

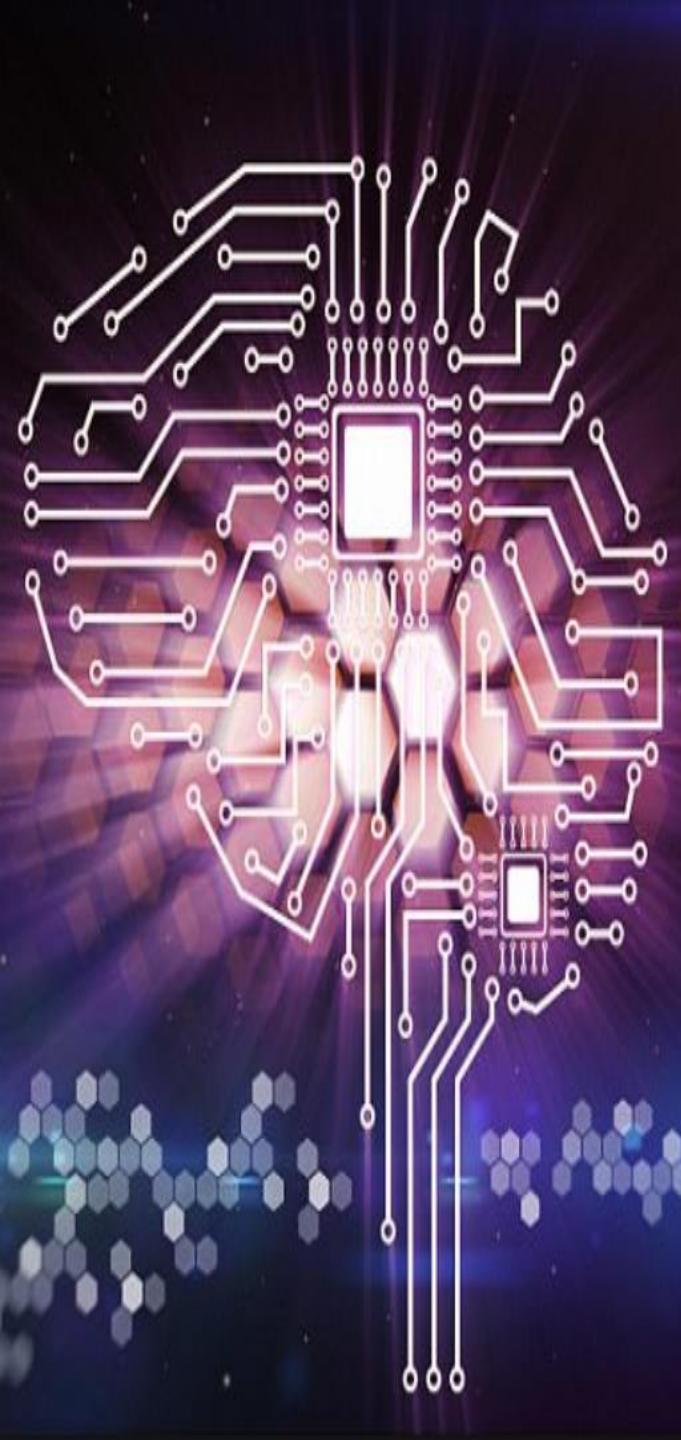
The Future of Machine Learning: Neuromorphic Chips

Abderazek Ben Abdallah
Adaptive Systems Laboratory
The University of Aizu, Aizu, Japan

Email: benab@u-aizu.ac.jp

Agenda

- **Fundamental Trends**
- **AI – The Emerging Industrial Revolution**
- **AI at the Edge**
- **ASL Neuromorphic Chips**
- **Conclusions**



AI-Chips are ... everywhere

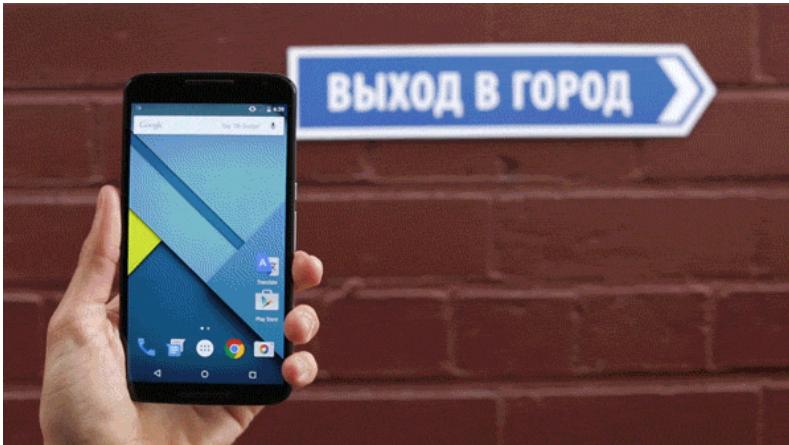
Self-driving Car

Bottom Image source: edition.cnn.com

Smart Robots

Image source: roboticsbusinessreview.com

Machine Translation



Bottom Image source: missqt.com

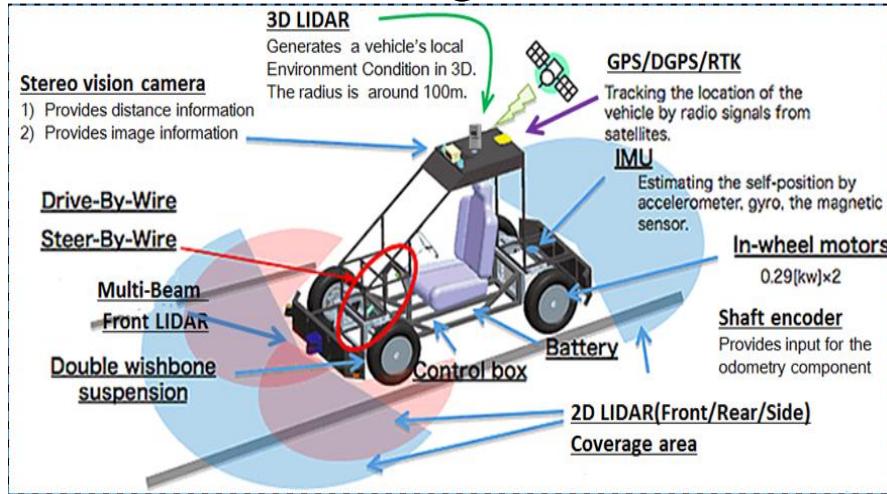
Gaming



Bottom Image Source: newatlas.com

AI-Chips are ... everywhere

Self-driving Car

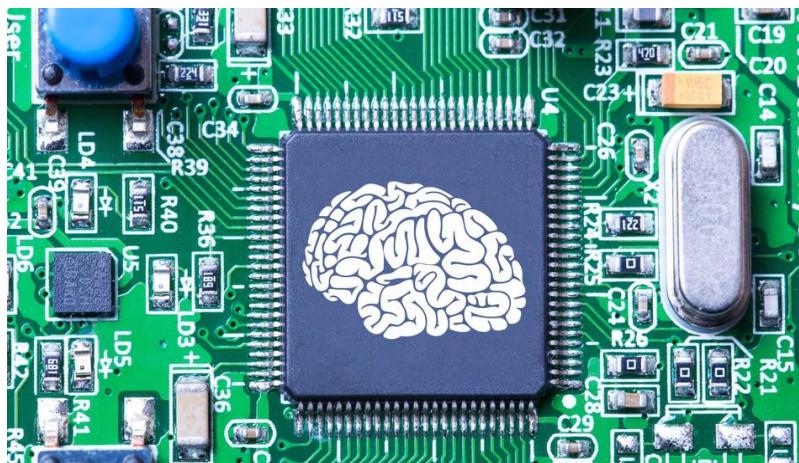


Bottom Image source: edition.cnn.com

Smart Robots

Image source: roboticsbusinessreview.com

Machine Translation



Bottom Image source: missqt.com

Gaming

Bottom Image Source: newatlas.com

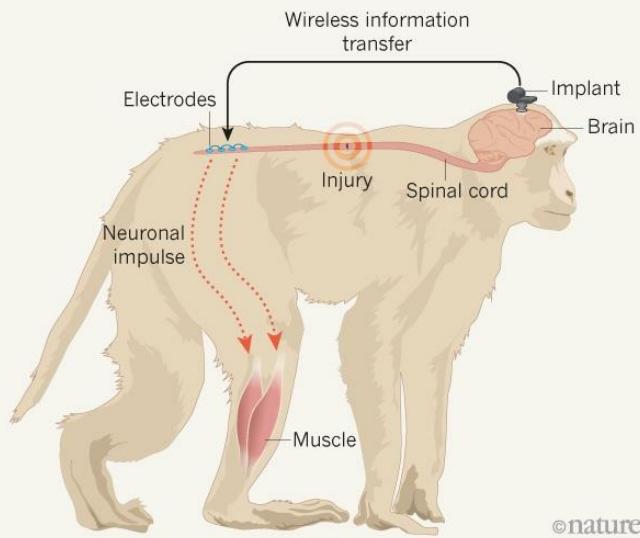
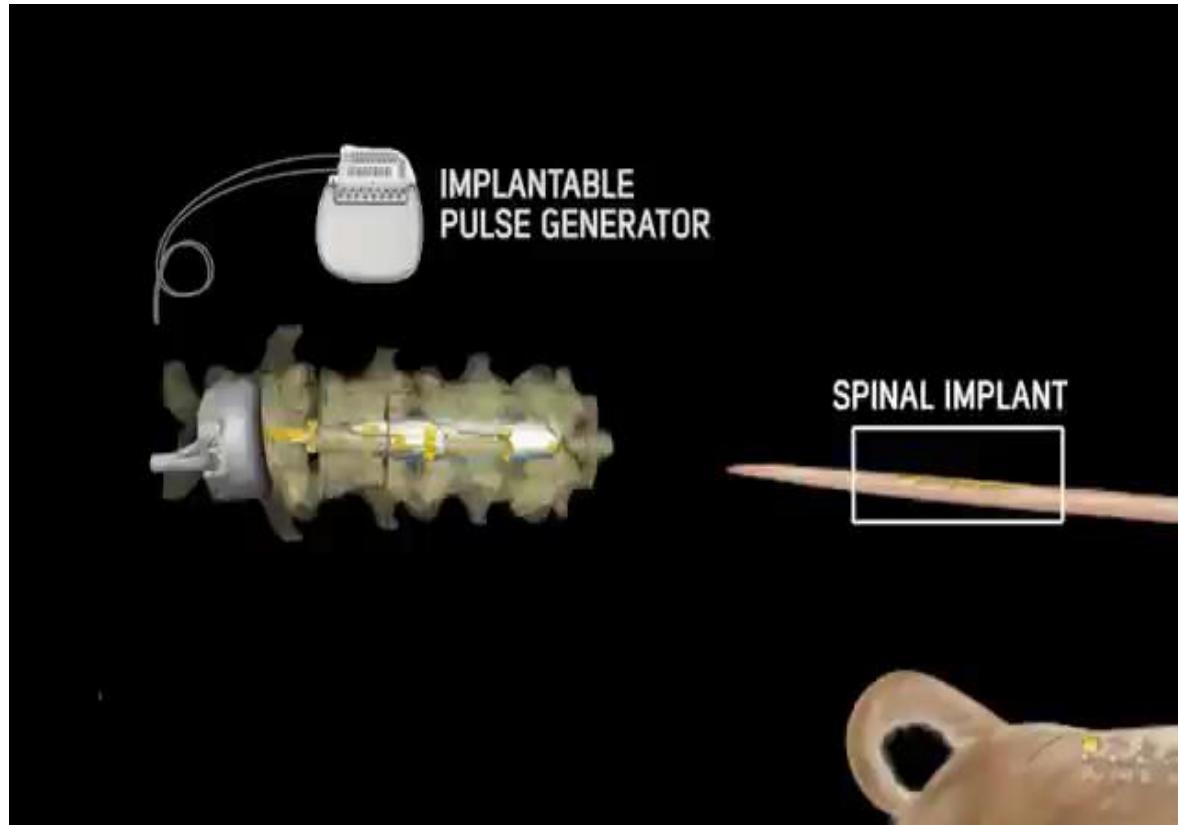
AI-Chips are ... everywhere

Brain implant allows paralysed monkey to walk

There really is a kind of intelligence inside the spinal cord. We are not just talking about reflexes that automatically activate muscles. In the spinal cord there are networks of neurons able to take their own decisions

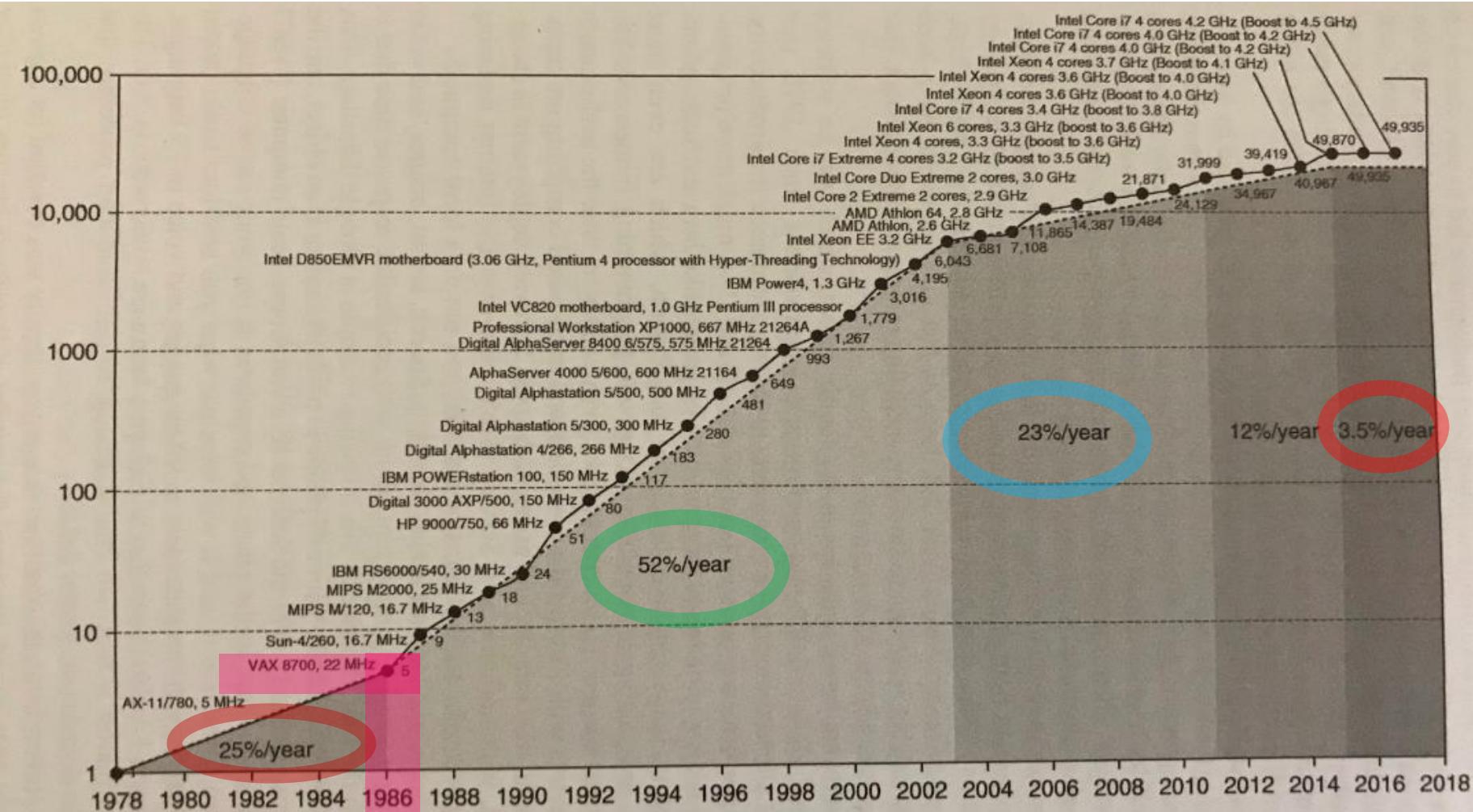
PARALYSED PRIMATES WALK

A wireless implant bypasses spinal-cord injuries in monkeys, enabling them to move their legs.



Nature volume539, pages284–288 (10 November 2016)

Moore's law is no longer providing more Compute



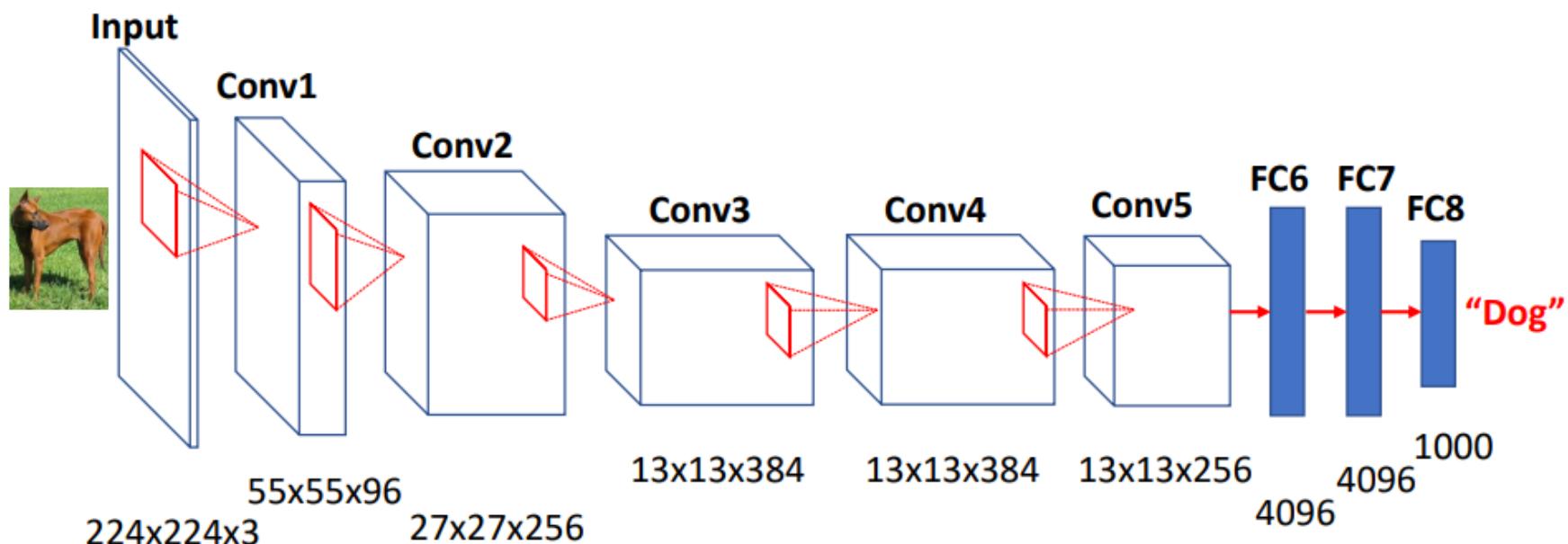
Moore's law is no longer providing more compute

Major improvements in cost-energy-performance must now come from **domain-specific hardware**.

****Dennard scaling:** As transistors get smaller their power density stays constant, so that the power consumption stays in proportion with area: both voltage and current scale (downward) with length (WP).

Deep learning requires massive compute power

- A 32-bit convolutional NN requires calculations for every floating point operation (FLOP)
- Number of FLOPS for a single inference are on the order of billions



Deep learning requires massive compute power

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5, 11	3	1, 3, 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	321k	645M	138M	7M	25.5M
Total MACs	341k	724M	15.5G	1.43G	3.9G

Deep learning requires massive compute power

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49
Filter Sizes	5	3, 5, 11	3	1, 3, 5, 7	1, 3, 7
# of Channels	1, 6	3 - 256	3 - 512	3 - 1024	3 - 2048
# of Filters	6, 16	96 - 384	64 - 512	64 - 384	64 - 2048
Stride	1	1, 4	1	1, 2	1, 2
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs			15.5G	1.43G	3.9G

What does it mean ?

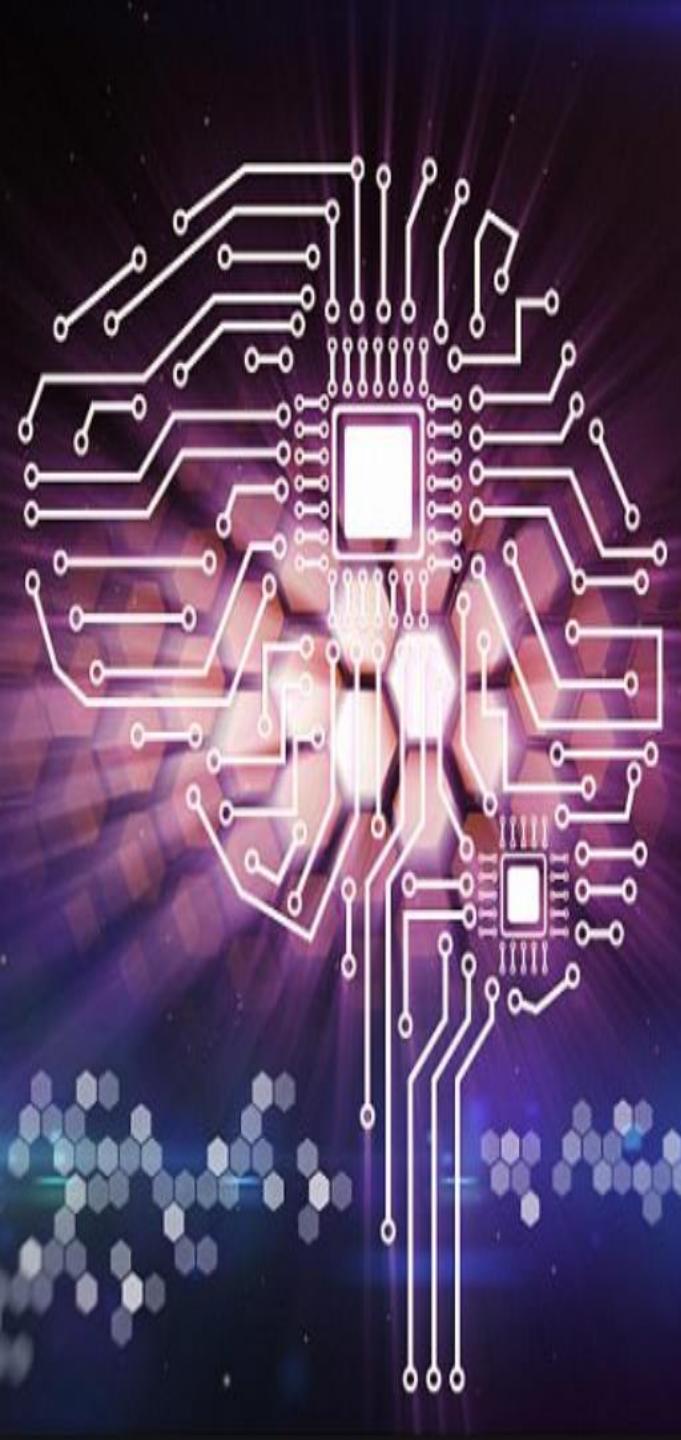
End of
Moore's
Law

Exponential
Increase in
Compute
Requirements

Needs New
Approach

Agenda

- Fundamental Trends
- AI – The Emerging Industrial Revolution
- AI at the Edge
- ASL Neuromorphic Chips
- Conclusions



Four factors in promoting AI/AI-HW

Image: kdnuggets.com

AI algorithms are being applied to nearly everything we do.

Image: sas.com

Larger data sets and models lead to better accuracy but also increase the computation time

Strong Gov. & Industry Engagements

Image: kdnuggets.com

Growth of computational power

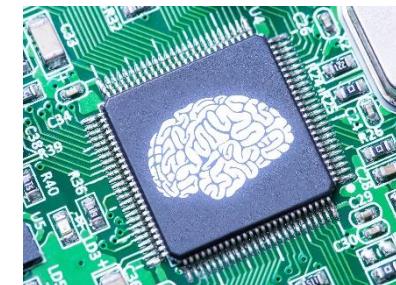


Image: spectrum.ieee.org

More compute means new solutions to previously intractable problems, i.e. GO

Hardware & Data Enable DNNs

AI model performance scales with dataset size and the # of model parameters, thus necessitating more compute.

IMAGE RECOGNITION

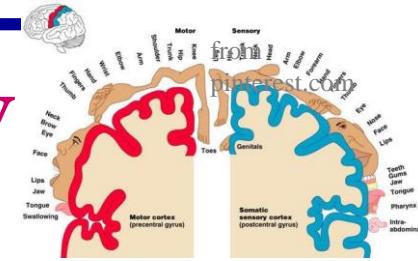
SPEECH RECOGNITION

Microsoft

Baidu 百度

AI HW is inspired by Nature – Biological neuron

**AI-Chips are inspired by biology
→ parallel computation.**



AI HW is inspired by Nature – Biological neuron

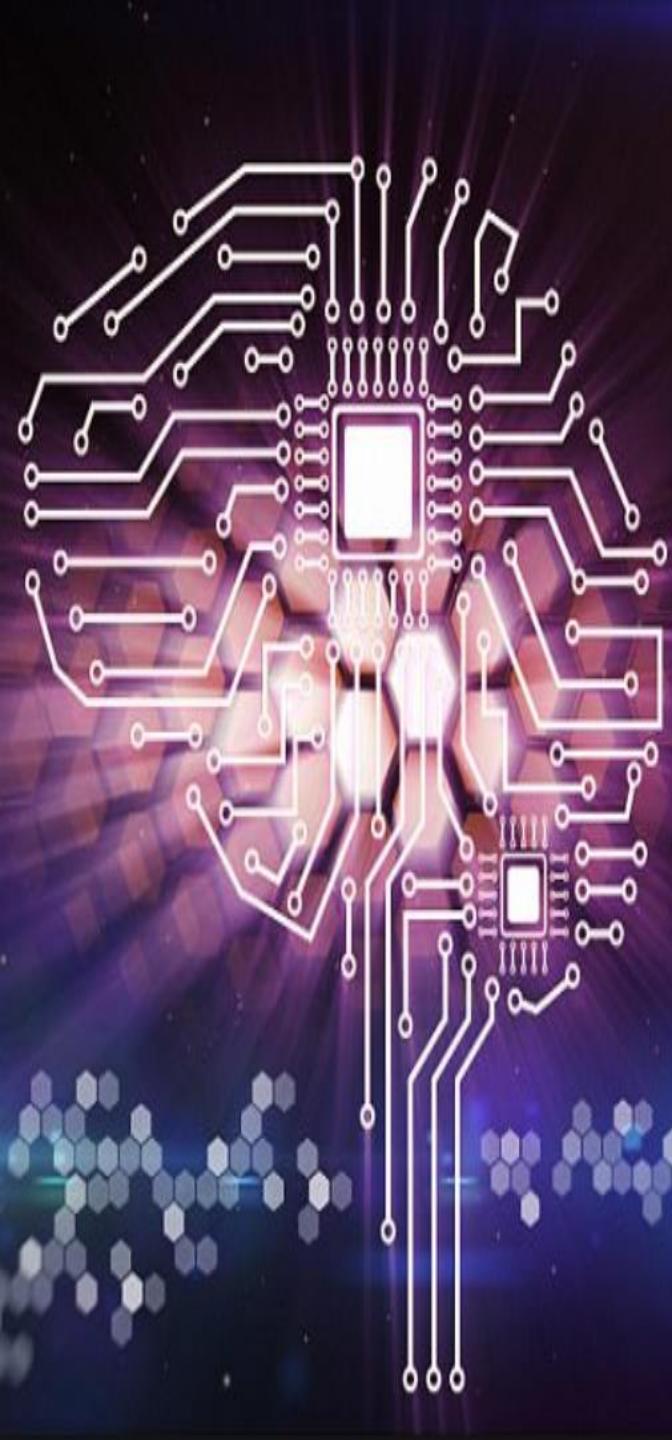
AI-Chips are inspired by biology → parallel computation.

- ❖ # of neurons: $\sim 10^{11}$
- ❖ # of synapses: $\sim 10^{15}$
- ❖ Power consumption: ~ 20 W;
- ❖ Operating frequency: 10~100 Hz
- ❖ Works in parallel: 10^6 parallelism vs. $< 10^1$ for PC (VN)
- ❖ Faster than current computers: i.e. simulation of a **5 s** brain activity takes **~500 s** on state-of-the-art supercomputer

Latest digital DL processors:

~ 10 TOPS/W

Synapse op. in **brain**: 0.1~1 fJ/op
1,000~10,000 TOPS/W
 $=1\sim 10$
POPS/W



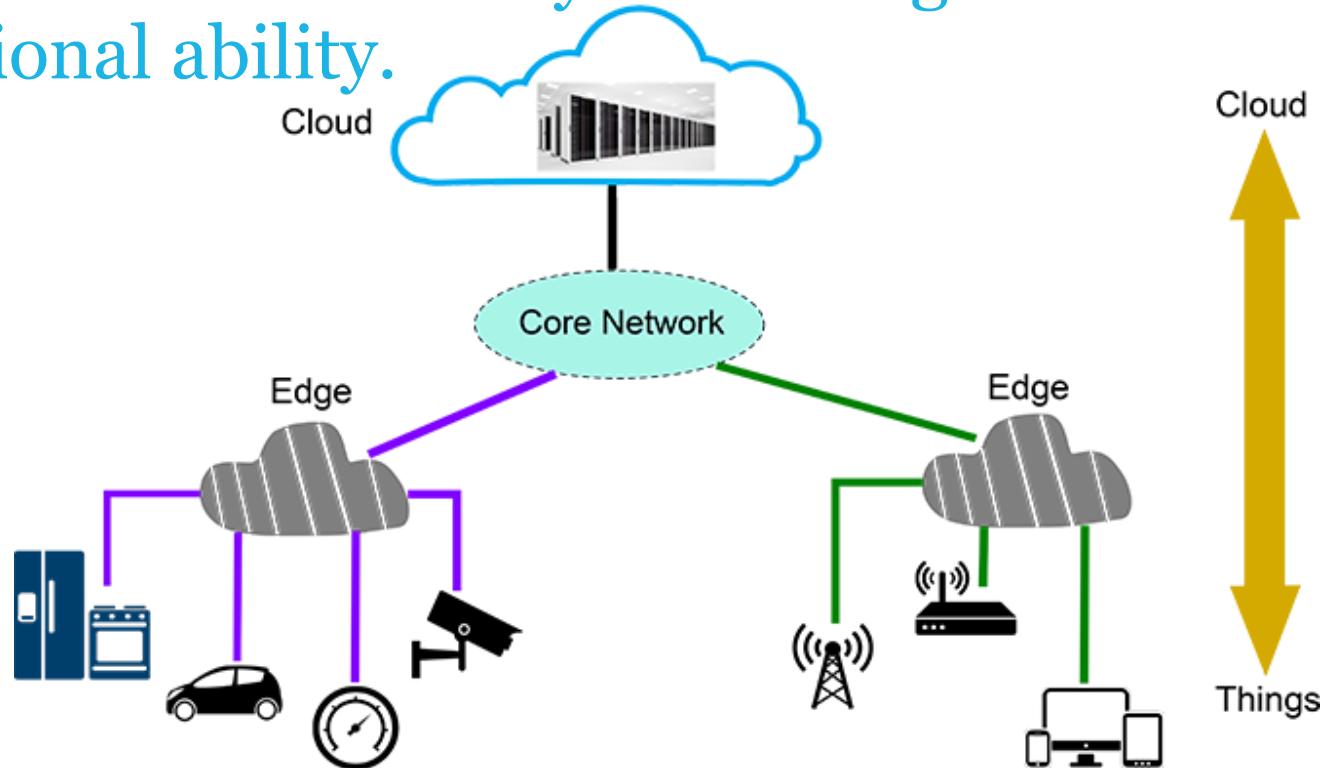
Agenda

- Fundamental Trends
- AI – The Emerging Industrial Revolution
- **AI at the Edge**
- **ASL Neuromorphic Chips**
- Conclusions

AI at the Edge – High Security with Fast Computing

- The need for no latency, **higher security**, **faster computing**, and **low cost** would drive the adoption of devices that are able to offer AI at the **EDGE** → Give devices the capability to run ML independent of the cloud by increasing their computational ability.

Delivers computing + intelligence where it is needed.



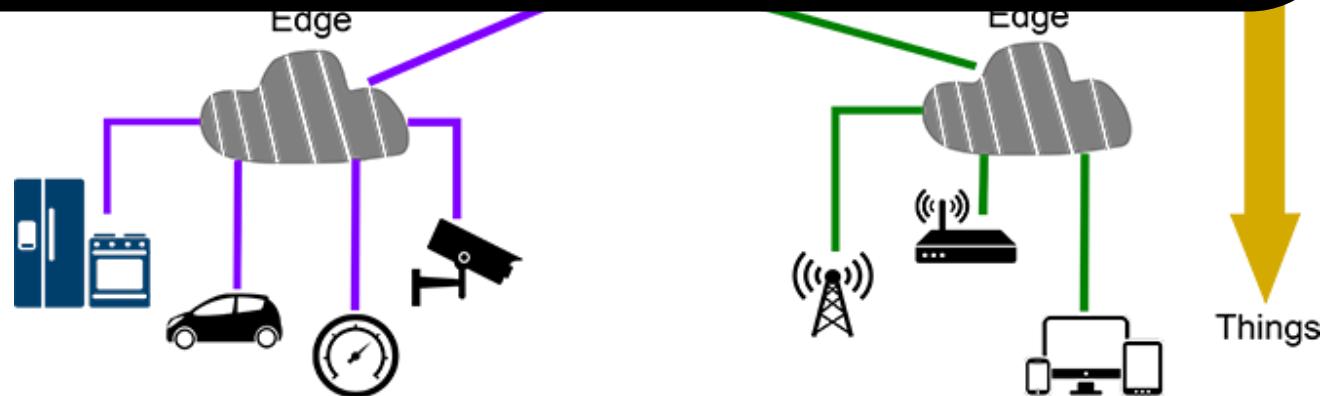
Edge devices will be equipped with special AI-chips based on FPGAs and/or ASICs

AI at the Edge – High Security with Fast Computing

- The need for no latency, **higher security**, **faster computing**, and **low cost** would drive the adoption of devices that are able to offer AI at the

On-device approach helps **reduce latency** for critical applications, **lower dependence on the cloud**, and better **manage the massive data** being generated by the **IoT/Edge device**.

+
intelligence
where it is
needed.



Edge devices will be equipped with special AI-chips based on FPGAs and/or ASICs

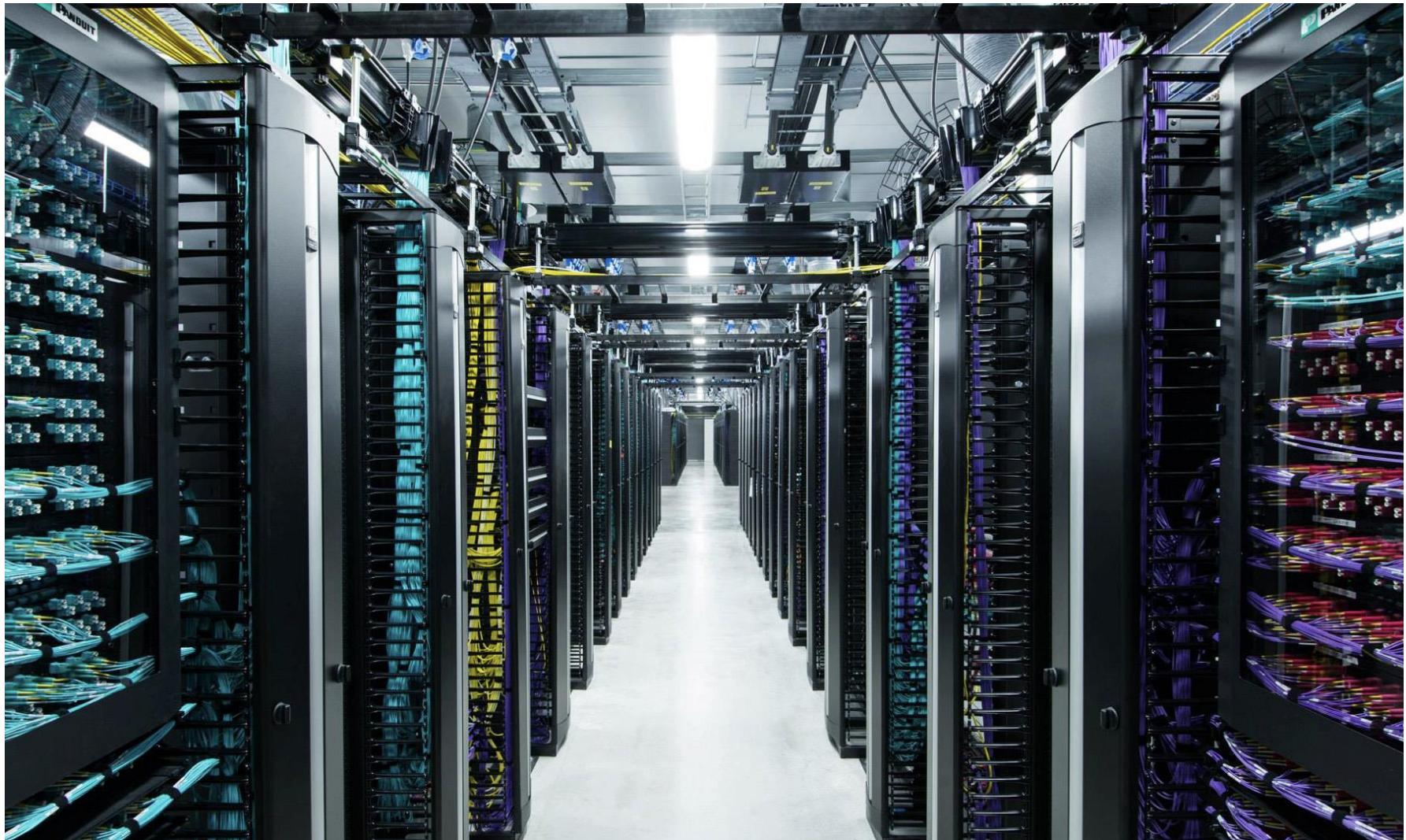
Deep learning requires massive compute power

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50
Top-5 error	n/a	16.4	7.4	6.7	5.3
Input Size	28x28	227x227	224x224	224x224	224x224
# of CONV Layers	2	5	16	21 (depth)	49

To solve this level of computation, we need a **GPU**

# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M
# of MACs	283k	666M	15.3G	1.43G	3.86G
# of FC layers	2	3	3	1	1
# of Weights	58k	58.6M	124M	1M	2M
# of MACs	58k	58.6M	124M	1M	2M
Total Weights	60k	61M	138M	7M	25.5M
Total MACs	→		15.5G	1.43G	3.9G

Deep learning requires massive compute power



...most of ML models run in Data Center (Cloud)

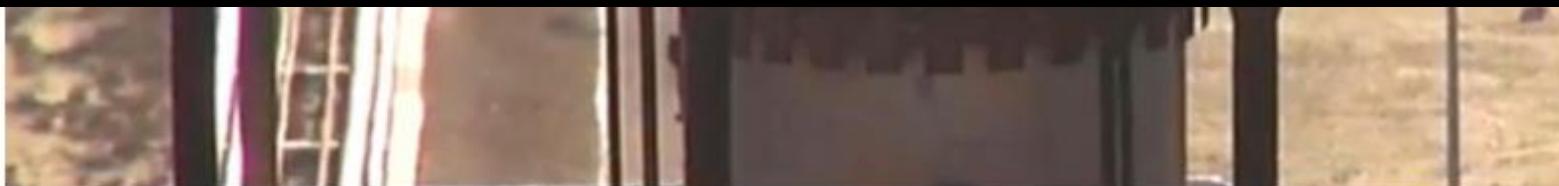
...but there are cases where the “cloud” cannot solve

If the **data** is sent to the cloud, the
bad guy has already left!

Japanese AI security camera [theverge.com]

...but there are cases where the “cloud” cannot solve

If the data is sent to the cloud, you cannot have RT decision.



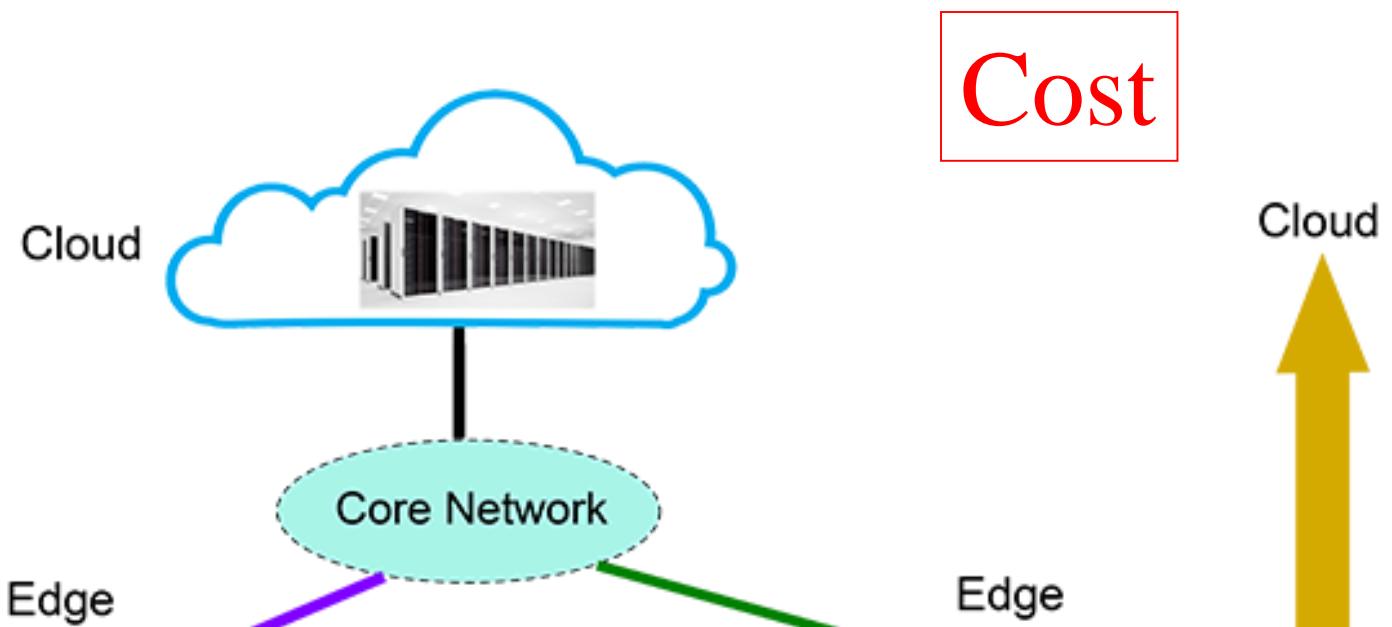
Intel Falcon 8+ Drone transforms inspections conducted in the oil and gas industry [sustainableoilfield.com]

...but there are cases where the “cloud” cannot solve

Privacy

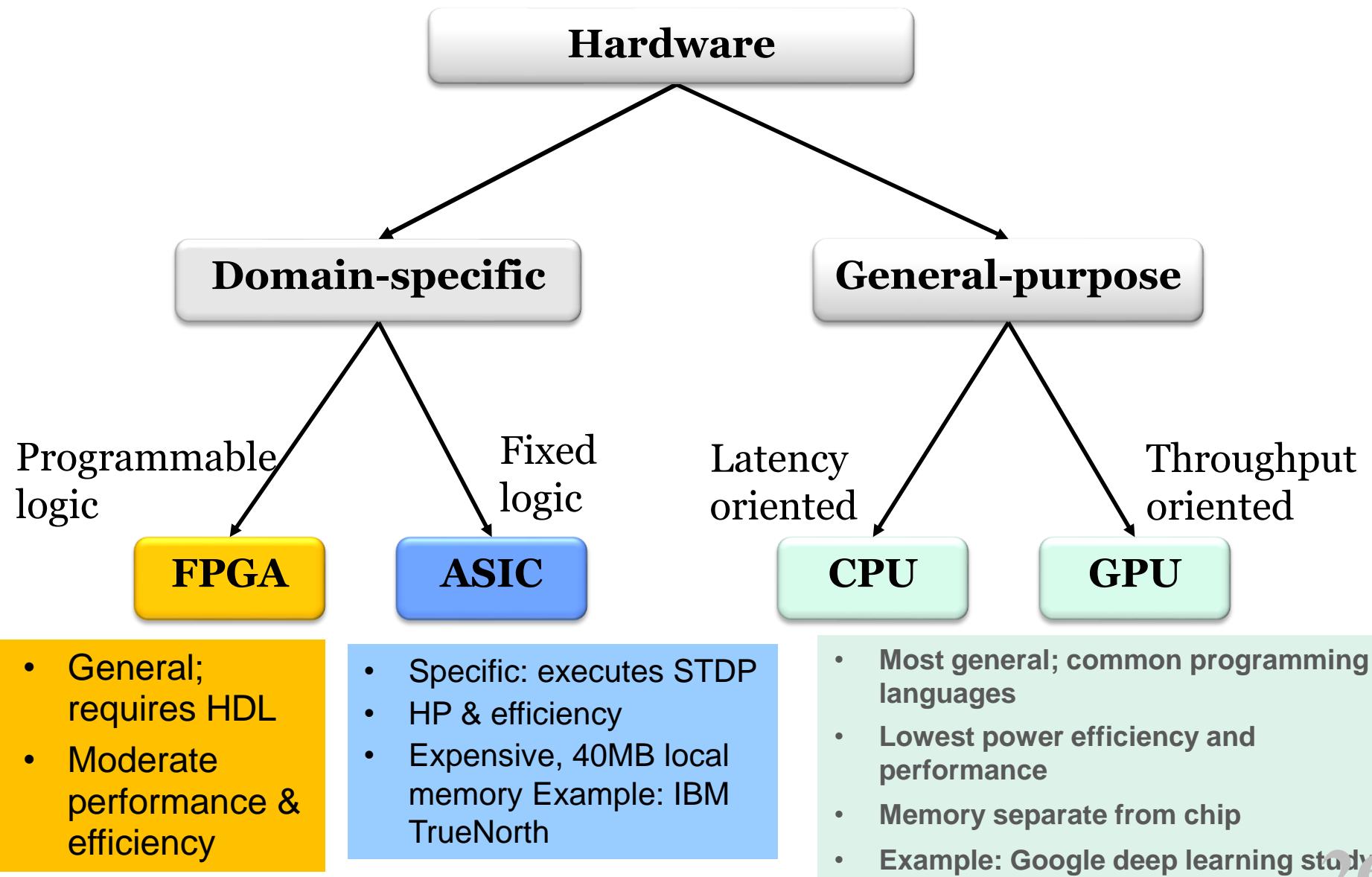
[Ref. life-of-coco.com]

Real world products are often resource constrained

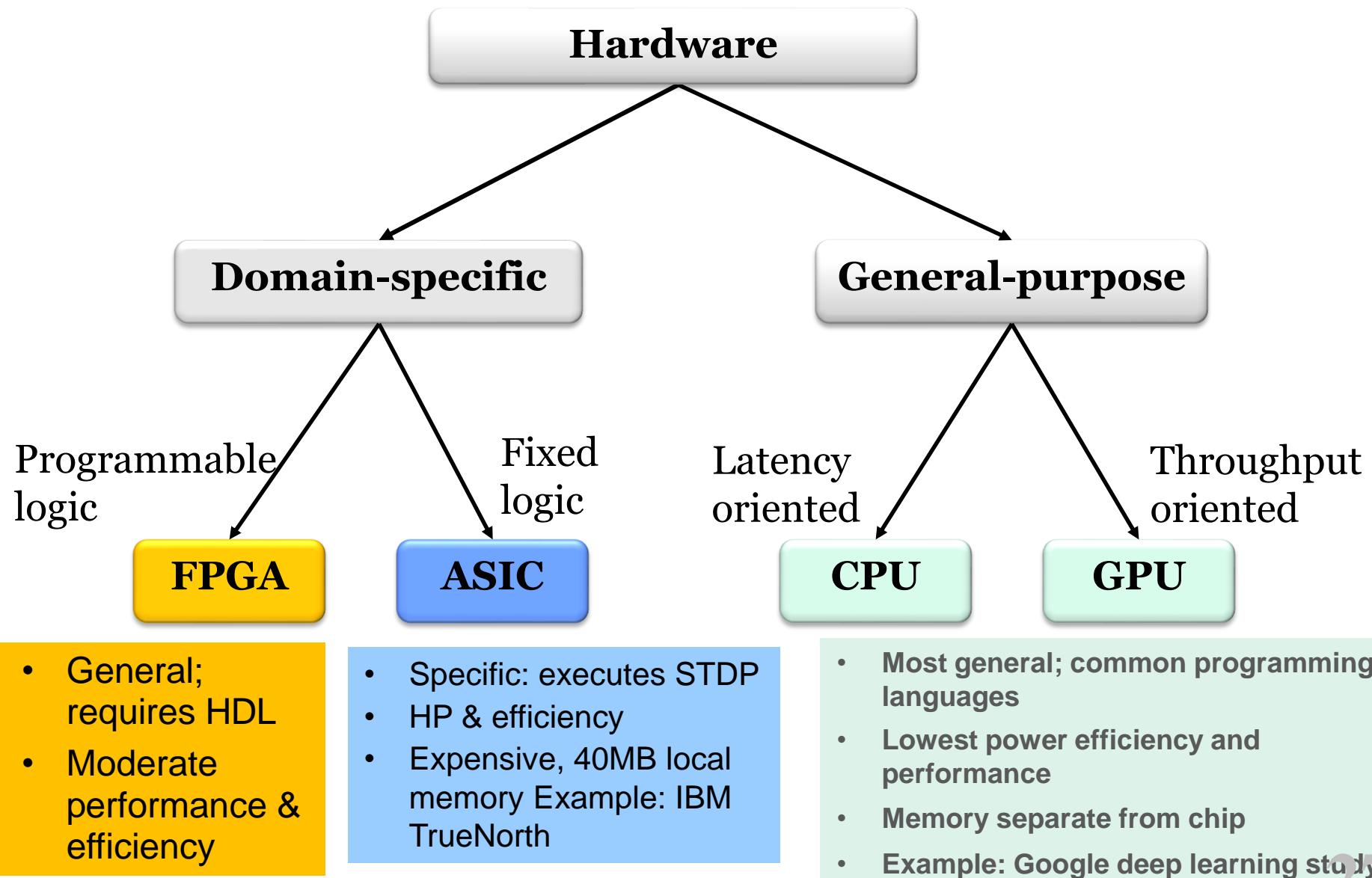


We cannot have a GPU on every device

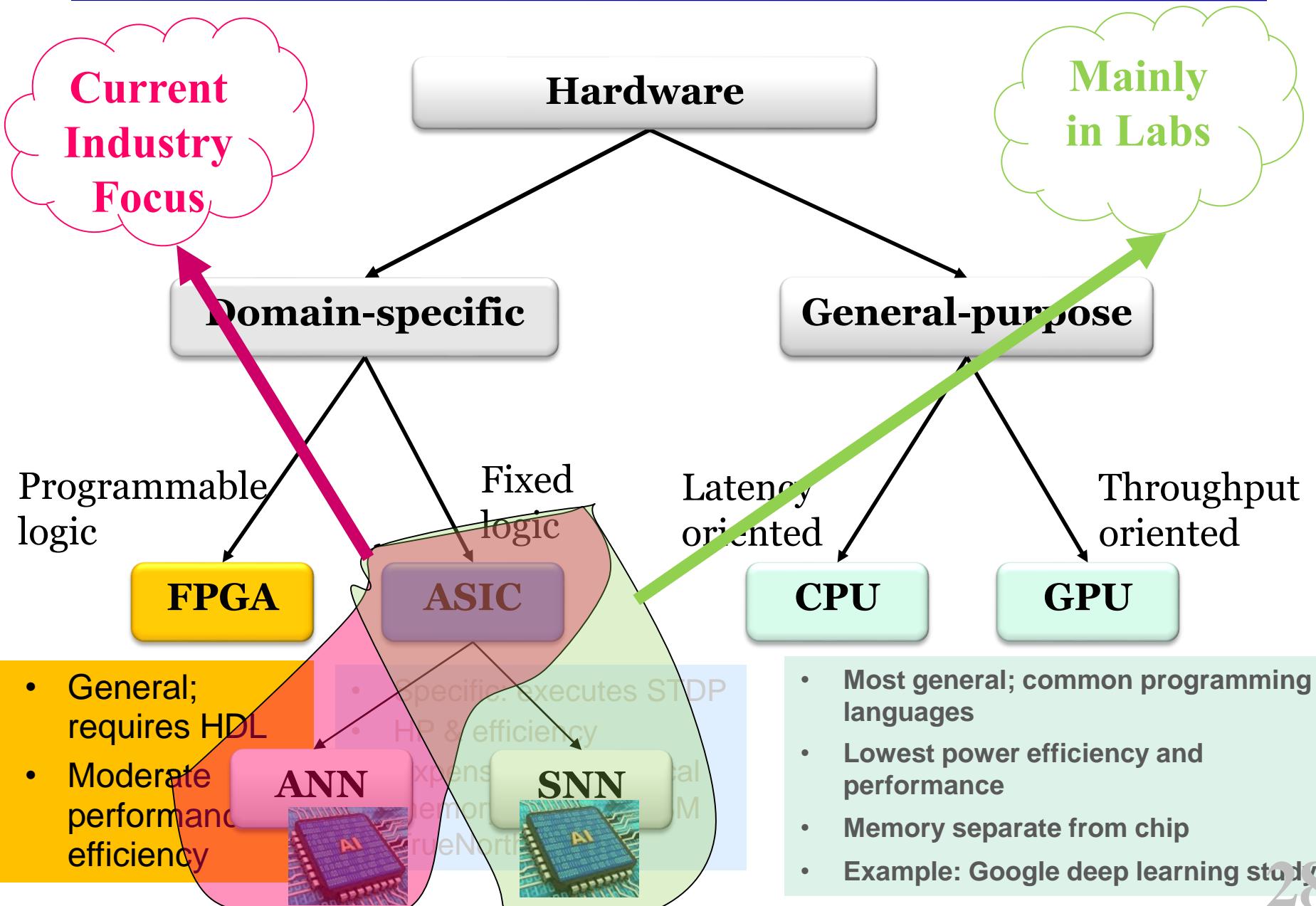
Current State of the Art in Neural Algorithms HW Computing



Current State of the Art in Neural Algorithms HW Computing



Current State of the Art in Neural Algorithms HW Computing



Different approaches of AI-Chips

Poor/Simple

Good/Complex

Neuron

Digital, Analog. LIF.

Izhikevich
model

Huxley-Hodgkin
model

Synapse

MAC
(weighted
sum)

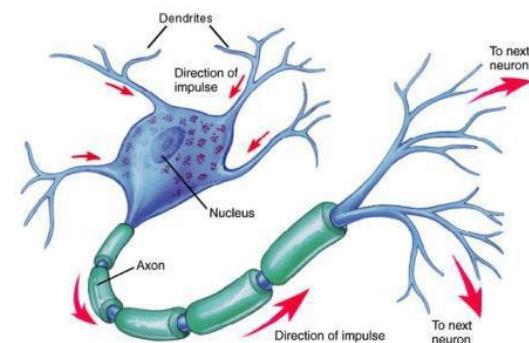
Spiking
STDP

Many
nonlinear
properties

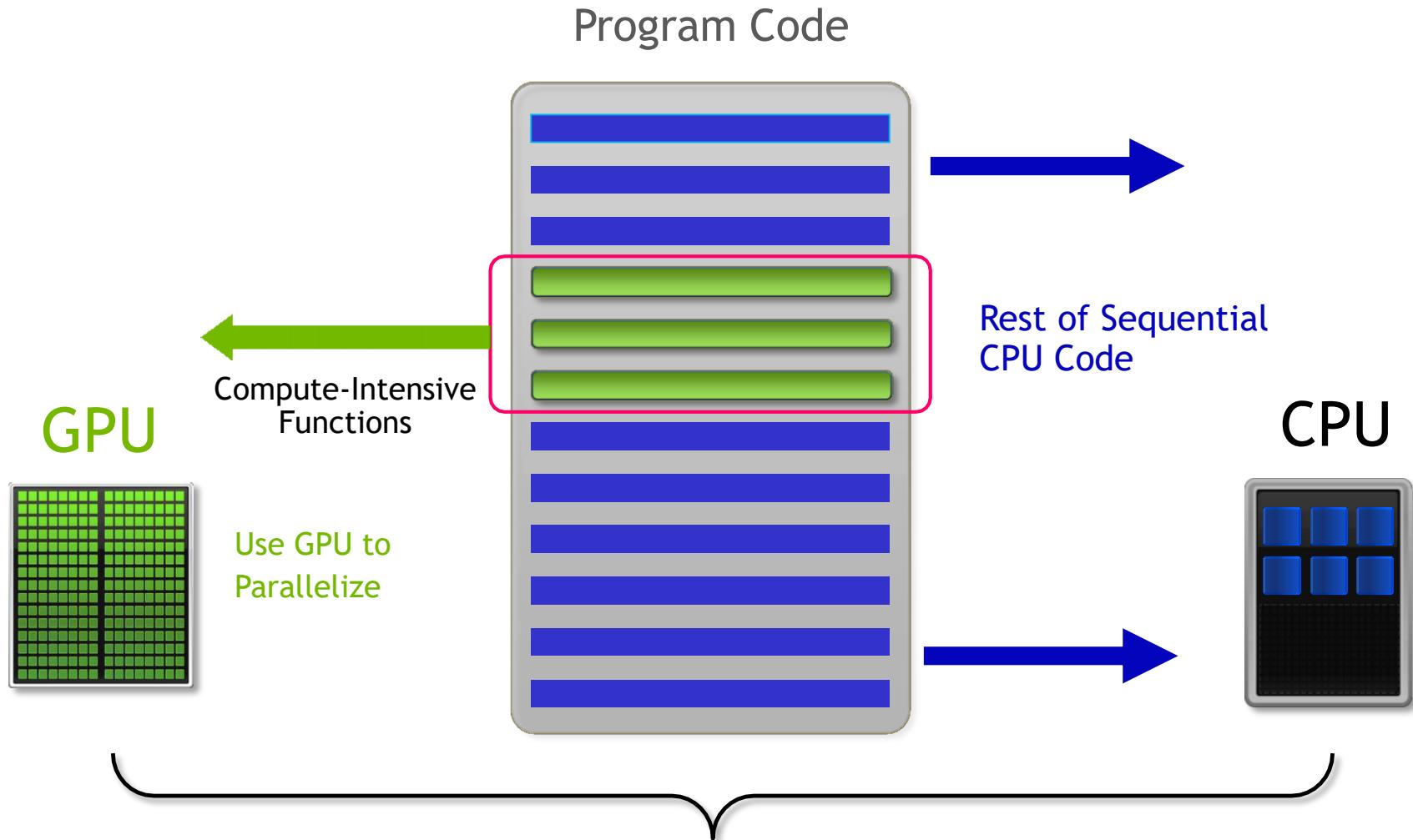
Generally Used in DL algorithms

Frequency

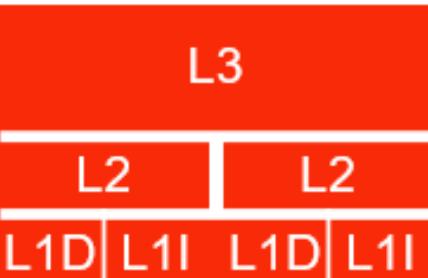
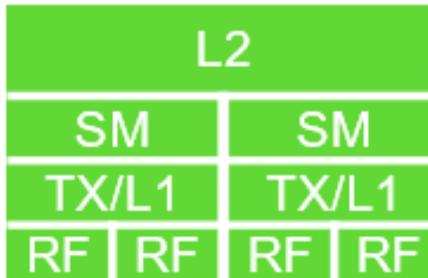
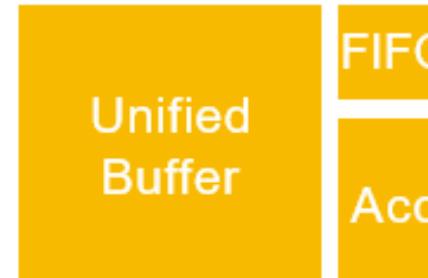
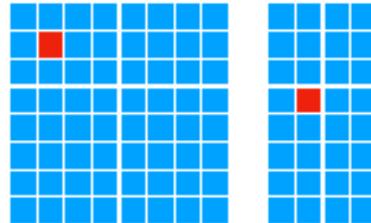
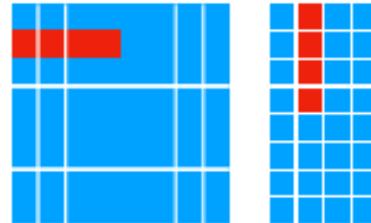
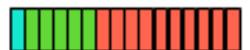
10~100 Hz (brain)



Current AI Chip = Accelerator/Co-processor

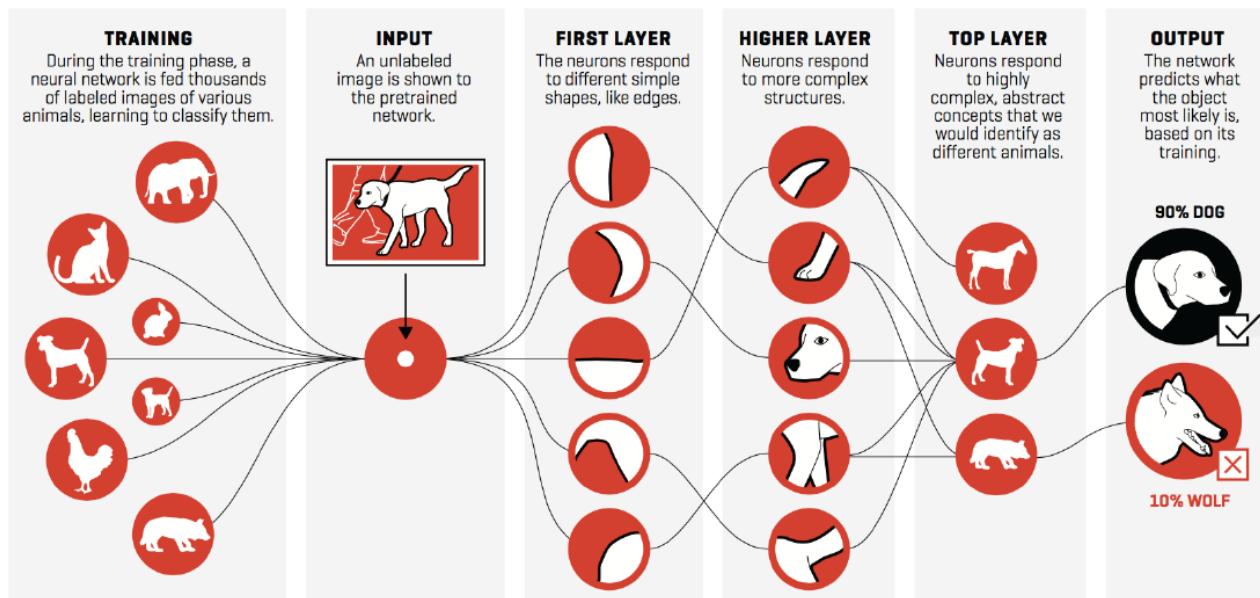


Accelerator Characteristics

	CPU	GPU	TPU
Memory subsystem	 <p>Diagram illustrating the CPU memory hierarchy: L1D, L1I, L2, and L3. The L1D and L1I layers are at the bottom, followed by the L2 layer, and the L3 layer at the top. The L2 layer is split into two sections, each containing an L1D and an L1I block.</p> <p>implicitly managed</p>	 <p>Diagram illustrating the GPU memory hierarchy: SM, TX/L1, and RF. The SM layer is at the top, followed by the TX/L1 layer, and the RF layer at the bottom. The TX/L1 layer is split into two sections, each containing an SM and a TX/L1 block.</p> <p>mixed</p>	 <p>Diagram illustrating the TPU memory hierarchy: Unified Buffer and FIFO. The Unified Buffer is at the top, followed by the FIFO layer at the bottom.</p> <p>Unified Buffer</p> <p>FIFO</p> <p>Acc</p> <p>explicitly managed</p>
Compute primitives	 <p>Diagram illustrating CPU compute primitives: scalar and vector. Each primitive is represented by a 4x4 grid of blue squares. A single red square is located in the top-left position of the scalar grid and in the second column of the first row of the vector grid.</p> <p>scalar</p> <p>vector</p>	 <p>Diagram illustrating GPU compute primitives: tensor. Each primitive is represented by a 4x4 grid of blue squares. A 2x2 block of red squares is located in the top-left corner of the tensor grid.</p> <p>tensor</p>	
Data type	<p>Diagram illustrating CPU data type: fp32. A horizontal bar is composed of 16 segments: the first 8 are green (representing 8 bits of precision), and the last 8 are red (representing the other 8 bits).</p> <p>fp32</p>	 <p>Diagram illustrating GPU data type: fp16. A horizontal bar is composed of 16 segments: the first 4 are cyan (representing the sign and exponent), the next 8 are green (representing 7 bits of precision), and the last 4 are red (representing the other 7 bits).</p> <p>fp16</p>	<p>Diagram illustrating TPU data type: int8. A horizontal bar is composed of 8 segments, all of which are red (representing 8 bits of precision).</p> <p>int8</p>

...Deep Learning is considered as a sophisticated “rocket” of Machine Learning!!

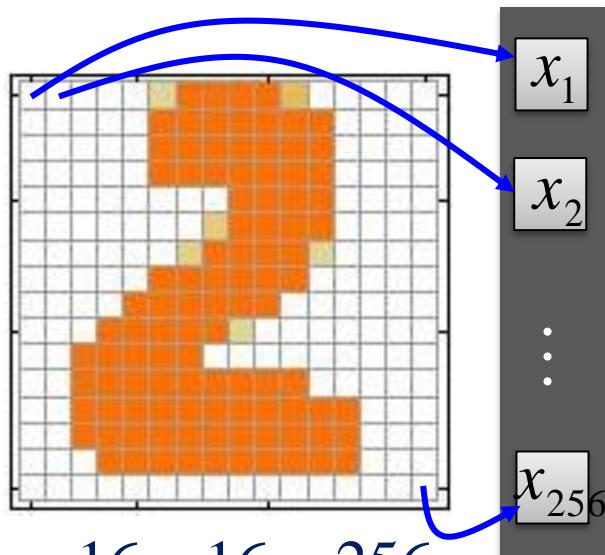
Fuel = Data!



1. “Deep Learning” means using a neural network with several layers of nodes between input & output
2. the series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

Example1: Handwriting Digit Recognition on FPGA

Input

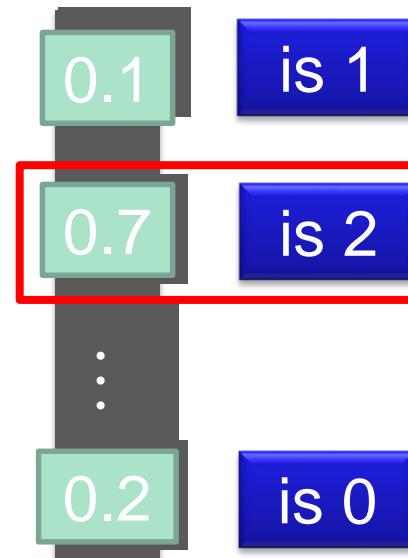


$$16 \times 16 = 256$$

Ink $\rightarrow 1$

No ink $\rightarrow 0$

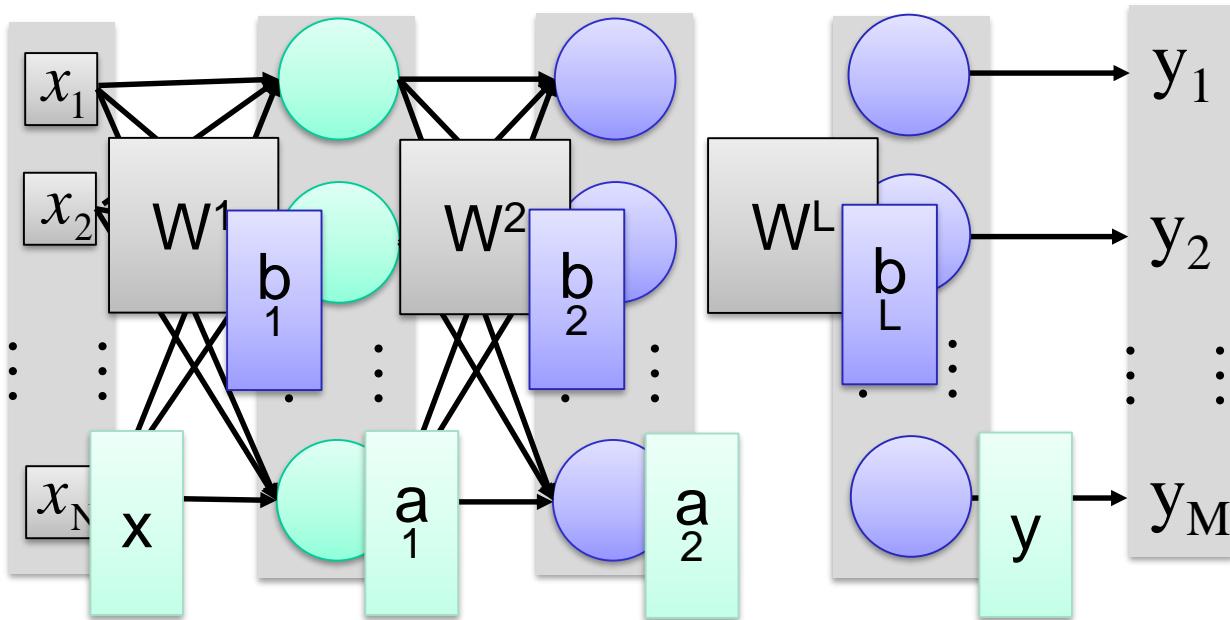
Output



Each dimension represents the confidence of a digit.

Example1: Handwriting Digit Recognition on FPGA

Conventional Artificial Neural Network



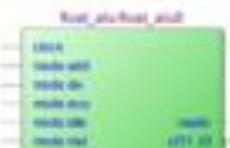
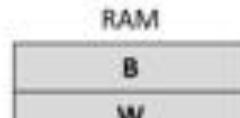
$$y = f(x)$$

Parallel computing techniques are needed to speed up matrix operations

$$= \sigma(W^L \quad W^2 \quad W^1 \quad x \quad b_1 \quad b_2 \quad b_L)$$

Example1: Handwriting Digit Recognition on FPGA

Character Recognition with BP training



Implementation of detecting 16 patterns from 16 inputs with BP.

Device: EP2C35F672C6

Family: Cyclone2

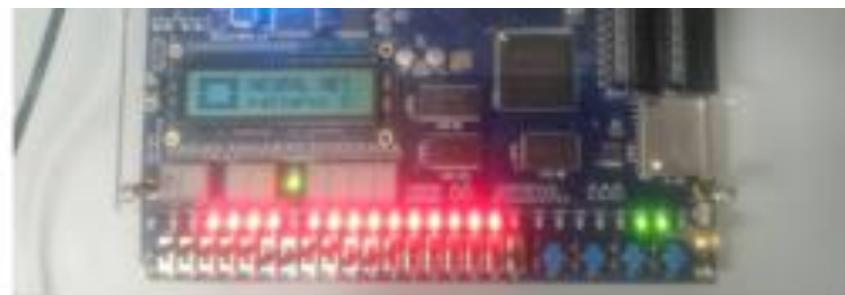
Synthesis: Quartus2 13.1

Table 1 : ANN Performance Evaluation

ALUs	Registers	Pins	Fmax
10,989 (33%)	5,814 (18%)	432 (89%)	76.02 MHz
Memory	DSP Block	Power Consumption	
4,956 (1%)	54 (77%)	286.84 mW	

9	10	11	12
13	14	15	16

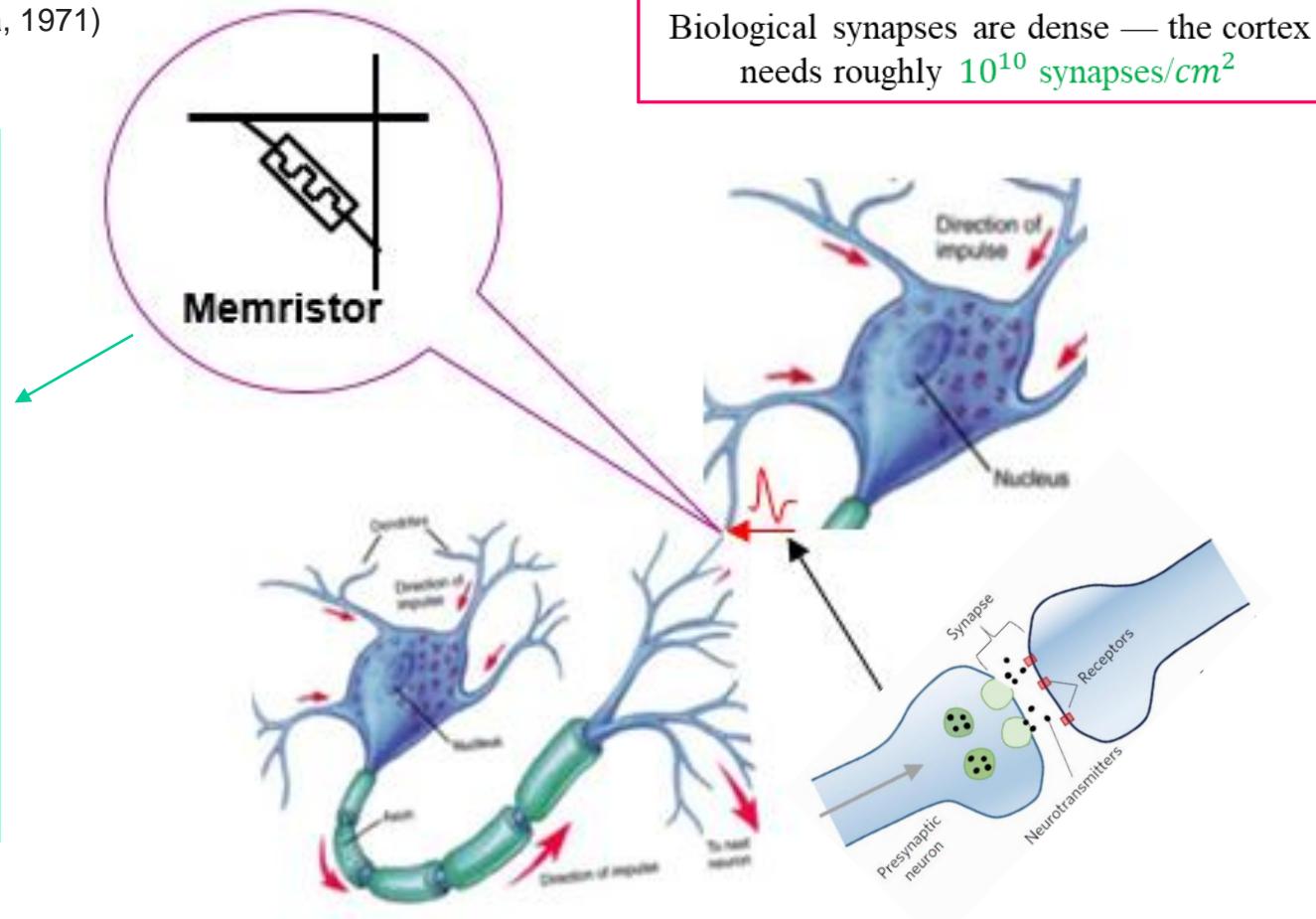
'O' letter



Memristor for Synapse Design

(Chua, 1971)

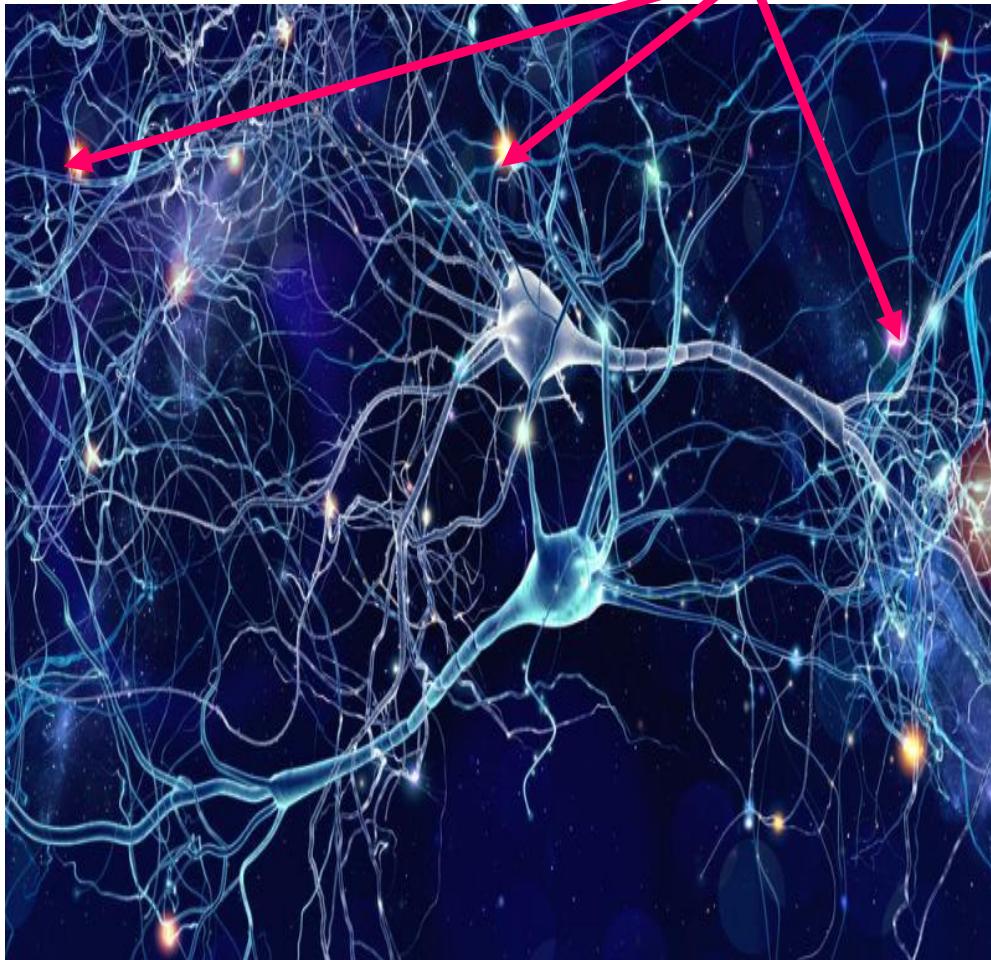
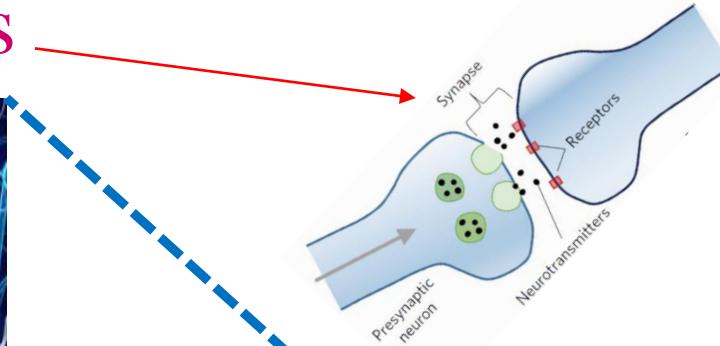
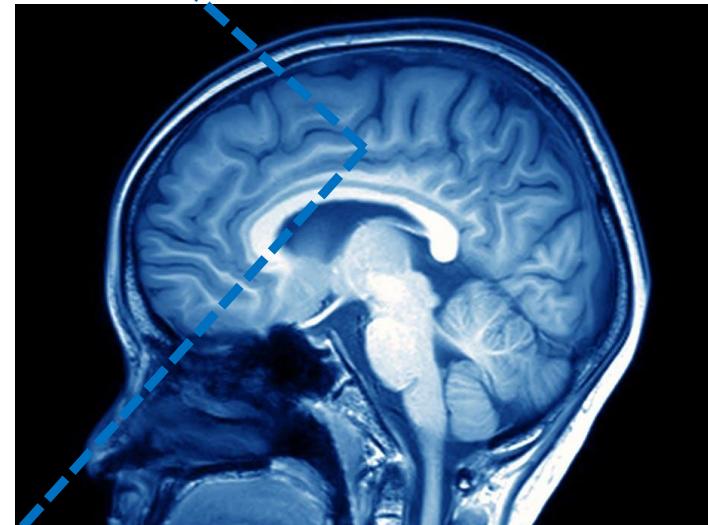
The electrical resistor is not constant but depends on the history of current that had previously flowed through the device.



- ❖ Voltage **pulses** can be applied to a **memristor** to change its **resistance**, just as **spikes** can be applied to a **synapse** to change its **weight**.

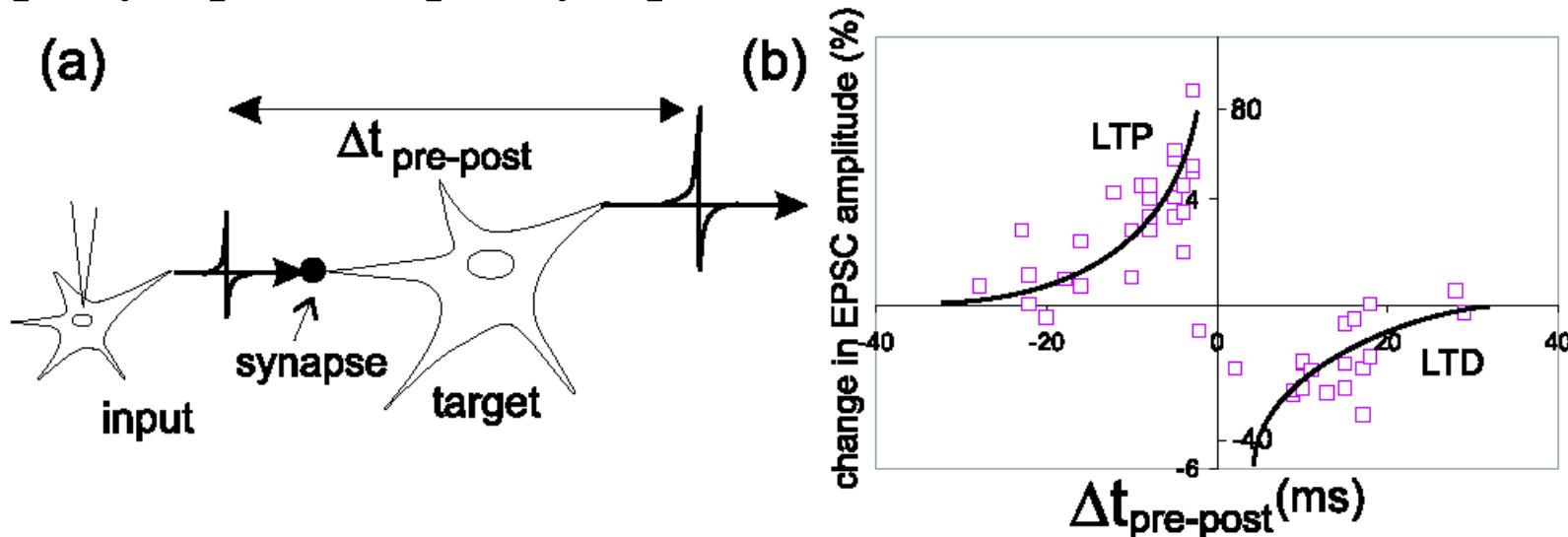
How biological neurons learn?

Brain is a large network of neurons connected and communicating via **synapses**



How biological neurons learn?

- Learning rules based on STDP specify changes in **synaptic strength** depending on the **time interval** between each pair of presynaptic and postsynaptic events.

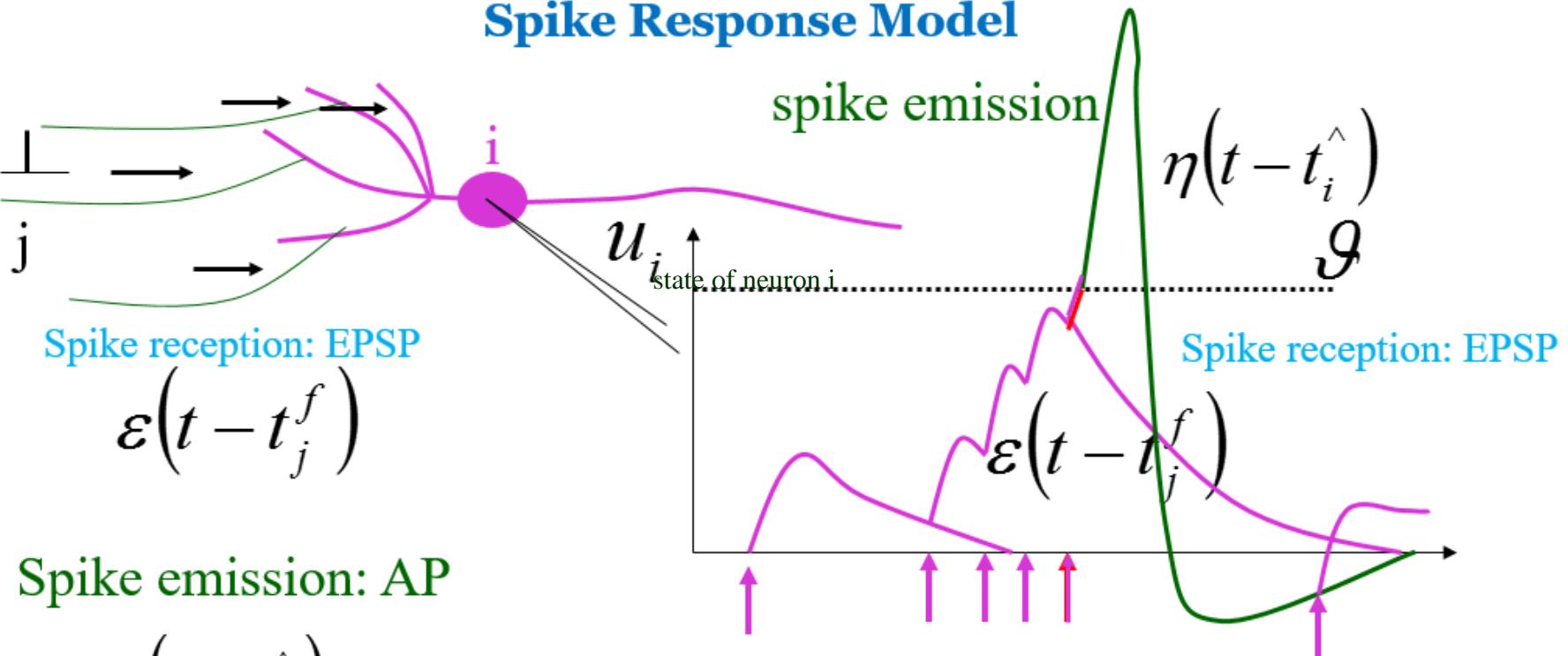


Spike-timing-dependent plasticity (STDP)

- If the **presynaptic** neuron fire **before** the **postsynaptic** neuron within a preceding 20ms, LTP occurs
- If the **presynaptic** neuron fire **after** the **postsynaptic** neuron within the following 20ms, LTD occurs

Spiking Neuron Model

Spike Response Model



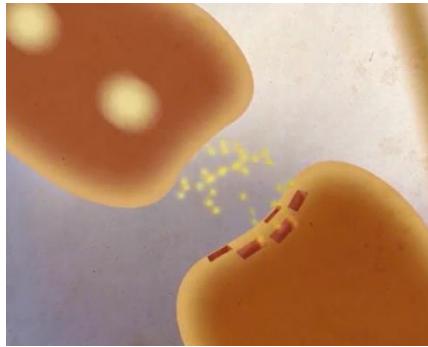
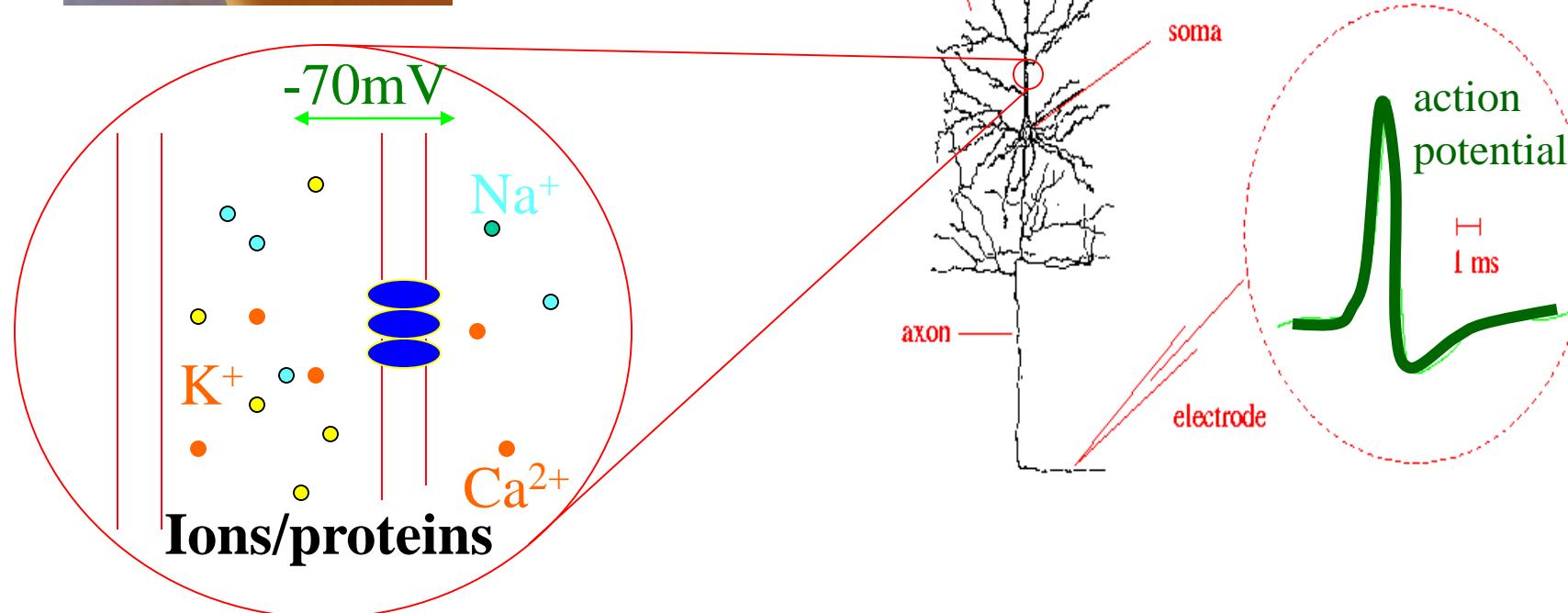
Spike emission: AP

$$\eta(t - t_i^*)$$

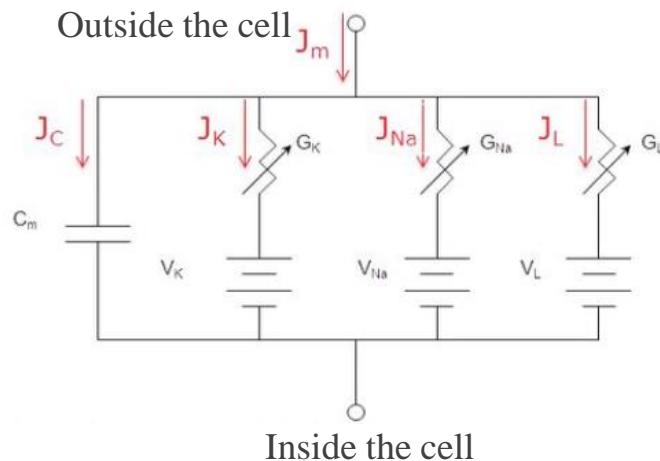
$$u_i(t) = \eta(t - t_i^*) + \sum_j \sum_f w_{ij} \varepsilon(t - t_j^f)$$

$$u_i(t) = \vartheta \Rightarrow \text{Firing: } t_i^* = t$$

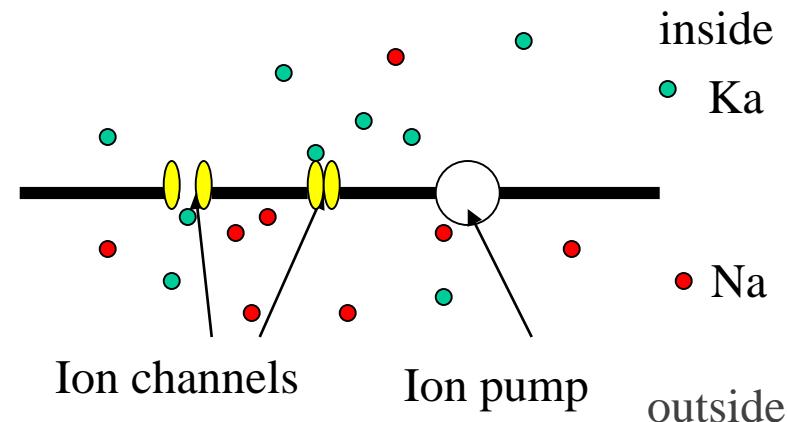
Spiking Neuron Model- Molecular Basis



Hodgkin-Huxley Model



~



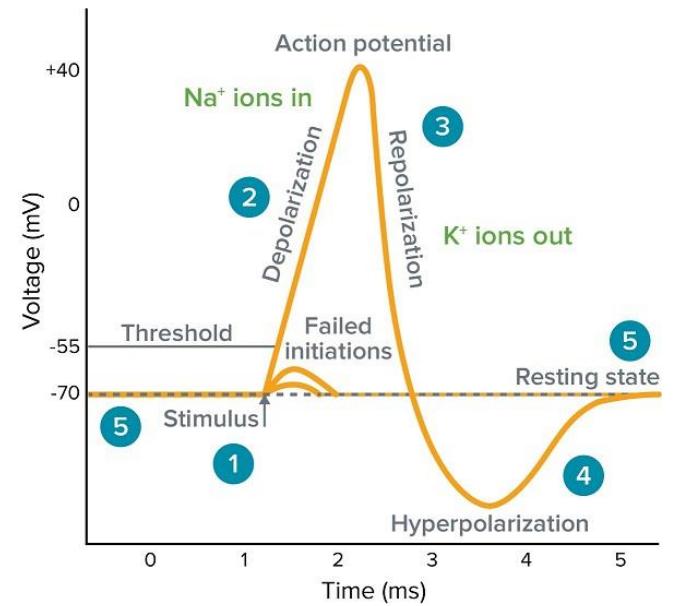
$$J_c = C_m \frac{\partial V_m}{\partial t}$$

$$J_{Na^+} = G_{Na^+} (V_m - V_{Na^+})$$

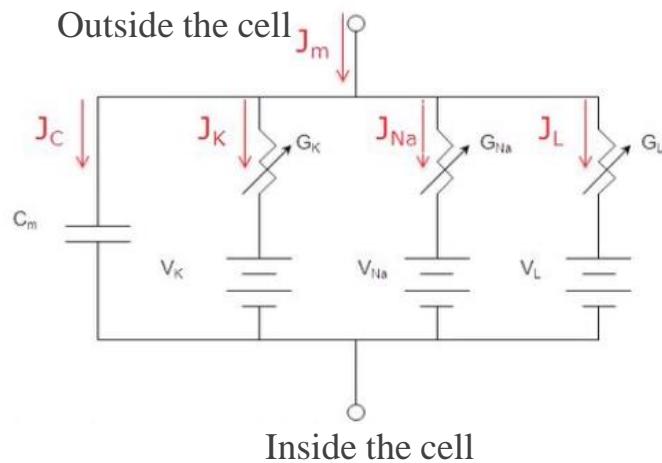
$$J_{K^+} = G_{K^+} (V_m - V_{K^+}) \quad J_L = G_L (V_m - V_L)$$

$$J_m = J_c + J_{K^+} + J_{Na^+} + J_L$$

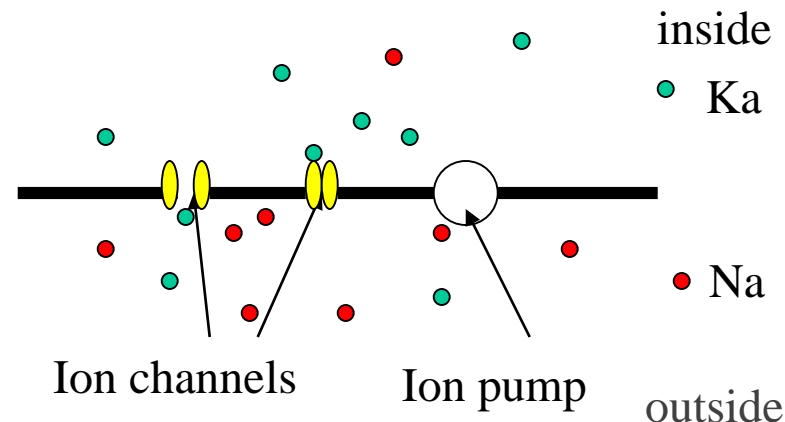
$$J_m = C_m \frac{\partial V_m}{\partial t} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L)$$



Hodgkin-Huxley Model



~



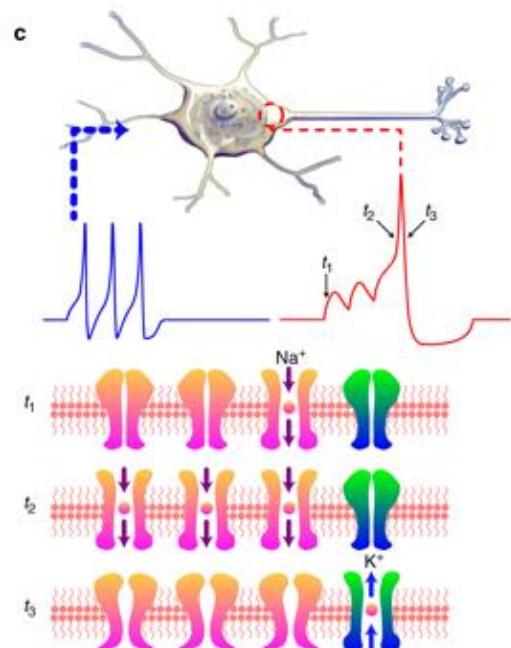
$$J_c = C_m \frac{\partial V_m}{\partial t}$$

$$J_{Na^+} = G_{Na^+} (V_m - V_{Na^+})$$

$$J_{K^+} = G_{K^+} (V_m - V_{K^+}) \quad J_L = G_L (V_m - V_L)$$

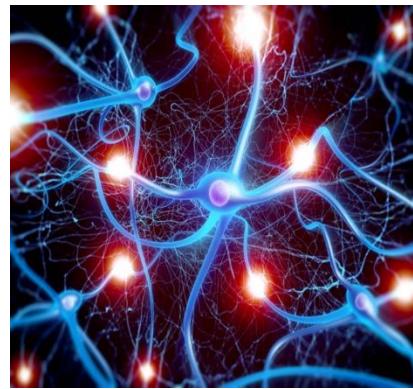
$$J_m = J_c + J_{K^+} + J_{Na^+} + J_L$$

$$J_m = C_m \frac{\partial V_m}{\partial t} + G_{K^+} (V_m - V_{K^+}) + G_{Na^+} (V_m - V_{Na^+}) + G_L (V_m - V_L)$$

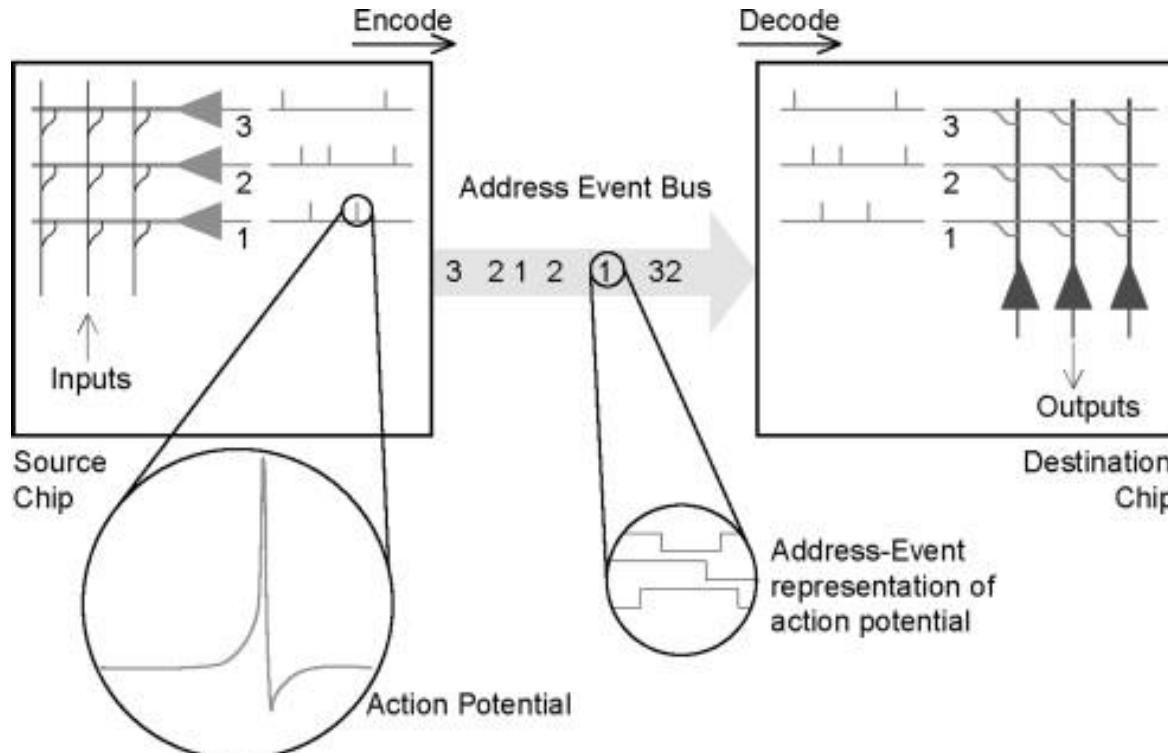


[Ref. 18]

Wiring via AER (Address Event Representation)



(Courtesy: iStock/Henrik5000)



- ❖ AER is an asynchronous handshaking protocol used to transmit signals between neuromorphic systems.

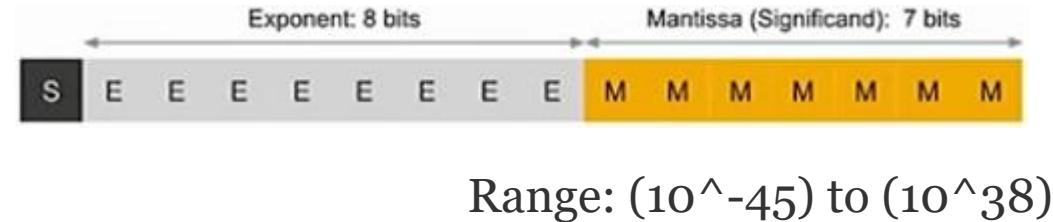
NN Training Works with Low-precision FP

fp32: Single-precision IEEE Floating Point Format

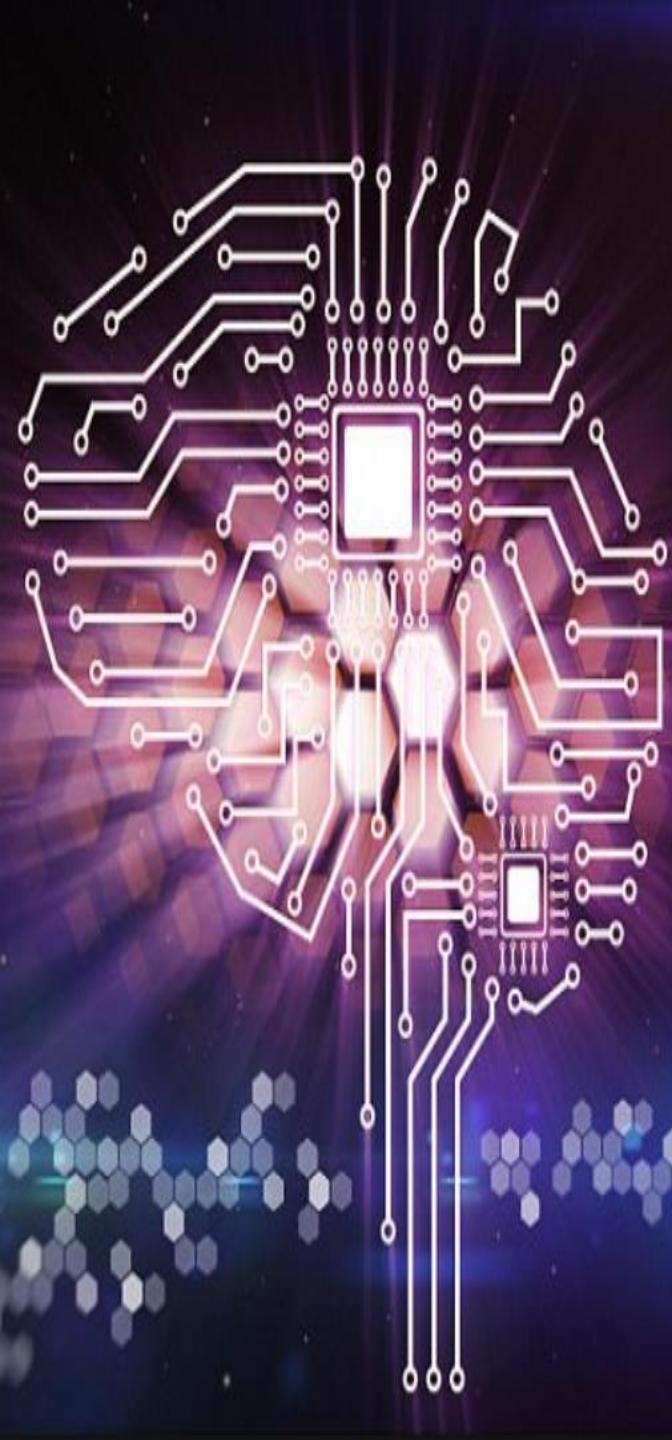


fp16: Half-precision IEEE Floating Point Format

bfloat16: Brain Floating Point Format



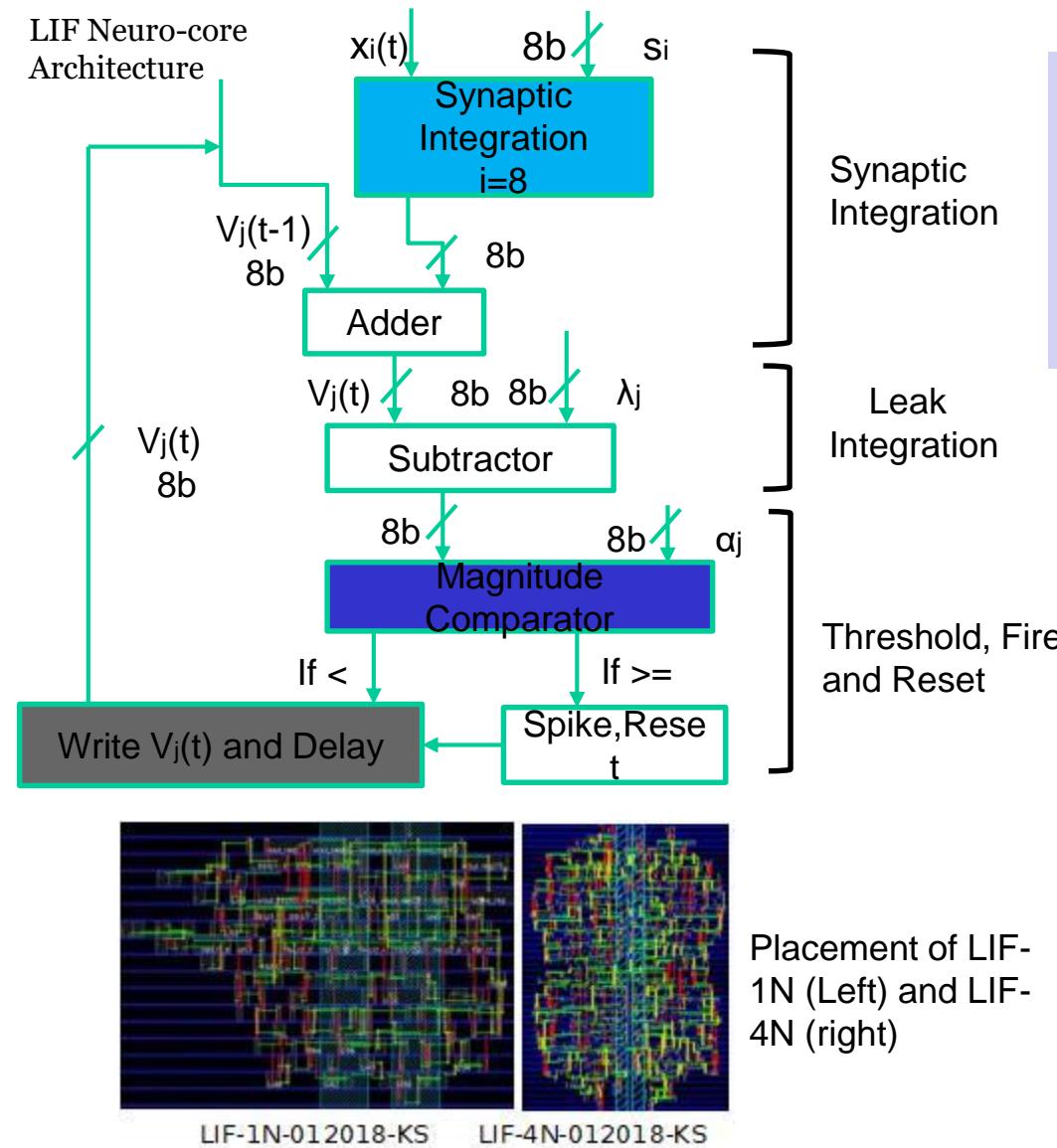
- ❖ Represent the same range of numbers of fp32 just at a much lower position.
- ❖ It turns out that we don't need all that precision for NN training, but we do actually need all the range.



Agenda

- Fundamental Trends
- AI – The Emerging Industrial Revolution
- AI at the Edge
- **ASL Neuromorphic Chips**
- Conclusions

LIF Neuro-core for NASH System



- $X_i(t)$ – Spike input to the synapse
- S_i – synaptic weight
- $V_j(t)$ – Membrane potential
- a_j – Neuron threshold
- Λ_j – Leak value

Table 1: Area Evaluation

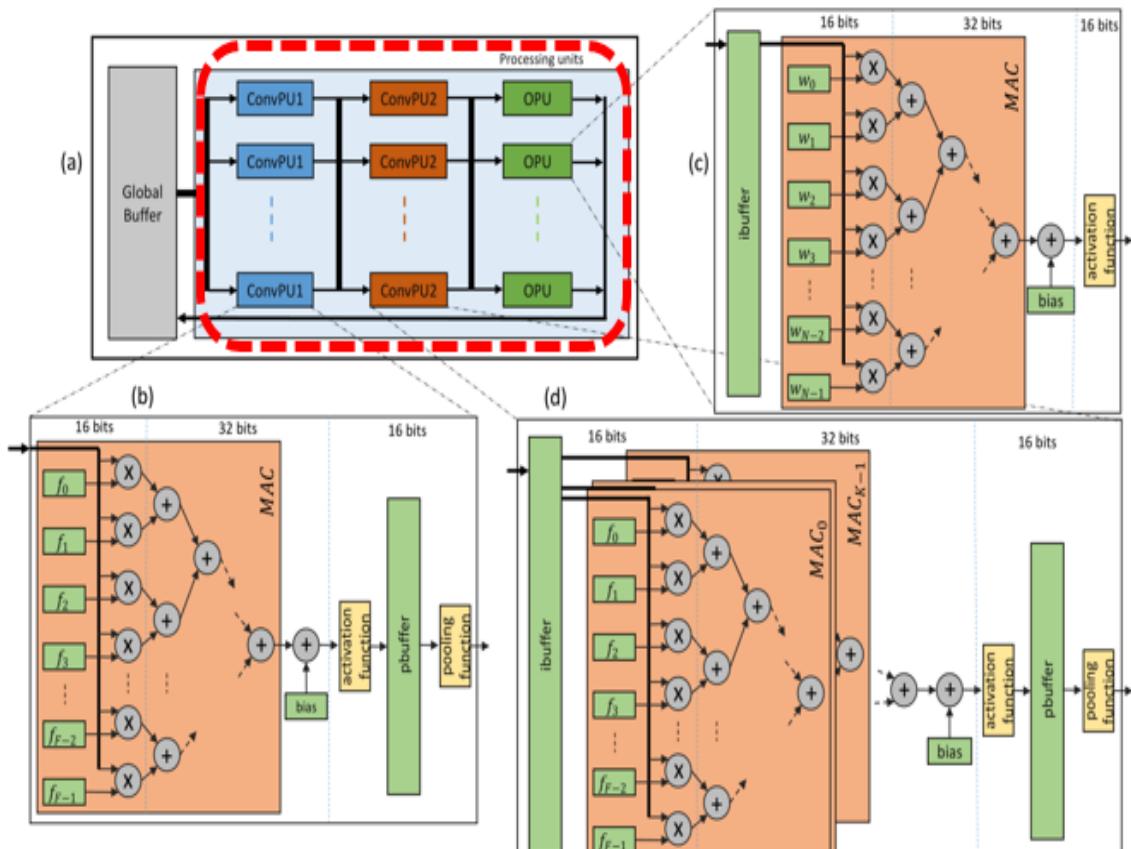
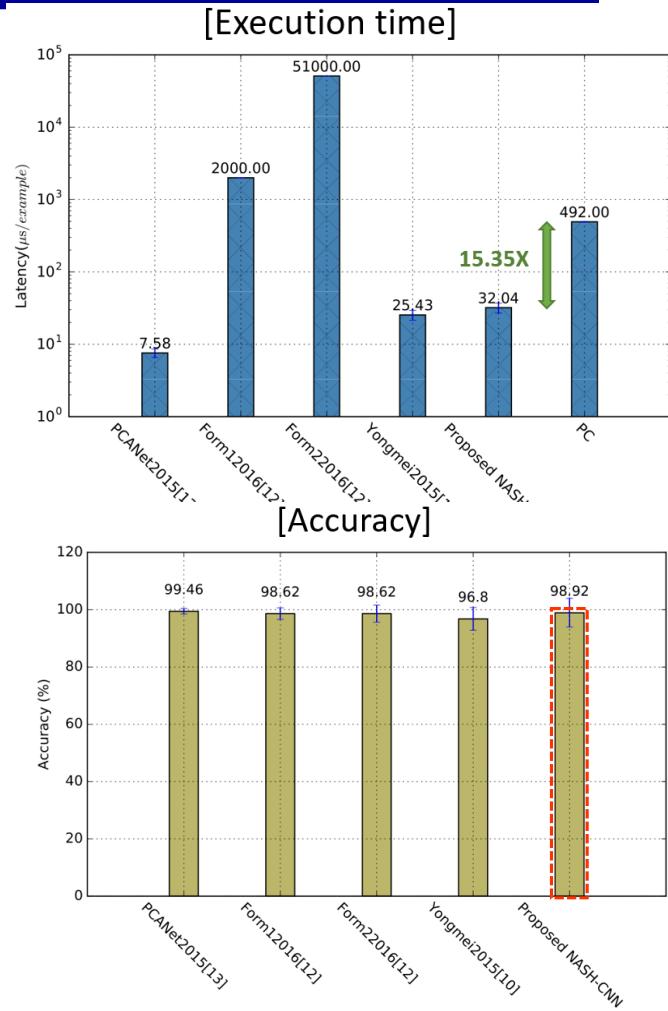
Item	NC-1N	NC-4N
Cell Internal Power	6.9680 μW	20.5040 μW
Net Switching Power	4.8271 μW	14.8272 μW
Total Dynamic Power	11.7950 μW	35.3312 μW
Cell Leakage Power	4.6943 μW	14.3147 μW

Table 1: Power Evaluation

Item	NC-1N	NC-4N
Combinational Area	186.998 μm	562.856001 μm
Non-Comb Area	47.88002 μm	213.864000 μm
Total Cell Area	234.878002 μm	776.720001 μm

Application I

Neuro-inspired Hardware System for Image Recognition



The H. Vu, Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "Efficient Optimization and Hardware Acceleration of CNNs towards the Design of a Scalable Neuro-inspired Architecture in Hardware", Proc. of the IEEE International Conference on Big Data and Smart Computing (BigComp-2018), January 15-18, 2018

Application II

Neuro-inspired Hardware System for Autonomous Vehicles

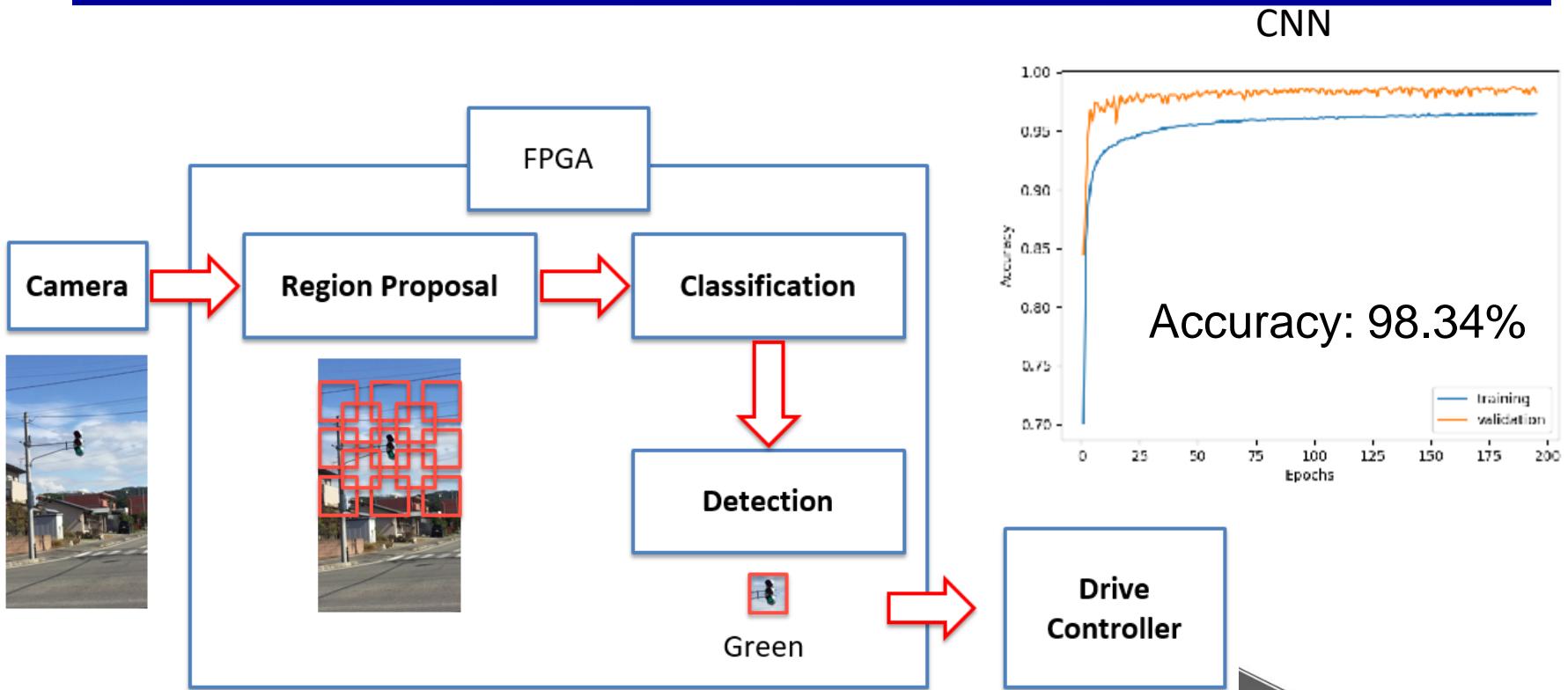
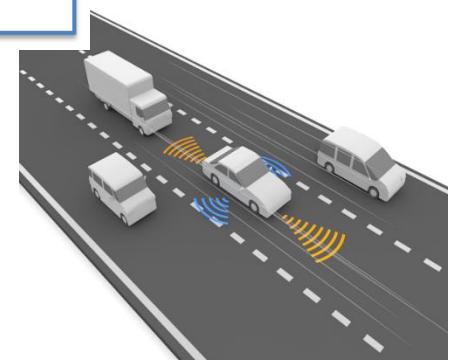


Table 1 : ANN Performance Evaluation

ALUs	Registers	Pins	Fmax
10,989 (33%)	5,814 (18%)	432 (89%)	76.02 MHz
Memory	DSP Block	Power Consumption	
4,956 (1%)	54 (77%)	286.84 mW	



- Yuji Murakami, "Design of a Neural Network Architecture for Traffic Light Detection Towards Autonomous Driving Vehicles," Master's Thesis, Graduate School of Computer Science and Engineering, The University of Aizu, 3/2019
- Yuji Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "SRAM Based Neural Network System for Traffic-Light Recognition in Autonomous Vehicles", Information Processing Society Tohoku Branch Conference, Feb. 10, 2018

Demo 1

Application III

Neuro-inspired System for Wild Animals Monitoring

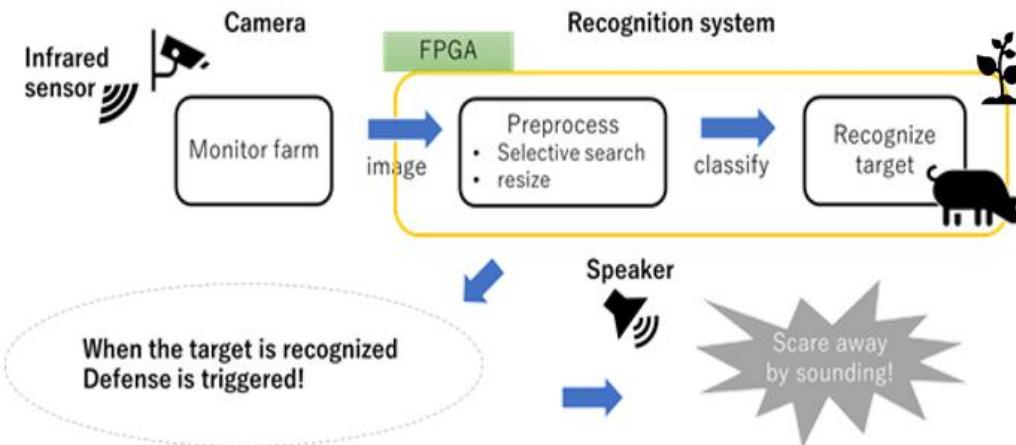


Fig 4. System overview: OASIS FMS-1

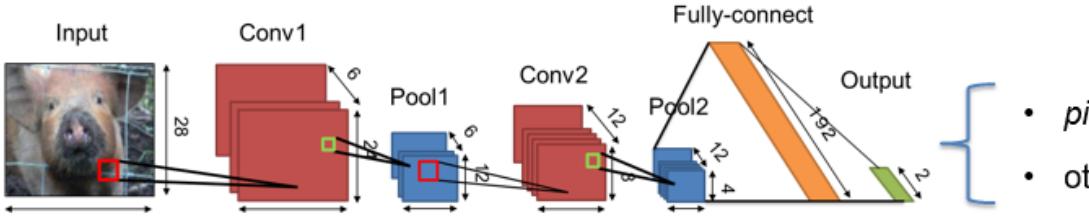
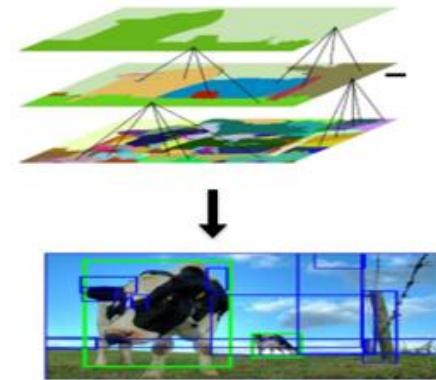


Fig 3. CNN example



出典:「Rich feature hierarchies for accurate object detection and semantic segmentation」

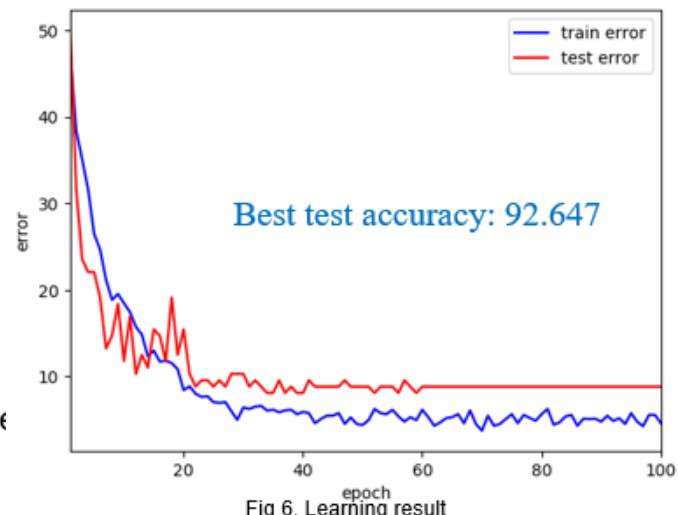
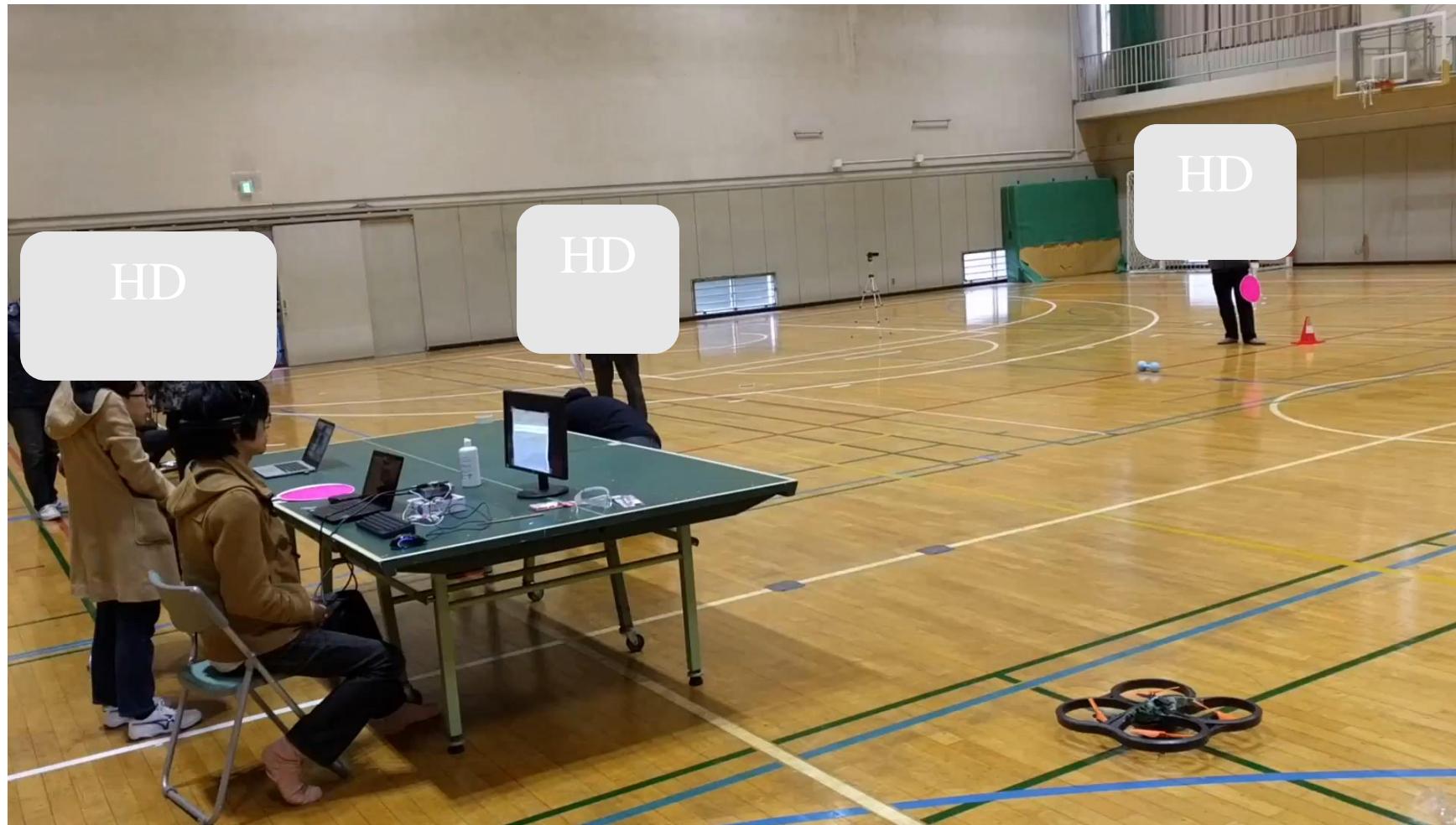


Fig 6. Learning result

Demo 2



NASH: Low-power Event-driven Adaptive Neuromorphic System for Autonomous Cognitive Behaviour

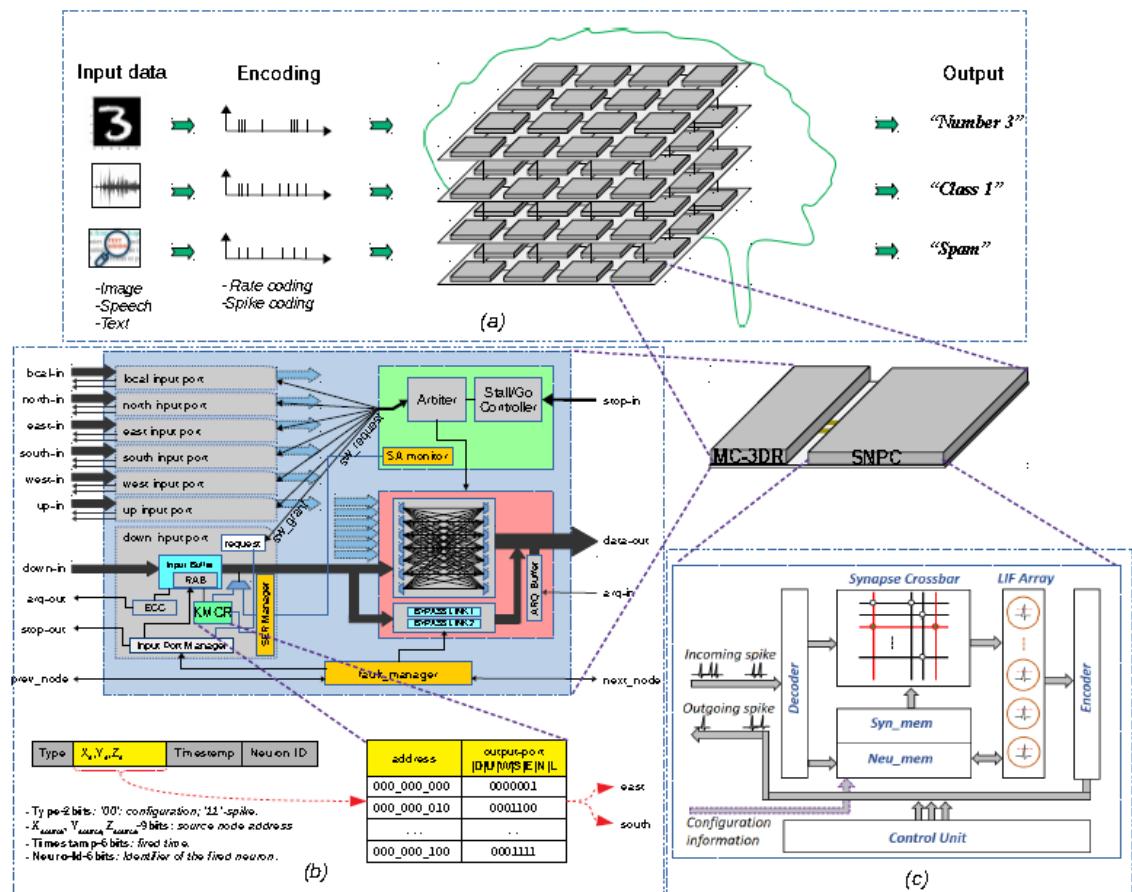
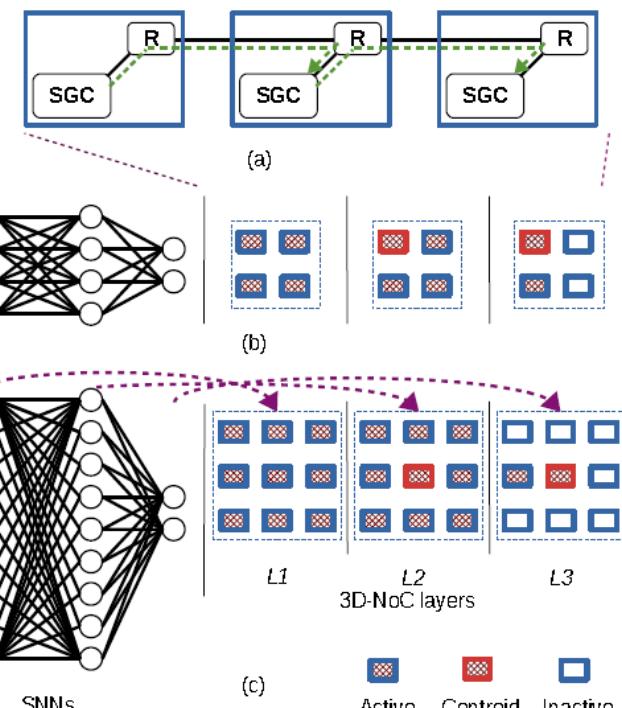
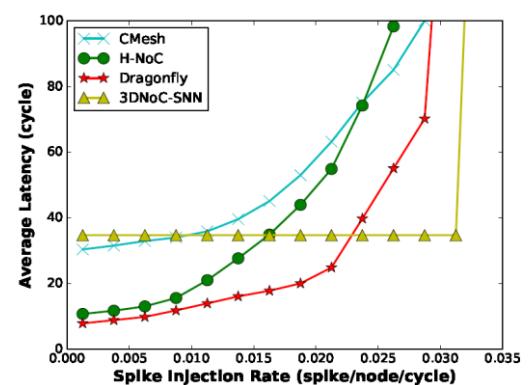
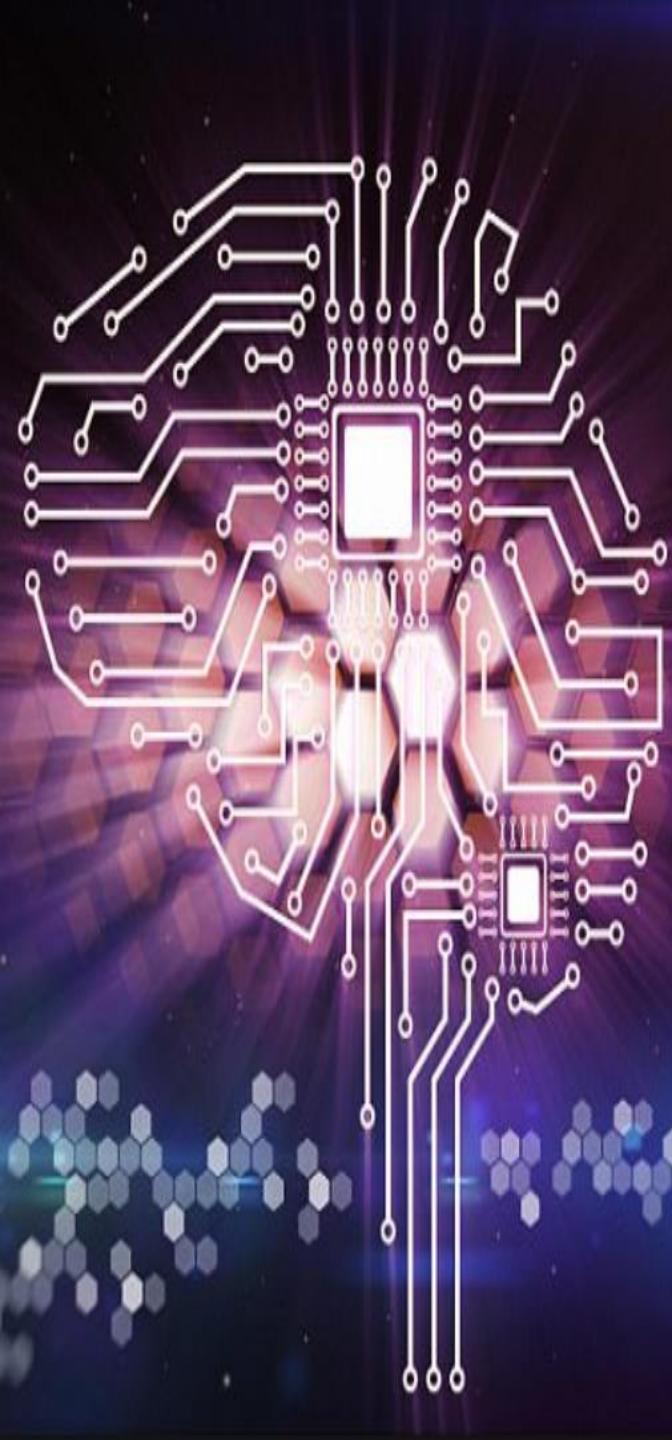


Fig. 5: System architecture: (a) 3DNoC-SNN organization, (b) Multicast router architecture (MC-3DR), (c) Spiking neuron processing core (SNPC).



Average latency evaluation and comparison over various SIRs.



Agenda

- Fundamental Trends
- AI – The Emerging Industrial Revolution
- AI at the Edge
- ASL Neuromorphic Chips
- Conclusions

Conclusions

❖ Memory access in AI-Chip is the bottleneck

Worst case: ALL memory R/W are DRAM accesses

Ex. AlexNet [NIPS 2012] has 724M MACs → 2896M DRAM accesses required

Possible HW/SW techniques to cope with the memory access problem:

❖ Advanced Storage Technology

- ✓ Embedded DRAM (eDRAM) → Increase on-chip storage capacity
- ✓ 3D Stacked DRAM → Increase memory bandwidth
- ✓ Use memristors as programmable weights (resistance)

❖ Reduce size of operands for storage/compute

- ✓ Floating point → Fixed point
- ✓ Bit-width reduction

❖ Reduce number of operations for storage/compute

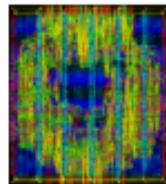
- ✓ Network Pruning; Compact Network Architectures

ASL SoCs , AI-Chips

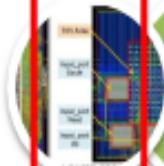
2006

OASIS-1 – Scalable Packet-Switched Network-on-Chip

JASSSTo6, MCSOC12, JPDC14, SUP14

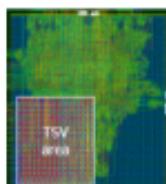


2013

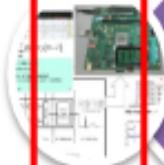


OASIS-2 - Fault-Tolerant Network-on-Chip

MCSOC14, JPDC14, SUP16



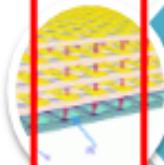
2014



BANSMOM - Bio-Chip for Elderly Monitoring

ES2016, ACHRAF-MS1, KIMEZAWA-MS

2015



PHENIC- High-bandwidth Photonic NoC

SUP16, MCSOC15, CANDAR16,

2018

MASH - Neuromorphic AI Chips

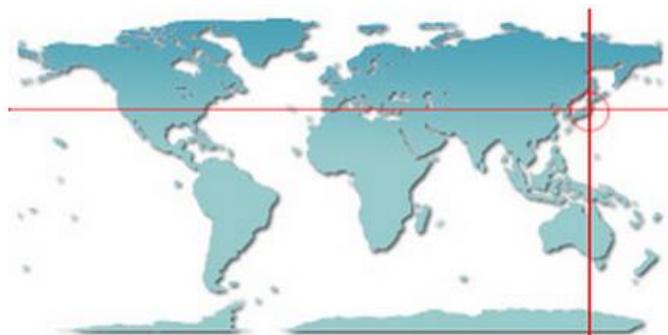
BigComp18, BigCom19, SC19

Thank you.

Ben Abdallah Abderazek

Adaptive Systems Laboratory

benab@u-aizu.ac.jp



to Advance Knowledge for Humanity