Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

Empty set	Ф	A RE denotes the empty set
Empty string	λ	A RE denotes the set {λ}
Symbol	a	A RE denotes the set {a}
Alternation	M + N	If M is a RE for the set M and N is a RE for the set N, then M+N is a RE for the set M U N
Concatenation	M • N	If M is a RE for the set M and N is a RE for the set N, then M.N is a RE for the set M. N
Kleene-*	M *	If M is a RE for the set M, then M* is a RE for the set M*

Operation	Notation	Language	UNIX
Alternation	$r_1 + r_2$	$L(r_1)\cup L(r_2)$	$r_1 r_2$
Concatenation	$r_1 \bullet r_2$	$L(r_1) \cdot L(r_2)$	$(r_1)(r_2)$
Kleene-*	r*	<i>L</i> (<i>r</i>)*	(<i>r</i>)*
Kleene-+	r ⁺	<i>L</i> (<i>r</i>)+	(<i>r</i>)+
Exponentiation	r ⁿ	L(r) ⁿ	(<i>r</i>){ <i>n</i> }

Example

For the alphabet $\Sigma = \{0, 1\}$

0+1 is a RE denote the set {0} U {1}

 0^* is a RE denote the set $\{0\}^* = \{\lambda, 0, 00, \dots\}$

0.1* is a RE denote the set $\{0\}.\{\lambda,1,11,...\}$ = $\{0, 01, 011, ...\}$

Notes

For a RE r, $r^i = r.r...r$ *i*-times

Operations precedence: *>.>+

So we can omit many parentheses, for example: the RE $((0(1^*))+0)$ can be written as 01^*+0

We may abbreviate rr* to r+

The corresponding set (language) denoted by a RE r will be expressed as L(r)

Definition

A nondeterministic finite automaton (NFA) M is defined by a 5-tuple $M=(Q,\Sigma,\delta,q_0,F)$, with

- Q: finite set of states
- **Σ**: finite input alphabet
- \square δ : transition function $\delta: Q \times \Sigma \rightarrow P(Q)$
- \square q₀ \in Q: start state
- □ F⊆Q: set of final states

Definition

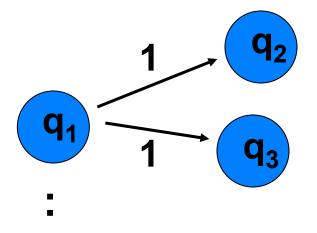
A string w is **accepted** by an NFA M if and only if there exists a path starting at q_0 which is labeled by w and ends in a final state.

The **language accepted by** an NFA M is the set of all strings which are accepted by M and is denoted by L(M).

$$L(M)=\{w: \delta(q_0,w) \cap F \neq \Phi\}$$

Definition

A nondeterministic finite automaton has transition rules like:



Nondeterministic transition

Nondeterminism ~ Parallelism

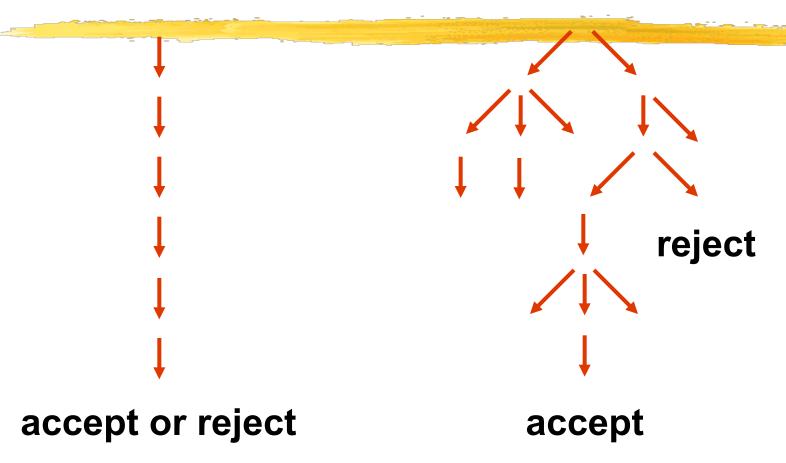
For any string w, the nondeterministic automaton can be in a subset $\subseteq Q$ of several possible states.

If the final set contains a final state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion; its computational path is no longer a line, but more like a tree".

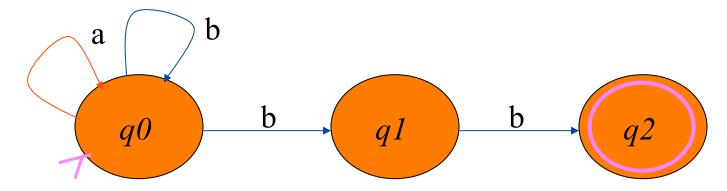
Deterministic Computation

Non-Deterministic Computation



We can write the NFA in two ways

1. State digraph

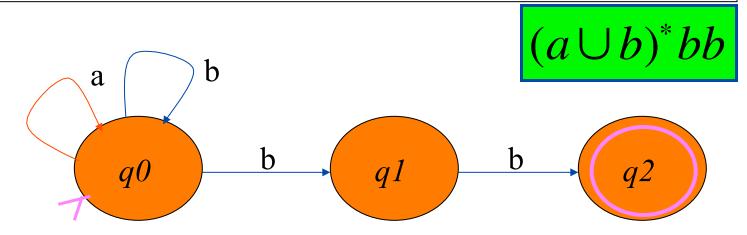


2. Table

d	а	b
q0	{q0}	{q0,q1}
q1	f	{q2}
q2	f	f

Example 1

Write an NFA for the language, over $\Sigma = \{a,b\}$, ending in bb



$$Q = \{q0, q1, q2\}$$

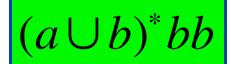
$$\Sigma = \{a, b\}$$
$$F = \{q2\}$$

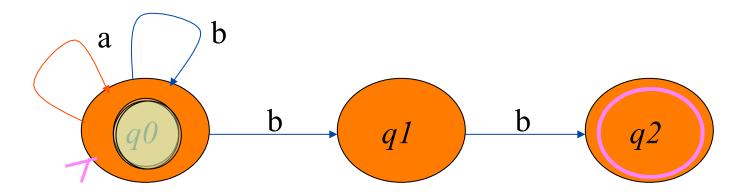
$$F = \{q2\}$$

Check the input abb?

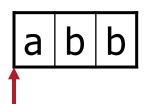
Quiz

Check the input abb?





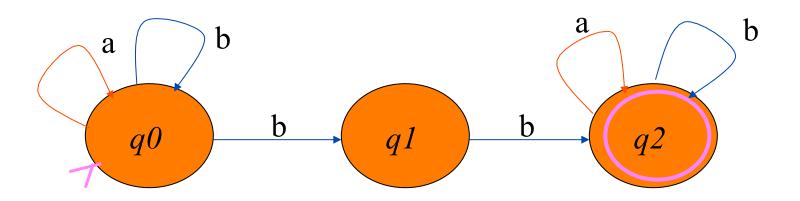
Input:



q2 is a final state hence the input abb is accepted

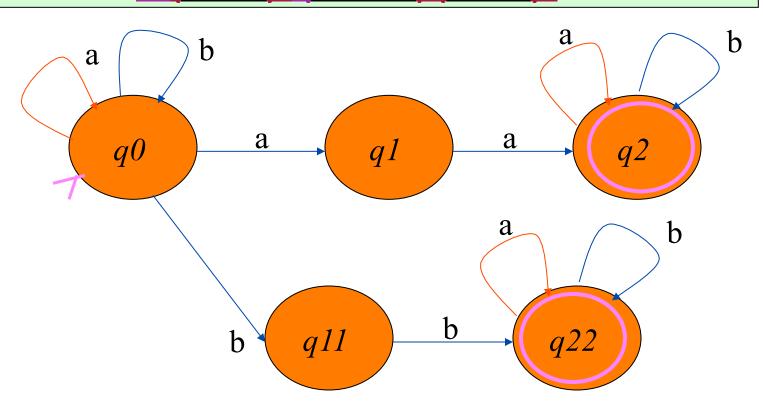
Example 2

Write an NFA for the language, over $\Sigma = \{a,b\}$, $L = (a \cup b)^* bb (a \cup b)^*$



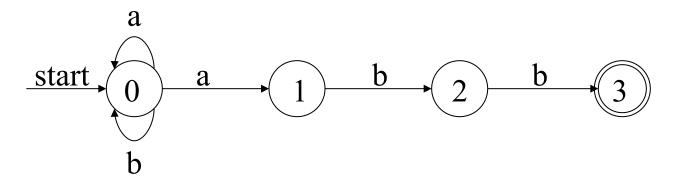
Example 3

Write an NFA for the language, over $\Sigma = \{a,b\}$, $L = (a \cup b)^* (aa \cup bb) (a \cup b)^*$



(NFA)

Example 4



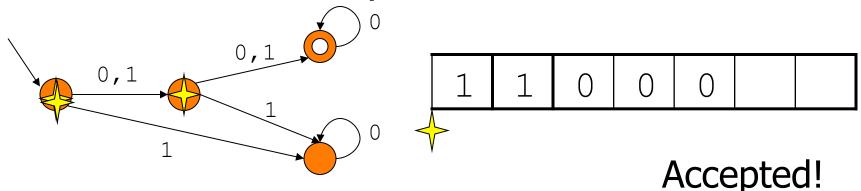
What language is accepted by this NFA?

Answer:

(a+b)*abb

Example 5

For example, consider the following NFA which reads the input 11000.



- Theorem: For every language L that is accepted by a nondeterministic finite automaton, there is a (deterministic) finite automaton that accepts L as well. DFA and NFA are equivalent computational models.
- <u>Proof idea</u>: When keeping track of a nondeterministic computation of an NFA N we use many 'fingers' to point at the subset \subseteq Q of states of N that can be reached on a given input string.

We can simulate this computation with a deterministic automaton M with state space P(Q).

NFA → DFA

Proof

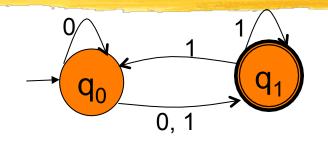
Let L be the language recognized by the NFA N = $(Q, \Sigma, \delta, q_0, F)$. Define the DFA M = $(Q', \Sigma, \delta', q'_0, F')$ by

- 1. Q' = P(Q)
- 2. $\delta'(R,a) = \{ q \in Q \mid q \in \delta(r,a) \text{ for an } r \in R \}$
- 3. $q'_0 = \{q_0\}$
- 4. F' = {R∈Q' | R contains a 'final state' of N}

It is easy to see that the previously described deterministic finite automaton M accepts the same language as N.

Example 1

Convert the NFA:



into a DFA?

Given NFA

$$Q=\{q_0, q_1\}$$

Constructed DFA

$$Q - \{q_0, q_1\}$$

$$Q' = P(Q) = {\Phi, {q_0}, {q_1}, {q_0, q_1}}$$

$$q_0$$

$$q'_0 = \{q_0\}$$

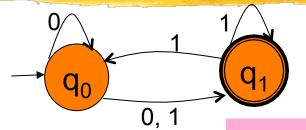
$$F=\{q_1\}$$

$$F' = \{\{q_1\}, \{q_0, q_1\}\}$$

For δ' see the next slide

Example 1

Convert the NFA:



into a DFA?

Given NFA

$$\delta(q_0,0)=\{q_0,q_1\}$$
 $\delta'(\{q_0\},$

$$\delta(q_0, 1) = \{q_1\}$$
 $\otimes \delta(q_0, 1) = \{q_1\}$

$$\delta(q_1,0) = \Phi$$
 $\delta'(\{q_1\},0) = \Phi$

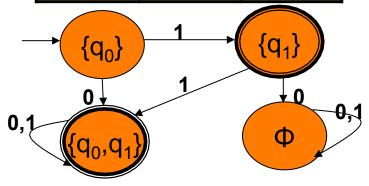
$$\delta(q_1,1)=\{q_0,q_1\}$$
 $\delta'(\{q_1\}, 1)=\{q_0,q_1\}$

$$\delta'(\{q_0,q_1\},0)=\delta(q_0,0) \cup \delta(q_1,0)=\{q_0,q_1\}$$

$$\delta'(\{q_0,q_1\},1)=\delta(q_0,1) \cup \delta(q_1,1)=\{q_0,q_1\}$$

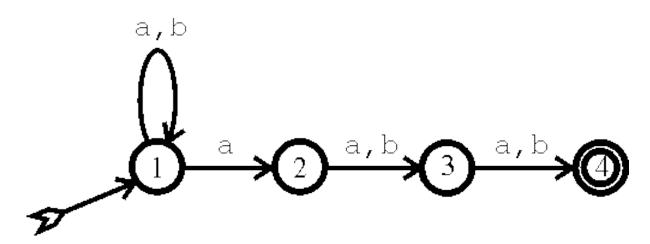
Constructed DFA

δ'	0	1
Φ	Φ	Ф
{q ₀ }	{q ₀ ,q ₁ }	{q ₁ }
{q ₁ }	Ф	$\{q_0,q_1\}$
{q ₀ ,q ₁ }	{q ₀ ,q ₁ }	$\{q_0,q_1\}$



Example 2

Start with the NFA:



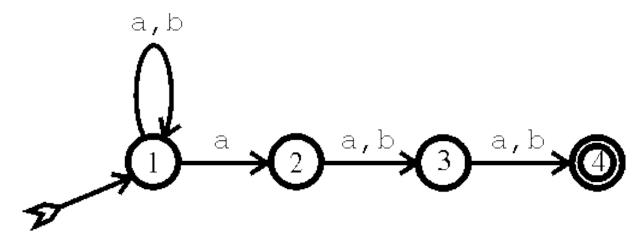
Q1: What's the accepted language?

Q2: How many states does the subset construction create in this case?

NFA → DFA

Example 2

A1: $L = \{x \in \{a,b\}^* \mid 3^{rd} \text{ bit of } x \text{ from right is a}\}$



A2: $16 = 2^4$ states.

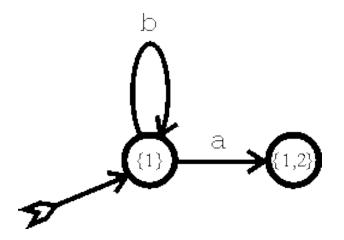
That's a lot of states. Would be nice if only had to construct useful states, I.e. those that can be reached from start state.

Example 2

Start with {1}:

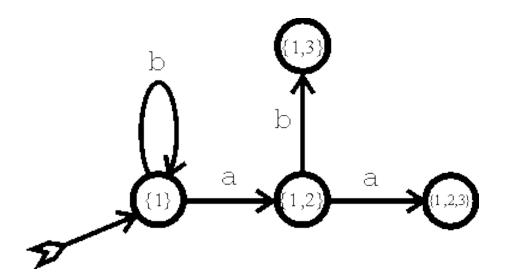
Example 2

Branch out. Notice that $\delta(1,a) = \{1,2\}$.



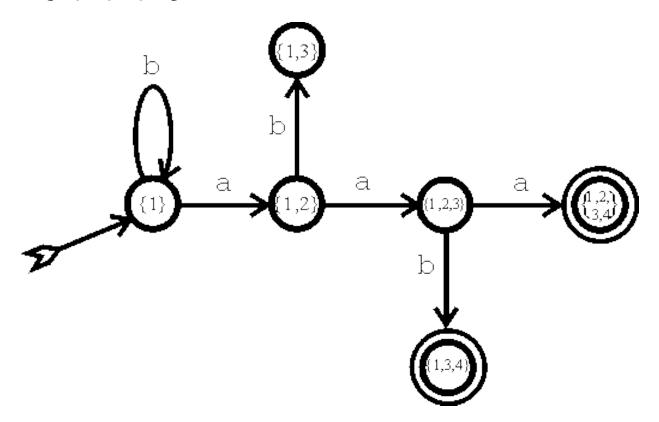
Example 2

Branch out. Notice that $\delta'(\{1,2\},a) = \{1,2,3\}.$

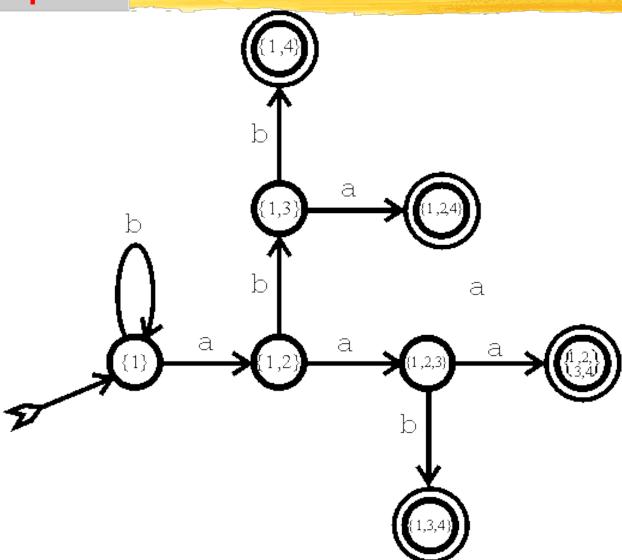


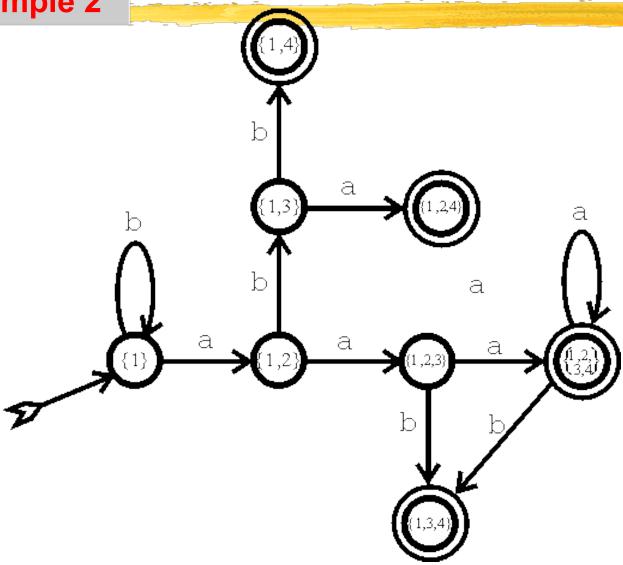
Example 2

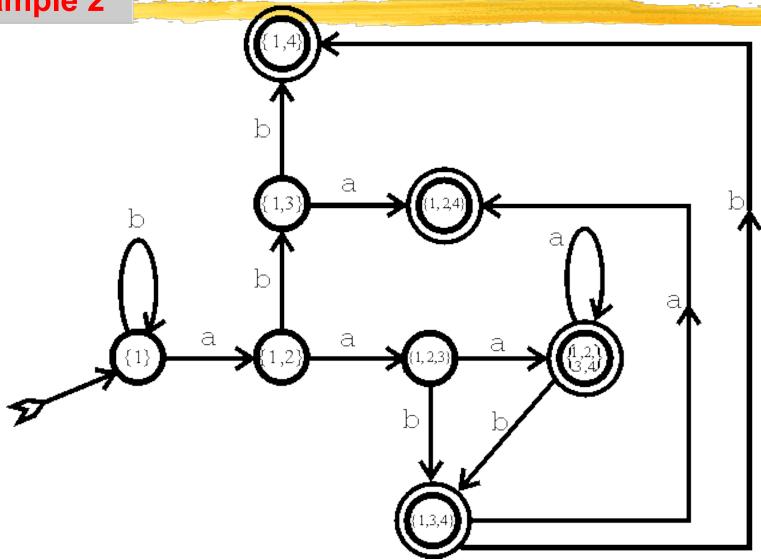
Branch out. Note that $\delta'(\{1,2,3\},a) = \{1,2,3,4\}$

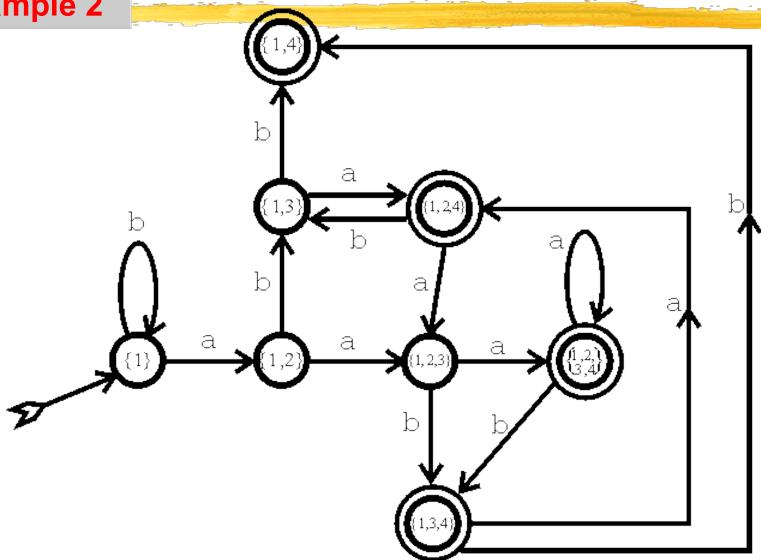


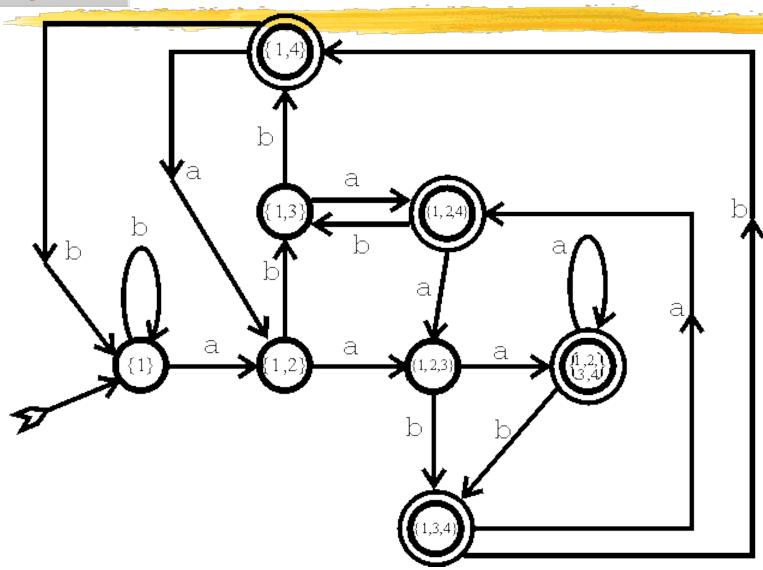
NFA = DFA



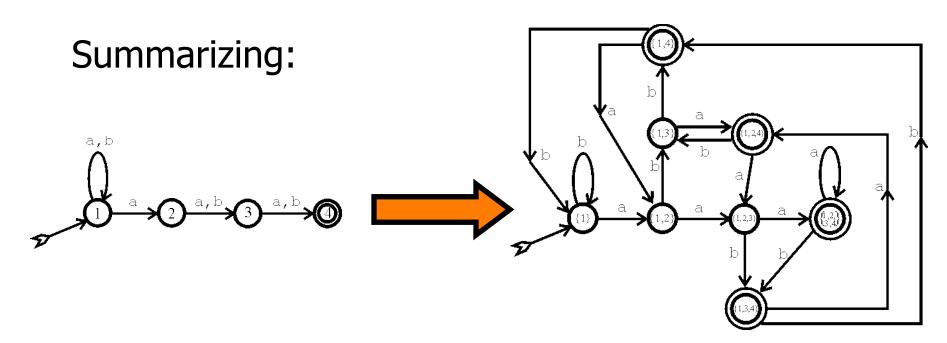








Example 2



Therefore, we saved 50% effort by not constructing all possible states unthinkingly.

Exercise

Convert the following NFA into an equivalent DFA?

