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Regular Expressions (RE)

Empty set 0] A RE denotes the empty set

Empty String A A RE denotes the set {A}

Sym bol a A RE denotes the set {a}

Alternation | M + N | Slar e sl ey
Concatenation |M @ N | ity then N s o RE for the set M p e
Kleene_* M > 3 :;z’lsttahli!f for the set M, then M* is a RE for




Regular Expressions (RE)

Alternation

Concatenation

Kleene-*

Kleene-+

Exponentiation




Regular Expressions (RE)

Example

For the alphabet 2={0, 1}

0+1 is a RE denote the set {0} U {1}

0* is a RE denote the set {0}*={A,0,00,...}

0.1* is a RE denote the set {0}.{A,1,11,...}
={0, 01, 011, ...}




Regular Expressions (RE)

Notes

ForaRETr r=rr....ri-times

Operations precedence: *>.> +

So we can omit many parentheses, for example: the
RE ((0(1%))+0) can be written as 01*+0

We may abbreviate rr* to r*

The corresponding set (language) denoted by a RE r
will be expressed as L(r)




Nondeterministic Finite Automata

(NFA)

Definition

A nondeterministic finite automaton (NFA) M is
defined by a 5-tuple M=(Q,2,0,q,,F), with

A Q: finite set of states

A 2: finite input alphabet

A d: transition function 0:Qx2—P(Q)
d q,£Q: start state

d FCQ: set of final states




Definition

A string wis accepted by an NFA M if and
only if there exists a path starting at g,
which is labeled by w and ends in a final
state.

The language accepted by an NFA M is the set of all
strings which are accepted by M and is denoted by L (M).

L(M)={w: 0(qy,w) MF # O}




Nondeterministic Finite Automata

(NFA)

Definition

A nondeterministic finite automaton
has transition rules like:

Nondeterministic transition



Nondeterministic Finite Automata

(NFA)

e

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be
in a subset C Q of several possible states.

If the final set contains a final state,
then the automaton accepts the string.

“The automaton processes the input in a parallel fashion;
its computational path is no longer a line, but more

like a tree”.
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Nondeterministic Finite Automata

‘ We can write the NFA in two ways

1. State digraph

(NFA)

q0 {q0} {q0,q1}
ql f {92}
g2 f f




Nondeterministic Finite Automata (NFA)

Example 1

Write an NFA for the language, over 2={a,b}, ending in bb

0 =1{40,91,92}
Y = {a,b}
F ={q2}

Check the input abb?




Nondeterministic Finite Automata (NFA)

Quiz

Check the input abb?

g2 is a final state hence
Input: alb|b the input abb is accepted




Example 2

Write an NFA for the language, over 2={a,b}.
L=(a U b)* bb(a U b)*

a b 2 b
b =. b W




Example 3

Write an NFA for the language, over 2={a,b},
L=(a U b)* (aau bb) (a U b)*




Nondeterministic Finite Automata (NFA)

Example 4

tart )b /N b
sty )t ()b (2) b )

What language is accepted by this NFA?

Answer: (a+b)*abb




Nondeterministic Finite Automata (NFA)

Example 5

For example, consider the following NFA
which reads the input 11000.

1101 07]0

Accepted!



NFA - DFA

Theorem: For every language L that is accepted by a
nondeterministic finite automaton, there is a
(deterministic) finite automaton that accepts L as well.
DFA and NFA are equivalent computational models.

Proof idea: When keeping track of a nondeterministic
computation of an NFA N we use many ‘fingers’ to point
at the subset C Q of states of N that can be reached on a
given input string.

We can simulate this computation with a deterministic
automaton M with state space P(Q).




NFA = DFA
Proof

_et L be the language recognlzed by the NFAN =
(Q,Z,0,q,,F). Definethe DFA M = (Q",2,0°,9 o,F )

DY

= P(Q)
(R,a) = {qeQ | q&d(r,a) for an reR }
0

= {do}
= {ReQ’ | R contains a ‘final state’ of N}

1
2 5
3. q
4. F

It is easy to see that the previously

described deterministic finite automaton M

accepts the same language as N.



NFA > DFA

Example 1 1

1

Convert the NFA: —7 into a DFA?
Given NFA Constructed DFA
Q={qp, 9} =—» Q' =P(Q)={D, {qo}, {a}, {do, a+}}
Jdo — q o = {90}

F:{q1} =0 F’ ={{q1}’ {qO’ q1}}

For ® see the next
slide



NFA - DFA

1

Example 1 1

1

Convert the NFA: —T into a DFA?
_ Constructed DFA
Given NFA = - ;
0(dp,0)={a0,a1} = & ({q,}. ® ® ®
0(dg,1)={a4} = 8)'—(£88}911i={q1} {do} {90/d:} |{ai}
5(q4,0)=0 =P 5 ({q,},0)=P {9, J ® 190,91}
5(a1,1)={0,01} =P & ({q.}, 190,91 } [ 190,91} | {9o,1}

1)={q0.94}
0’ ({00,91},0)=6(q,0) U 8(q4,0) ={qy,q+}

5 ({do,0111)=8(q, 1) U 8(q,1) ={qp,0e}




NFA > DFA

Example 2

Start with the NFA:

a, b

> 4

Q1: What' s the accepted language?

Q2: How many states does the subset
construction create in this case?



NFA > DFA

Al: L = {x={a,b}* | 3" bit of x from right is a}

Example 2

7,

A2: 16 = 24 states.

That’ s a lot of states. Would be nice if only had to
construct useful states, I.e. those that can be
reached from start state.



NFA > DFA

Example 2

Start with {1}:

SO



NFA > DFA

Branch out. Notice that 6(1,a) = {1,2}.

Example 2




NFA > DFA

Branch out. Notice that & ({1,2},a) = {1,2,3}.

Example 2




NFA > DFA

Branch out. Note that &6 ({1,2,3},a) =
{1I213I4}

Example 2




Example 2




NFA > DFA

Example 2




NFA > DFA

Example 2




NFA > DFA

Example 2



NFA - DFA

Example 2



NFA > DFA

Example 2

Summarizing:

a,b

a a,b a,b
/8—@ O—0

Therefore, we saved 50% effort by not
constructing all possible states unthinkingly.



Exercise

Convert the following NFA into an equivalent DFA?




