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AI-Chips are … everywhere

Self-driving Car
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Smart Robots
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Brain implant allows paralysed monkey to walk

There really is a kind of intelligence inside the spinal cord. We are not just 
talking about reflexes that automatically activate muscles. In the spinal cord 
there are networks of neurons able to take their own decisions

-Grégoire Courtine-

Neuroscientist, Federal Institute of Technology, Lausanne

Nature volume539, pages284–288 (10 November 2016)

AI-Chips are … everywhere
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Moore’s law is no longer providing more Compute

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-596



Moore’s law is no longer providing more compute
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**Dennard scaling: As transistors get smaller their power density stays constant, so that the power consumption stays in proportion 
with area: both voltage and current scale (downward) with length (WP).

Major improvements in cost-
energy-performance must now 
come from domain-specific hardware.



Deep learning requires massive compute power

• A 32-bit convolutional NN requires calculations 
for every floating point operation (FLOP)

• Number of FLOPS for a single inference are on 
the order of billions 
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Source: Joel Emer, ISCA Tutorial, 20179

Deep learning requires massive compute power



Source: Joel Emer, ISCA Tutorial, 201710

Deep learning requires massive compute power



What does it mean ?

Needs New 
Approach 

End of 
Moore’s 

Law 

Exponential 
Increase in  

Compute
Requirements

+ =
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Four factors in promoting AI/AI-HW

Image:kdnuggets.com

Image: spectrum.ieee.org

Image: sas.com

Image: kdnuggets.com

Larger data sets and 
models lead to better 
accuracy but also 
increase the 
computation time 

AI algorithms are 
being applied to 
nearly 
everything
we do.

AI  - 4th

Industrial 
Revolution 

Growth of 
computational 
power

Strong Gov. & Industry 
Engagements

More compute means new solutions to 
previously intractable problems, i.e. GO
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https://spectrum.ieee.org/tech-talk/semiconductors/processors/efinixs-programmable-chips-could-push-ai-out-to-the-edges
https://www.sas.com/de_de/news/press-releases/2016/november/pm161124.html


Hardware & Data Enable DNNs

AI model performance scales with dataset size and 
the # of model parameters, thus necessitating more 
compute.
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AI-Chips are inspired by biology 
➔ parallel computation.

AI HW is inspired by Nature – Biological neuron
from 

pinterest.com
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AI HW is inspired by Nature – Biological neuron

❖ # of neurons: ~1011

❖ # of synapses: ~1015

❖ Power consumption: ~ 20W; 

❖ Operating  frequency: 10~100 Hz

❖ Works in parallel: 106 parallelism vs. <101

for PC (VN)
❖ Faster than current computers: i.e. 

simulation of a 5 s brain activity takes 
~500 s on state-of-the- art supercomputer

Latest digital DL processors:

~10TOPS/W

Synapse op. in brain: 0.1~1 fJ/op

1,000~10,000 TOPS/W

=1~10

POPS/W

16

AI-Chips are inspired by biology 
➔ parallel computation.
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AI at the Edge – High Security with Fast Computing 

• The need for no latency, higher security, faster 
computing, and low cost would drive the 
adoption of devices that are able to offer AI at the 
EDGE➔ Give devices the capability to run ML 
independent of the cloud by increasing their 
computational ability.

Delivers 
computing

+ 
intelligence
where it is 
needed.

18Edge devices will be equipped with special AI-chips based on FPGAs and/or ASICs



AI at the Edge – High Security with Fast Computing 

Delivers 
computing

+ 
intelligence
where it is 
needed.

19Edge devices will be equipped with special AI-chips based on FPGAs and/or ASICs

• The need for no latency, higher security, faster 
computing, and low cost would drive the 
adoption of devices that are able to offer AI at the 
EDGE➔ Give devices the capability to run ML 
independent of the cloud by increasing their 
computational ability.

On-device approach helps reduce latency for 

critical applications, lower dependence on the 

cloud, and better manage the massive data 

being generated by the IoT/Edge device.



Source: Joel Emer, ISCA Tutorial, 201720

Deep learning requires massive compute power

To solve this level of 

computation, we  need a GPU



Deep learning requires massive compute power

…most of ML models run in Data Center (Cloud)
21



…but there are cases where the ‘’cloud’’ cannot solve

Japanese AI security camera [theverge.com]

If the data is sent to the cloud, the 

bad guy has already left!

Latency
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Intel Falcon 8+ Drone transforms inspections conducted in the oil and gas industry [sustainableoilfield.com]

…but there are cases where the ‘’cloud’’ cannot solve

Latency

If the data is sent to the cloud, you cannot have 

RT decision.

23



Privacy

…but there are cases where the ‘’cloud’’ cannot solve

[Ref. life-of-coco.com]
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Real world product are often resource constrained

We cannot have a GPU on every device

Cost
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Domain-specific General-purpose

FPGA ASIC CPU GPU

Latency 
oriented

Throughput 
oriented

Fixed 
logic

Programmable 
logic

Hardware

• Most general; common programming 

languages

• Lowest power efficiency and 

performance

• Memory separate from chip

• Example: Google deep learning study

• General;
requires HDL 

• Moderate
performance & 
efficiency

• Specific: executes STDP

• HP & efficiency 

• Expensive, 40MB local 

memory Example: IBM 

TrueNorth
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Current State of the Art in Neural Algorithms HW Computing
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Current State of the Art in Neural Algorithms HW Computing



• Specific: executes STDP

• HP & efficiency 

• Expensive, 40MB local 

memory Example: IBM 

TrueNorth

Domain-specific General-purpose

FPGA ASIC CPU GPU

Latency 
oriented

Throughput 
oriented

Fixed 
logic

Programmable 
logic

Current State of the Art in Neural Algorithms HW Computing

• Most general; common programming 

languages

• Lowest power efficiency and 

performance

• Memory separate from chip

• Example: Google deep learning study

• General;
requires HDL 

• Moderate
performance & 
efficiency

ANN SNN

HardwareCurrent 

Industry 

Focus

Mainly 

in Labs
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Different approaches of AI-Chips

model
Neuron

Synapse
Many   

nonlinear  

properties

Spiking

STDP

. . .

Poor/Simple Good/Complex

. . . . . . . .
MAC

(weighted . 

. .  sum)

. . .
Izhikevich

Frequency 

Digital, Analog. LIF.

Generally Used in DL algorithms

10~100 Hz (brain)

Huxley-Hodgkin
model
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Current AI Chip = Accelerator/Co-processor

Program Code

GPU

Use GPU to  

Parallelize

Compute-Intensive  
Functions

Rest of Sequential
CPU Code

CPU

Acceleration with GPU
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Accelerator Characteristics

31Ref 3



1. ‘’Deep Learning’’ means using a neural network 
with several layers of nodes between input & output  

2. the series of layers between input & output do 
feature identification and processing in a series of 
stages, just as our brains seem to.

…Deep Leering is considered as a 
sophisticated ‘’rocket’’ of Machine Learning!!

Fuel = Data!
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Example1: Handwriting Digit Recognition on FPGA

Input Output

16 x 16 = 256

1x

2x

256x
……

Ink → 1

No ink → 0

……

y1

y2

y10

Each dimension 

represents the confidence 

of a digit.

is 1

is 2

is 0

……
0.1

0.7

0.2

The image 

is  “2”
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1x

2x

……

Nx

…… …… ……

…

…
…

…

…

…

……
y1

y2

yM

Conventional Artificial Neural  Network 

W1 W2 WL

b
2

b
L

x a
1

a
2 y

y x

b
1W1 x + b

2W2 + b
LWL +…

b
1

…

Parallel computing techniques are 

needed to speed up matrix operations
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Example1: Handwriting Digit Recognition on FPGA
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Example1: Handwriting Digit Recognition on FPGA



The electrical 
resistor is not 
constant but 
depends on the 
history of 
current that had 
previously 
flowed through 
the device.

Memristor for Synapse Design
(Chua, 1971) 

❖Voltage pulses can be applied to a memristor to change its 
resistance, just as spikes can be applied to a synapse to 
change its weight.

37



38

How biological neurons learn?

Brain is a large network of neurons connected and 

communicating via synapses



Spike-timing-dependent plasticity (STDP)

40

• Learning rules based on STDP specify changes in synaptic 

strength depending on the time interval between each pair of 

presynaptic and postsynaptic events.

• If the presynaptic neuron fire before the postsynaptic neuron within 
a preceding 20ms, LTP occurs

• If the presynaptic neuron fire after the postsynaptic neuron within 
the following 20ms, LTD occurs 

How biological neurons learn?



reset of the 

membrane potential 

(action potential)

state of neuron i

Spiking Neuron Model

41[Ref. 18]



action

potential

Ca2+

Na+

K+

-70mV

Ions/proteins

Spiking Neuron Model- Molecular Basis
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Hodgkin-Huxley Model
inside

outside

Ka

Na

Ion channels Ion pump

~

Inside the cell

Outside the cell

outside
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inside

outside

Ka

Na

Ion channels Ion pump

~

Inside the cell

Outside the cell

outside

43[Ref. 18]

Hodgkin-Huxley Model



Wiring via AER (Address Event Representation)

Ref. 4

(Courtesy: iStock/Henrik5000)

44
❖ AER is an asynchronous handshaking protocol used to transmit signals 

between neuromorphic systems.



NN Training Works with Low-precision FP

fp32: Single-precision IEEE Floating Point Format 

fp16: Half-precision IEEE Floating Point Format 

bfloat16: Brain Floating Point Format 

❖ Represent the same range of 

numbers of fp32 just at a much 

lower position.

❖ It turns out that we don’t need 

all that precision for NN  

training, but we do actually 

need all the range. 45

Range: (10^-45) to (10^38)

Range: 10^-8 to 65504

Range: (10^-45) to (10^38)
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Synaptic 

Integration

i=8

Adder

Subtractor

Magnitude 

Comparator

Spike,Rese

t
Write Vj(t) and Delay

If >=If <

Vj(t-1)

8b

Vj(t)

8b

8b

Vj(t)        8b 8b       λj

8b       αj8b       

xi(t) 8b       si

Synaptic

Integration

Leak

Integration

Threshold, Fire

and Reset

LIF Neuro-core 
Architecture 

• Xi(t) – Spike input to the 

synapse 

• Si – synaptic weight 

• Vj(t) – Membrane potential 

• αj – Neuron threshold

• Λj – Leak value 

LIF Neuro-core for NASH System

Item NC-1N NC-4N

Cell Internal Power 6.9680 μW 20.5040 μW

Net Switching Power 4.8271 μW 14.8272 μW

Total Dynamic Power 11.7950 μW 35.3312 μW

Cell Leakage  Power 4.6943 μW 14.3147 μW

Item NC-1N NC-4N

Combinational Area 186.998 μm 562.856001 μm

Non-Comb Area 47.88002 μm 213.864000 μm

Total Cell Area 234.878002 μm 776.720001 μm

Table 1: Area Evaluation

Table 1: Power Evaluation

Placement of LIF-

1N (Left) and LIF-

4N (right)

Kanta Suzuki, Yuichi Okuyama, Abderazek Ben Abdallah, ”Hardware Design of a Leaky Integrate and Fire Neuron Core Towards the Design of a Low-power Neuro-

inspired Spike-based Multicore SoC”, Proc. Of IPSJ, 2018

March 1, 2018 47
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Application I
Neuro-inspired Hardware System for Image Recognition

The H. Vu, Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, ”Efficient Optimization and Hardware Acceleration of CNNs towards the 

Design of a Scalable Neuro-inspired Architecture in Hardware”, Proc. of the IEEE International Conference on Big Data and Smart Computing 

(BigComp-2018), January 15-18, 2018
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Application II
Neuro-inspired Hardware System for Autonomous Vehicles

• Yuji Murakami, '' Design of a Neural Network Architecture for Traffic Light Detection Towards Autonomous Driving Vehicles,'' Master's Thesis, Graduate School of 

Computer Science and Engineering, The University of Aizu, 3/2019

• Yuji Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, ”SRAM Based Neural Network System for Traffic-Light Recognition in Autonomous Vehicles”, Information 

Processing Society Tohoku Branch Conference, Feb. 10, 2018

CNN

Accuracy: 98.34%
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Demo 1 
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March 1, 2018 51

Application III
Neuro-inspired System for Wild Animals Monitoring

Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, ”Animal Recognition and Identification with Deep Convolutional Neural Networks for Farm 

Monitoring”, Information Processing Society Tohoku Branch Conference, Feb. 10, 2018
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Demo 2 

HD

HD

HD



NASH: Low-power Event-driven Adaptive Neuromorphic 
System for Autonomous Cognitive Behaviour

53
Average latency evaluation and comparison over various SIRs.
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Conclusions 

Possible HW/SW techniques to cope with the memory access 
problem:

❖Advanced Storage Technology
✓ Embedded DRAM (eDRAM) → Increase on-chip storage capacity

✓ 3D Stacked DRAM → Increase memory bandwidth 

✓ Use memristors as programmable weights (resistance)

❖Reduce size of operands for storage/compute 
✓ Floating point → Fixed point

✓ Bit-width reduction 

❖Reduce number of operations for storage/compute
✓ Network Pruning; Compact Network Architectures

❖Memory access in AI-Chip is the bottleneck

Worst case: ALL memory R/W are DRAM accesses

Ex. AlexNet [NIPS 2012] has 724M MACs → 2896M DRAM 

accesses required
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ASL SoCs , AI-Chips
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Thank you.
Ben Abdallah Abderazek

Adaptive Systems Laboratory

benab@u-aizu.ac.jp
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