in Q: start state
- □ F⊆Q: set of final states

Definition

A string w is **accepted** by a λ -NFA M if and only if there exists a path starting at q_0 which is labeled by w and ends in a final state.

The *language accepted by* a λ -NFA M is the set of all strings which are accepted by M and is denoted by L(M).

 $L(M) = \{w : \delta(q_0, w) \cap F \neq \Phi\}$

Notes

$$\delta: Q \times (\Sigma \cup {\lambda}) \rightarrow P(Q)$$

A λ -transition causes the machine to change its state non-deterministically, without consuming any input.

Notes

A λ -NFA has transition rules/possibilities like:

Empty string transition

Nondeterministic transition

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be in a subset $\subseteq Q$ of several possible states.

If the final set contains a final state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion; its computational path is no longer a line, but more like a tree".

We can write the NFA in two ways

1. State digraph

2. Table

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \to P(Q)$$

δ	а	b	λ
<i>q0</i>	{ <i>q0</i> }	{q0,q1}	ф
q1	ф	ф	{ <i>q2</i> }
q2	ф	ф	ф

Example

This automaton accepts "0110", because there is a *possible* path that leads to a final state, namely: $q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4$

(note that $q_1 \rightarrow q_1 \rightarrow q_1 \rightarrow q_1 \rightarrow q_1$ is *not* accepting)

Example

The string 1 gets rejected: on "1" the automaton can only reach: $\{q_1,q_2,q_3\}$.

Difference between NFA and λ-NFA

The string 11 is accepted by the above λ-NFA And rejected by the above NFA

Example

A λ -transition is taken without consuming any character from the input.

What does the NFA above accepts?

Quiz

What are $\delta(q_0,0)$, $\delta(q_0,1)$, $\delta(q_0,\lambda)$ in each of M_1 , M_2 , M_3 and in M_4 .?

M1:
$$\delta(q_0,0) = \delta(q_0,1) = \delta(q_0,\lambda) = \emptyset$$

M2: Same

*M*3:
$$\delta(q_0,0) = \delta(q_0,1) = \emptyset$$
, $\delta(q_0,\lambda) = \{q_1,q_2\}$

M4:
$$\delta(q_0,0)=\{q_1,q_3\}, \ \delta(q_0,1)=\{q_2,q_3\}, \ \delta(q_0,\lambda)=\emptyset$$

Quiz

Which of the following strings is accepted?

- 1. **\lambda**
- 2. 0
- 3. 1
- 4. 0111

Answer

- 1. λ is rejected. No path labeled by empty string from start state to an accept state.
- 2. 0 is accepted. EG the path
 3. 1 is accepted. EG the path $Q_0 \xrightarrow{q_1} Q_3$
- **0111** is accepted. There is only one accepted path:

$$q_0 \xrightarrow[0]{} q_3 \xrightarrow[\lambda]{} q_2 \xrightarrow[1]{} q_3 \xrightarrow[\lambda]{} q_2 \xrightarrow[1]{} q_3 \xrightarrow[\lambda]{} q_2 \xrightarrow[1]{} q_3$$

Definition

Given a λ -NFA state **s**, the λ -closure(**s**) is the set of states that are reachable through λ -transition from **s**.

 λ -closure(s)={q: there is a path from s to q labeled λ }

Given a set of λ -NFA states T, the λ -closure(T) is the set of states that are reachable through λ -transition from any state $s \in T$.

 λ -closure(T)=U_{s∈T} λ -closure(s)

Example 1:

$$\lambda\text{-closure}(q_0) = \{q_0, q_1, q_2\}$$

$$\lambda$$
-closure(q_1) = { q_1 , q_2 }

$$\lambda$$
-closure(q_2) = { q_2 }

Example 2:

What states can be reached from state 1 without consuming a character?

Example

What states can be reached from state 1 without consuming a character?

 $\{1,4,9,14\}$ form the λ -closure of state 1

Example

closure(1) =
$$\{1,4,9,14\}$$

closure(5) = $\{5,6,8\}$
closure(8) = $\{6,8\}$
closure(7) = $\{6,7,8\}$

Definition: Extension of δ

$$\delta: Q \times (\sum \bigcup \{\lambda\}) \to P(Q) \implies \hat{\delta}: Q \times \sum^* \to P(Q)$$

- $\hat{\boldsymbol{\delta}}$ is defined as follows:
- 1. $\hat{\mathcal{S}}(\mathbf{q}, \lambda) = \lambda$ -closure(q)
- 2. $\hat{\delta}$ (q,wa)= λ -closure(T) where

T={p: $p \in \delta(r,a)$ and $r \in \hat{\delta}(q,w)$ }, $a \in \Sigma$, $w \in \Sigma$ *

Example: Extension of δ

$$\hat{\delta}$$
 (q₀, 01) = {q₁, q₂}

Theorem: For every language L that is accepted by a λ-NFA, there is an NFA that accepts L as well.

NFA and NFA are equivalent computational models.

Proof:

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a λ -NFA, an equivalent NFA, $M' = (Q, \Sigma, \delta', q_0, F')$ can be constructed as follows:

1.
$$F' = \begin{cases} F \cup \{q_0\} & \text{If } \lambda\text{-closure}(\mathsf{q}_0) \cap \mathsf{F} \neq \Phi \\ F & \text{Otherwise} \end{cases}$$

2.
$$\delta'(q,a) = \hat{\delta}(q,a)$$

Example:

For the λ -NFA:

Construct the equivalent NFA?

Answer:

Given λ-NFA

$$Q = \{q_0, q_1, q_2\}$$
 and $\Sigma = \{0, 1, 2\}$

$$\lambda$$
-closure(q_0)={ q_0,q_1,q_2 } $\cap F \neq \Phi$

$$\delta'(q_0,1) = \hat{\delta}(q_0,1) = \{q_1,q_2\}$$

$$\delta'(q_0,2) = \hat{\delta}(q_0,2) = \{q_2\}$$

Constructed NFA

Q=
$$\{q_0, q_1, q_2\}$$
 and $\Sigma = \{0, 1, 2\}$

$$F' = \{q_0, q_2\}$$

Example:

For the λ -NFA:

Construct the equivalent NFA?

Answer:

Given λ-NFA

 $Q = \{q_0, q_1, q_2\}$ and $\Sigma = \{0, 1, 2\}$

$$\lambda$$
-closure(q₀)={q₀,q₁,q₂} \cap F \neq Φ ====

$$\delta'(q_1,0) = \hat{\delta}(q_1,0) = \Phi$$

$$\delta'(q_1,1) = \hat{\delta}(q_1,1) = \{q_1,q_2\}$$

$$\delta'(q_1,2) = \hat{\delta}(q_1,2) = \{q_2\}$$

Constructed NFA

Q= $\{q_0, q_1, q_2\}$ and $\Sigma = \{0, 1, 2\}$

$$F' = \{q_0, q_1\}$$

Example:

For the λ -NFA:

Construct the equivalent NFA?

Answer:

Given λ-NFA

 $Q = \{q_0, q_1, q_2\}$ and $\Sigma = \{0, 1, 2\}$

$$\lambda$$
-closure(q₀)={q₀,q₁,q₂} $\cap F \neq \Phi$ ==

 $\delta'(q_2,0) = \hat{\delta}(q_2,0) = \Phi$

$$\delta'(q_2,1) = \hat{\delta}(q_2,1) = \Phi$$

$$\delta'(q_2,2) = \hat{\delta}(q_2,2) = \{q_2\}$$

Constructed NFA

Q= $\{q_0, q_1, q_2\}$ and $\Sigma = \{0, 1, 2\}$

$$F' = \{q_0, q_1\}$$

Example:

For the λ -NFA:

Construct the equivalent NFA?

Answer:

Theorem: Let r be RE, there exist a λ-NFA that accepts L(r).

Proof:

The proof works by induction, using the recursive definition of regular expressions.

RE	λ-NFA
Ф	q_0
λ	q_0
а	q_0 a q_1

Proof:

 $r1.r2 \rightarrow L(M1) L(M2)$

Example 1

For the regular expression r=if we build the λ -NFA as follows:

The λ -NFA for a symbol i is: $\underbrace{\text{start}}_{1}$ $\underbrace{1}_{1}$ $\underbrace{1}_{2}$

The λ -NFA for a symbol f is: $\frac{\text{start}}{1}$

The λ -NFA for the regular expression if is:

Example 2

For the regular expression $r=0+1^*$ build the equivalent λ -NFA?

The λ -NFA for the regular expression 0+1* is:

Example 2

For the regular expression $r=0+1^*$ build the equivalent λ -NFA?

The λ -NFA for the regular expression 0+1* is:

Example 3

Q: Find an NFA for the regular expression $(0 \cup 1)*(0000000 \cup 111(0 \cup 1)*111)(0 \cup 1)*$

Example 3

 $(0 \cup 1)^*(0000000 \cup 111(0 \cup 1)^*111)(0 \cup 1)^*$

Note that: in this example $\varepsilon = \lambda$

Exercise

Construct a λ -NFA for the regular expression: