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Hardware Trends
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Why do we need accelerators?

BET7 I L—ENBEGZOTLEID

» Challenge of multi-thread performance with general-purpose
cores/ NAATIZLBTILFALYRINT A —T 2 AN D kR E
e Dark silicon/&—%3,1)a2 > emphasis on power-efficient
throughput
* End of device and circuit scaling

TINARERIBEDRr—) 20T D#EHY

» Emergence of machine learning
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Commercial ML Hardware

ERA ML/N—KS9x7F

Google TPU (inference and training)
Recent NVIDIA chips (Volta)
Microsoft Brainwave and Catapult
Intel Loihi and Nervana
Cambricon

Graphcore (training)

Cerebras (training)

Grogq (inference)

ARM

Tesla (FSD)

Western Digital

Google
<

NVIDIA

" Microsoft

Cambricon
2 R £ ®

T=SLA

Western Digital.



Neuromorphic Al Hardware
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Feature: Emulating the brain

BB INEIIaAL—h9 5

» Low power — the brain consumes only 20 W
KEEN-RHOEEEAEHT N 20W

» Fault-tolerant — the brain loses neurons all the time BENAB-ISTC2023
TA—ILRRL SO - RIEE[CZ2a—AVEERNET

» No programming required — the brain learns by itself
TRV I EHYERFA-RKITIESEELET

» Potential for high-information content
BEREOZ N T Y DARIEEM

Many significant efforts/Z <MD EE7LHY#HA: HBP
(Human Brain Project), DARPA SyNAPSE, etc.

Implementations/3E 2% : UK SpiNNaker, IBM TrueNorth,
Intel Loihi



Sparsity in Neural Networks
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Dense neural network Sparse neural network Sparse SNN
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Fig. 1 Illustration of sparsity in neural network

Only 0.5% to 2% of neurons in the neocortex are active at any time [Lennie 2003]

HRED=2—A DOI>LFEITHEEILTLVASDIE 0.5% ~ 2% 217 TY

Only 1% to 5% of connections exist between two connected layers in the
neocortex and 30% of those connections change every few days [Holmgren 2003]
KT R ED 2 DD EHSN=BOREICITERD 1% ~ 5% LOMFEET
ENDDEERD 30% [FHATEICEILET



ANN vs. SNN
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Spiking Neuron
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A simple spiking neuron model Digital silicon neuron implementation

* Digital implementation: a counter is incremented (dendrite) each time a 1 1s
read out of a bit cell (synapse), triggered by the incoming spike (axon).

* The counter’s output is compared (soma) with a digitally stored threshold and a
spike 1s triggered when it is supra threshold. The counter is then reset and the

cycle starts over.



ANN vs ANN — Example/4l
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e Sparse input in SNN means sparse memory use.

SNN [ZEFEHRN—ZAAAF, RAN—RGAEYFEREZEKLET,

* Spike communication means minimal power per event signal
ANATBIEICKY, ANV MEEHEYDEANZ/NMRICHIZ 51
FY

* Event-based processing in SNN also contributes to low power.

SNN DA R hR—XDNIEBHIEEBEHILIZEB L ET,



Neuron Learning/=a2—RA>%H

o Learning rules based on STDP specify changes in synaptic
strength depending on the time interval between each pair of
presynaptic and postsynaptic events.
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Spike-timing-dependent plasticity (STDP)

o If the presynaptic neuron fire before the postsynaptic neuron within
a preceding 2o0ms, LTP occurs

o Ifthe presynaptic neuron fire after the postsynaptic neuron within
the following 20ms, LTD occurs



Synapse Memory Design/> 7 XA AE) D
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The serial neuron model. (a) The model architecture. (b) The finite state machine. (¢) The parameter structure
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The parallel neuron weight model. (a) The model architecture. (b) The weight structure
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The parallel neuron weight memory with merged four weights in a memory row



HW Mapping of SNN/SNND/\—Krox 7 vEL S
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Hardware Mapping of Spiking Neural Network on Network-on-Chip (2D/3D)
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Al Low-power Neuromorphic SoC
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Fig. B: System architecture: (a) 3DNoC-SNN organization, (b) Multicast ,H‘?qggéggggggggggggggg

router architecture (MC-3DR), (c¢) Spiking neuron processing core (SNPC).
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Synapse Evaluation Result, Average latency evaluation, and comparison over various SIRs.
. Pa rar.neter/ System XY'L‘_'B XvZ-UB S'_)-KMCR FI_-SP'KMCR 0. M. Ikechukwu, K. N. Dang and A. Ben Abdallah, "On the Design of a Fault-
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- - - - - - 10.1109/ACCESS.2021.3071089

Design complexity comparison of NASH and Baseline nodes



AD Oft-Grid Energy Storage Solar Carport.
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Optimized Energy — Y ¥ a Ew—— Advantages:
ibuti redic

Distribution for a Cleaner, Aggregate Vi | P Intelligent — Electricity produced
Greener Energy Future irtual Power /{ from different sources can be
Plant (VPP) coordinated intelligently as a

The Future Smart/Efficient “single producer”

VPP is a digital platform that links
decentralized energy resources
across different locations in Japan
and optimizes energy usage.

Energy Management

Optimize Reliable — Energy fluctuations

(e.g. due to solar intermittency)
can be stabilized automatically.

Resilient — Localized faults can be
isolated, minimizing impact to
consumers.

& Communication (Internet)
w

A #» Data / Information exchange

= (Green energy transmission

— A
) @

— Energy transmission
/!\ | j_l
: -+
21N
@ - N
Solar Renewable = Computer
Panel Source

Renewable Energy

W B 7

Electric EV Charging Industrial Common  Al-Chip . A .
Vehicle Pile Machine Utilities Commercial Without Solar Industrial

Z. Wang, M. Ogbodo, H. Huang, C. Qiu, M. Hisada, A. Ben Abdallah, "AEBIS: Al-Enabled Blockchain-based Electric Vehicle Integration
System for Power Management in Smart Grid Platform,"” IEEE Access, vol. 8, pp. 226409-226421, 2020,
doi:10.1109/ACCESS.2020.3044612.
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Oft-Grid Energy Storage Solar Carport_
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Fig. 1. Virtual Power Plant (VPP): (a) conventional VPP
aggregator, (b) AEBIS, (c) optimized AEBIS (O-AEBIS).
ASIC Layout

Area 0.265 mm?
Voltage 11V
Power 318.224 mw

Temperature 25°C

Fig. 5. A demonstration of the energy management system based on
our system named AEBIS and its optimized version O-AEBIS.
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Fig. 2. Neural Network for Power Consumption
Prediction of Electric Vehicle (EV).

Name BRAM_ISK | DSP48E | FF LUT

Expression - - 0 493

Instance - 5 414 950

Memory 2 - 320 20

Multiplexer - - - 627

Register - - 454 -

Total 2 5 1188 | 209
| Available 120 80 | 35200 | 17600

Utilization (%) | 1 6 3 [

Weights Memory required

Weights 568 Bytes

Biases 60 Bytes

Inputs 44 Bytes

Total 672 Bytes

Fig. 6. Hardware complexity of power consumption

prediction system on the Zyng-7010 FPGA. The system
utilized 3% of the FF, 11% of the LUT, 6% of the DSP48,
and approximately 1% 18k BRAM.
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Oft-Grid Energy Stora e Solar Carport.
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RILF—DEBE| Ak &S AT Ls/Energy Trading Method and System

Abderazek Ben Abdallah, Wang Zhishang, Masayuki Hisada, ’An electricity trading system and an electricity trading method [ 7 /JH{ 5|3 AT L KL UFE JTHUS]
EIZBI 3], KFHH2022-022472 Power Consumption Prediction Method and System for Power Management in Smart Grid/ AX—k 1) wRIZHITHEHEEDT:
OHDEVIE BBENFR AEESATL

Abderazek Ben Abdallah,Wang Zhishang, Khanh N. Dang, Masayuki Hisada, "EV Power Consumption Prediction Method and System for Power Management in
Smart Grid [ AR—F YW RIZEITEBEHEED-HDEVE BEHFTH HEES AT L], $EE2022-022472



A4 Al-Powered Hardware-Software Platform for Pneumonia
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Neuromorphic Robot Arm and Prostheses
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(1) : Remote Robot Surgery (2) : Breast Palpation

Rehabilitation
Center/ Hospital

(3) : Finger Rehabilitation (4) : Voice and EMG-based Prosthetic Hand

FIGURE 4. The Neuromorphic AlzuHand target applications. (1) Remote Robot Surgery, (2) Breast Palpation, (3) Finger Reha-
bilitation, (4) Voice and EMG-based Prosthetic Hand.

Abderazek Ben Abdallah, Huankun Huang, Nam Khanh Dang, Jiangning Song, “Al7 O+z-y4

AlzuHand I, July 2022

[AI Processor]," ##£E2020-194733 (2020 4E11 524 H)

Device Name: AlzuHand I

Total Weight: 422g (276g without controller)
Control; sEMG

DoF: 5

Feedback: No

Related patent: 45 [F82019-124541

Contact "benab(atju-aizu.ac.jp"

https://www.u-aizu.ac.jp/misc/neuro-eng/aizuhand.html



Conclusions/#%sa

Neuromorphic Al-chip/=a2—RE—2J4v9 Al Fv7
+ Low power, Fault-tolerant, high-information content
BEH. Tr—ILErL SV BiFsRIAVTUY
Memory access in AI-Chip is the bottleneck
AIFYTDAERITIRADBRRILR YD
+ Possible HW/SW techniques to cope with the memory access
problem/ A*E!) 77 ADMRBIC NG HE=HITEZ 515 HW/SW
T7=979:
o Advanced Storage Technology/ & EGEANL—IT0/00—
~ Embedded DRAM (eDRAM) - Increase on-chip storage capacity
» 3D Stacked DRAM -> Increase memory bandwidth
» Use memristors as programmable weights (resistance)
o Reduce the size of operands for storage/compute/ AL — /a2 E1—T
AT DARZUREDY A XZEHIRT 5
» Floating point - Fixed point
» Bit-width reduction
o Reduce the number of operations for storage/compute/ ARL— /a2 E

1—T42T DREREHIRT S

» Network Pruning; Compact Network Architectures
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