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Al-Chips are ... everywhere

Self-driving Car
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Al-Chips are

everywhere

3D LIDAR

Generates a vehicle’s local

Environment Condition in 3D. % M

The radius is around 100m. Tracking the locat.ion of the

vehicle by radio signals from
salellites.
MU

Estimating the self-position by
accelerometer, gyro, the magnetic

Stereo vision camera
1) Provides distance information
2) Provides image lnformaﬂon
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Al-Chips are ... everywhere

Brain implant allows paralysed monkey to walk

There really is a kind of intelligence inside the spinal cord. We are not just
talking about reflexes that automatically activate muscles. In the spinal cord
there are networks of neurons able to take their own decisions

PARALYSED PRIMATES WALK IMPLANTABLE
A wireless implant bypasses spinal-cord injuries in monkeys, f: PULSE GENERATOR

enabling them to move their legs.

Wireless information
transfer

Electrodes \* Implant _
= = Brain ' SPINAL IMPLANT

Y
' : 1
Injury Spinal cord

Neuronal :
impulse @ -

—Muscle

Nature volumes39, pages284—288 (10 November 2016)



Moore’s law is no longer providing more Compute
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Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-5¢



Moore’s law is no longer providing more compute

End of the Line = 2X/20 years (3%/yr)¢
Amdahl's Law = 2X/6years 12%/year) ¢
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)

Major improvements in cost-
energy-performance must now

come from domain-specific hardware.

1980 1985 1990 1995 2000 2005 2010 2015

**PDennard scaling: As transistors get smaller their power density stays constant, so that the power consumption stays in proportion
with area: both voltage and current scale (downward) with length (WP).



Deep learning requires massive compute power

A 32-bit convolutional NN requires calculations
for every floating point operation (FLOP)

« Number of FLOPS for a single inference are on
the order of billions

Input
\ Convil
) Conv2
— FCo6 FC7
i ~-.._-_1__t_:_~.\ D Conv3 Convd Conv5 FC8
D D D “Dog”
X\\\ 13x13x384 13x13x384 13x13x256 1000
55x55x96 23X XX Xa% 4036

224x224x3 27x27x256 4096



Deep learning requires massive compute power

VGG-16

GooglLeNet

(v1)

Top-5 error 16.4 7.4 6.7 9.3
Input Size 28x28 227x227 224x224 224x224 224x224
# of CONV Lavers 2 5 21 (depth) 49
Filter Sizes 5 3,511 1,3,5 7 1,3, 7
# of Channels 1,6 3-256 3-1024 3 -2048
# of Filters 6, 16 96 - 384 64 - 384 64 - 2048
Stride 1 1,4 1,2 1, 2
# of Weights 2.6k 2.3M 6.0M 23.5M
# of MACs 283k 666M 1.43G 3.86G
# of FC layers 2 3 1 1

# of Weights 58k 58.6M 1M 2M

# of MACs 58.6M 1M 2M
Total Weights ™ 25.5M
Total MACs 15.5G 1.43G 3.9G

Source: Joel Emer, ISCA Tutorial, 2017




Deep learning requires massive compute power

GooglLeNet
(v1)

Top-5 error n/a 16.4 7.4 6.7 9.3
Input Size 28x28 227X227 224x224 224x224 224x224
# of CONV Lavers 2 5 16 21 (depth) 49
Filter Sizes 5 3,51 3 1,3,5 7 1,3, 7
# of Channels 1,6 3-256 3-512 3-1024 3-2048
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1,2 1, 2
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
# of MACs 283k 666M 15.3G 1.43G 3.86G
# of FC layers 2 3 3 1 1
# of Weights o8k 58.6M 124M 1M 2M
# of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M ™ 25.9M
Total MACs 15.5G 1.43G 3.9G

Source: Joel Emer, ISCA Tutorial, 2017




What does it mean ?

d of Exponential
l\li‘n O, + Increase in — Needs New
ng: . Compute —  Approach

Requirements
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Four factors in promoting Al/Al-HW

Strong Gov. & Industry
Engagements

Image:kdnuggets.com

Al algorithms are Industrial
) ) Revolution

being applied to

nearly

everything

we do.
Growth of
computational

S xs 9 Larger data sets and
b models lead to better

?Ccuracy but also More compute means new solutions to
increase the previously intractable problems, i.e. &G

computation time

Image:


https://spectrum.ieee.org/tech-talk/semiconductors/processors/efinixs-programmable-chips-could-push-ai-out-to-the-edges
https://www.sas.com/de_de/news/press-releases/2016/november/pm161124.html

Hardware & Data Enable DNNSs

IMAGE RECOGNITION SPEECH RECOGNITION
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Model / Training Ops
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2.0 w1 LUP
~3.5% error
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wv Il LW

7,000 hrs of Data

8 layers

1.4 GFLOP
~16% Error

2012 2015 2014 2015
AlexNet ResNet Deep Speech 1 Deep Speech 2
) .l l.
Microsoft BaichBE

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks 14



Al HW is inspired by Nature — Biological neuron

AI-Chips are inspired by blology
= parallel computation.




Al HW is inspired by Nature — Biological neuron

AI-Chips are inspired by biology
9 parallel computation. Latest digital DL processors:

~10TOPS/W

4

. o 11 Synapse op. in brain: 0.1~1 fJ/op
# Of neurons: 10 1,000~10,000 TOPS/W

# of synapses: ~1015 POPSW
Power consumption: ~ 20 W;

Operating frequency: 10~100 Hz

’0

AR

o

AR

¢ Works in parallel: 10° parallelism vs. <10!
for PC (VN)

% Faster than current computers: i.e.
simulation of a 5 s brain activity takes
~500 s on state-of-the- art supercomputer
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Al at the Edge — High Security with Fast Computing

* The need for no latency, higher security, faster
computing, and would drive the
adoption of devices that are able to offer Al at the

EDGE = Give devices the capability to run ML
independent of the cloud by increasing their

computational ability.
Cloud Illllll‘“. Cloud

Delivers |

computing e

- Edge / """"""" \ Edge
intelligence I—Q ‘—‘ r‘\}‘
where it is oL
needed. Hlﬁ |$ ({E)) e

ﬂ @ ES;\D Things

Edge devices will be equipped with special Al-chips based on FPGAs and/or ASICs



Al at the Edge — High Security with Fast Computing

* The need for no latency, higher security, faster
computing, and would drive the

[
(101 alalwa ars a ap2 2ANSES2EANTNE AWA a A 2 ()

On-device approach helps reduce latency for
critical applications, lower dependence on the
cloud, and better manage the massive data
being generated by the

+

intelligence
where it is
needed.

Edge devices will be equipped with special Al-chips based on FPGAs and/or ASICs



Deep learning requires massive compute power

Top-5 error n/a 16.4
Input Size 28x28 227X227

7.4
224x224

6.7 5.3
224x224 224x224

# of CONV Lavers 2 5

16

To solve this level of
computation, we need a

21 (depth) 49

# of Weights 6.0M

# of MACs 283k 666M 1.43G 3.86G
# of FC layers 2 3 1 1

# of Weights 58k 58.6M 1M 2M
# of MACs 58k 58.6M 1M 2M
Total Weights 60k 61M ™ 25.5M

Total MACs 13.59G 1.43G 3.9G

Source: Joel Emer, ISCA Tutorial, 2017



Deep learning requires massive compute power
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...but there are cases where the “cloud’ cannot solve

IS sent to the cloud, the
bad guy has already left!

% | | 4 " 4
Japanese Al security camera [theverge.com]




...but there are cases where the “cloud’ cannot solve

If the data Is sent to the cloud you cannot have
RT decision.

" :’ l' o k

Intel Falcon 8+ Drone transforms inspections conducted in the oil and gas industry [sustainableoilfield.com]




...but there are cases where the “cloud’” cannot solve

Privacy

[Ref. life-of-coco.com]



Real world product are often resource constrained

Cost
Cloud 1| A Cloud

{ Core Network

Edge Edge

(a)
ﬂ @ é [ Things




Current State of the Art in Neural Algorithms HW Computing

Hardware

Domain-specific J

General-purpose J

Programmabl Fixed Latency Throughput
logic logic oriented oriented
FPGA J [ ASIC J CPU GPU
« General; - Specific: executes STDP :V'OSt GRIUEUEL, EOIIEN [ e mlig
requires HDL - HP & efficiency Languatges —_ 4
« Moderate Expensive, 40MB local i el

memory Example: IBM
TrueNorth

performance &
efficiency

performance
Memory separate from chip

Example: Google deep learning stuily
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Current State of the Art in Neural Algorithms HW Computing

Current Hardware J
Industry ~
. Focus
Nomain-specific J General-purt;ose
Programmabl Latensy Throughput
logic ori¢nted orlented

‘ CPU ‘ GPU

Most general; common programming

» General;
languages

requires HE -
Lowest power efficiency and

performance
Memory separate from chip
Example: Google deep learning stunlyv



Different approaches of Al-Chips
Poor/Simple Good/Complex

—

Izhikevich  Huxley-Hodgkin

Neuron Digital, Analog. LIF. model model
MAC . Many
. Spikin .
Synapse (weighted . pISIT?DP nonlinear
. sum) properties

Generally Used in DL algorithms

Frequency 10~100 Hz (brain)




Current Al Chip = Accelerator/Co-processor

Compute-Intensive
Functions

GPU

Use GPU to
Parallelize

Program Code

@ ™
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e | —
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= Rest of Sequential
CPU Code
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E—— CPU
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Y

Acceleration with GPU



Accelerator Characteristics

CPU GPU
FiFo
Memory
subsystem
T™XLT | TXLT
L11 L1D{L1I
implicitly managed mixed explicitly managed
EENEEEEE EEEE “-ll 3 EENEEEES BEEE
Compute EEEEEEEE W = T
primitives  semcEees SEEE  QIEEAN mEEs
HEEEEEEEE EEEE II-II [ | [ [ [ |
EEEEEEEE EEEE [ | [ [ ][ |
scalar vector
Data (I M I

type fp32 fplé ints

Ref 3



...Deep Leering is considered as a
sophisticated “rocket’’ of Machine Learning!!

g \ 4 7 TRAINING

== INPUT FIRST LAYER HIGHER LAYER TOP LAYER OUTPUT
e Ouring the training phase, a An unlabeled The neurons respond Neurons res pond Neurons respond The network
' neural network is fed thousands image is shown to to different simple to more complex ta highly predicts what

A of labeled images of various the pretrained shapes, like edges. structures. complex, abstract the object
V animals, learning to classifythem.  networ k. concepts that we most likely is,

1. “Deep Learning” means using a neural network
with several layers of nodes between input & output

2. the series of layers between input & output do
feature identification and processing in a series of
stages, just as our brains seem to.



Examplel: Handwriting Digit Recognition on FPGA

Input Output

IS 1

S HE 52 [ The image

.......

g | s “0”

SO

16 x 16 = 256
Ink — 1
No ink — 0

Each dimension

represents the confidence
of a digit. 3




Examplel: Handwriting Digit Recognition on FPGA

Conventional Artificial Neural Network

= v A Y
gy by by

1
g: @
1 2 y Im

Parallel computing techniques are
needed to speed up matrix operations

<]

b b
1 2

=
—/

=o(| Wt W2 WL | X




Examplel: Handwriting Digit Recognition on FPGA

Character Recognition with BP training

RAM

B
Impleme-ﬁ:cati;n of detecting 16 " Device: EP2C35F672C6
patterns from 16 inputs with BP.  Fg mily: Cyclone2

Synthesis: Quartus2 13.1

Table 1 : ANN Performance Evaluation

ALUs Registers Pins Fmax
10,989 (33%) | 5,814 (18%) 432 (89%) 76.02 MHz
Memory DSP Block Power Consumption
54 (77%) 286.84 mW

‘O’ letter




Memristor for Synapse Design

(Chua, 1971) > Biological synapses are dense — the cortex
g ' \ needs roughly 10*° synapses/cm?

The electrical
resistor is not
constant but
depends on the
history of
current that had
previously
flowed through
the device.

“*Voltage pulses can be applied to a memristor to change its
resistance, just as spikes can be applied to a synapse to
change its weight.



iIcal neurons learn?

How biolo

large network of neurons connected and

IS a

Brain

communicating via synapses



How biological neurons learn?

Learning rules based on STDP specify changes in synaptic
strength depending on the time interval between each pair of
presynaptic and postsynaptic events.

2
(a) (b) 3
« > E
O
- | &
i &I O
=40 - 40
synapse £ AT LTD
input 7 target 2 |
S

-8 I
Atpre_post(ms)
Spike-timing-dependent plasticity (STDP)

If the presynaptic neuron fire before the postsynaptic neuron within
a preceding 20ms, LTP occurs

If the presynaptic neuron fire after the postsynaptic neuron within
the following 20ms, LTD occurs




Spiking Neuron Model

Spike Response Model
spike emission )
77(1 —1 )

S0 LTV (o] Y S A

Spike reception: EPSP

e(z—zf)

Spike reception: EPSP
Spike emission: AP

1) -1

u (r) _ ?7(/ <)>Z Z W, g(z zf)

Hi(t)—lgj ang. Z; =1




Spiking Neuron Model- Molecular Basis
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Hodgkin-HuxIez Model

Outside the cell ; ‘ ° inside

lon channels lon pump outside

Action potential

Na® ions in

o

.0

S

@

g

(2 P
g
S

¢
Q

. K* ions out

i

Voltage (mV)

) Jzz(-’z(]r -V ato
| _Threshold init?e:tieons e

e Stimulusf
_ @
']m - Jf‘ . JK*’ +Jl\;-,+ i g Jl Hyperpolarization

1 2 3 4
Time (ms)

J =g O /r +G (1, =T )+ G (T, =T )+ G (T, - T7)




Hodgkin-Huxley Model
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Wiring via AER (Address Event Representation)

5~
vy ‘ o - Address Event Bus o 2 ] ki
7 /’4"1‘ 1T 9 ¥ Y
3 212 (A1) 32 * *
Inputs
Outputs
Source Destination
Chip Chip
Address-Event Ref. 4

representation of
action potential

% AER is an asynchronous handshaking protocol used to transmit signals
between neuromorphic systems.



NN Training Works with Low-precision FP
fp32: Slngle precision IEEE Floating Point Format

Exponent: 8 Mantissa (Significand): 23 bits

Range: (10™-45) to (10"38)

fpl6: Half-precision IEEE Floating Point Format

Exponent: 5 bits Mantissa (Significand): 10 bits

e e e VN Range: 10%-8to 65504

bfloatl6: Brain Floating Point Format

Range: (10"-45) to (10" 38)
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LIF Neuro-core for NASH System

LIF Neuro-core

) Xi(t 8b Si —_
Architecture . . .
« Xi(t) — Spike input to the
] Synaptic sSynapse
Vi(t-1) ¢ o Integration » Sj — synaptic weight
8b v poe * Vj(t) — Membrane potential
er c
’ g  aj — Neuron threshold
Vilhq 80 8b4 A Leak o Aj— Leak value
A VJS(:)) Subtractor Integration Table 1: Area Evaluation
8b qj Cell Internal Power 6.9680 uW 20.5040 pW
] Net Switching Power  4.8271 uW 14.8272 uW
;Egesgzledt’ Fire Total Dynamic Power  11.7950 pyW  35.3312 uW
Cell Leakage Power 4.6943 uW 14.3147 W

Table 1: Power Evaluation

Combinational Area 186.998 pm 562.856001 pm

Placement of LIF- Non-Comb A 47.88002 213.864000
IN (Left) and LIF- on-Comb Area . pum . pm

i 4N (right) Total Cell Area 234.878002 um  776.720001 pm

LIF-1IN-012018-KS LIF-4N-012018-KS

Kanta Suzuki, Yuichi Okuyama, Abderazek Ben Abdallah, "Hardware Design of a Leaky Integrate and Fire Neuron Core Towards the Design of a Low-power Neuro-
inspired Spike-based Multicore SoC”, Proc. Of IPSJ, 2018



N

_ . Application | o
euro-inspired Hardware System for Image Recognltlon

[Execution time]
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The H. Vu, Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "Efficient Optimization and Hardware Acceleration of CNNs towards the

Design of a Scalable Neuro-inspired Architecture in Hardware”,
(BigComp-2018), January 15-18, 2018

Proc. of the IEEE International Conference on Big Data and Smart Computing




_ _ Application Il _
Neuro-inspired Hardware System for Autonomous Vehicles

CNN

100

. e L R el b LT B o L I
L]

V”

Accuracy: 98.34%

Ot -

FPGA

.30

ipas -

|:> Classification 4
9,80 -

Region Proposal

—— lrainirig

Y- — walican
M 25 o '.TIE ll.'IIIZI ].EIE ]bllil l'.lfﬁ E-IIFZ
kpochs
Detection
E — fl> Drive
Controller
Green

Table 1 : ANN Performance Evaluation

ALUs Registers Pins Fmax
10,989 (33%) | 5,814 (18%) 432 (89%) 76.02 MHz
Memory DSP Block Power Consumption
4,956 (1%) 54 (77%) 286.84 mW

Yuji Murakami, " Design of a Neural Network Architecture for Traffic Light Detection Towards Autonomous Driving Vehicles," Master's Thesis, Graduate School of
Computer Science and Engineering, The University of Aizu, 3/2019
*  Yuji Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "SRAM Based Neural Network System for Traffic-Light Recognition in Autonomous Vehicles”, Information
Processing Society Tohoku Branch Conference, Feb. 10, 2018






Application Il
Neuro-inspired System for Wild Animals Monitoring

Camera Recognition system

Infrared l’. FPGA i

sensor
/ - Preprocess

: » Selective search
image + resize

' Speaker
When the target is recognized
Defense is triggered! ‘

Recognize

Monitor farm
target

classify

1 8- Rich feature hierarchies for accurate object
detection and semantic segmentation]

Fig 4. System overview: OASIS FMS-1

30 1 — train error
— test error
40 .
E 1 Best test accuracy: 92.647

Fully-connect

Input Conv1
20 4

* pig
* othe

10 4

20 40 60 an 100

Fig 3. CNN example Fig 6. Learting result

Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "Animal Recognition and Identification with Deep Convolutional Neural Networks for Farm
Monitoring”, Information Processing Society Tohoku Branch Conference, Feb. 10, 2018






NASH: Low-power Event-driven Adaptive Neuromorphic
System for Autonomous Cognitive Behaviour
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Fig. 5: System architecture: {a) 3DNoC-SNN organization, (b) Multicast
router architecture (MC-3DR), (¢) Spiking neuron processing core (SNPC).
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Conclusions

*»* Memory access in Al-Chip is the bottleneck
Worst case: ALL memory R/W are DRAM accesses

Ex. AlexNet [NIPS 2012] has 724M MACs - 2896M DRAM
accesses required

Possible HW/SW techniques to cope with the memory access
problem:

“*Advanced Storage Technology

v Embedded DRAM (eDRAM) - Increase on-chip storage capacity
v 3D Stacked DRAM -> Increase memory bandwidth

v' Use memristors as programmable weights (resistance)

“*Reduce size of operands for storage/compute
v" Floating point - Fixed point
v’ Bit-width reduction

“*Reduce number of operations for storage/compute
v" Network Pruning; Compact Network Architectures
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