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Supercomputer (1996) Vs. Intel Tera-scale 
CPU (2007)
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ASCI Blue-Mountain (1.6 TeraOps, 929 m2, 1.6 Mwatts)

Ref. http://www.jipdec.or.jp

(1.63 Teraflops @ 5.1 GHz, 175 watts, and 1.81 Teraflops @  5.7 GHz, 265 watts). 

Intel's Tera-scale 80 core Chip



Supercomputer (1996) Vs. Sony PS (2006)
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ASCI Blue-Mountain: 1.6 TeraOps, 929 m2, 1.6 Mwatts

Ref. http://www.jipdec.or.jp

Sonny Play station 3 (2006): 1.8 Teraflops, 0.08 square meter, <200 watts



Moore’s Law
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Current Processor Research Trends
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Intel Knights Corner 50 cores, 

200 Threads 

Oracle T5 16 cores, 

128 Threads 

Nvidia Fermi 540 CUDA 

cores 

IBM Power 7 

8 cores, 32 threads 

Intel 4004 (1971): 4-bit 

processor, 2312 transistors, 

~100 KIPS, 11 mm2 chip 

1000s of processor cores 

per die could be integrated? 

 How about power scaling!



Wire and I/O scaling problems
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Energy cost of data movement relative to the cost of a flop for current and 2018 systems.  (Shalf et al., VECPAR 2010)
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• Preparing the operands costs more than performing computing 
on them!

• There is no Moore’s law for communications!



Current Processor Research Trends
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-Easier Programming 
-Easier Implementation   
-Low energy efficiency
-No specific HW for different tasks.

Intel 80-core (Homogeneous System)

• Conventional Electric-wiring on chip (add-hoc wiring) 

consumes half of CPU power.

• Teraflop Chip router consumes 28% of CPU power.



Limitations of Traditional E-NoC

• Multi-hop communication.

• Receive, buffer and retransmit every bit at every switch.

• High latency and energy dissipation especially in large system.
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R: Router

NI: Network interface

PE: Processing Element



Limitation of Electric/Metal wire
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1cm

On-chip board to board 

chip to chip 

10 cm

1m

rack to rack  

100m

LAN

10Km

long haul (>50) 

1000 Km

Optical wires/Waveguides Optical cables/fiber

benab@u-aizu.ac.jpAugust 13, 2014

Can we have photonic networking?

• Electronics is not good at high bit/s communication.



Energy Cost for Communication
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Miller (IEEE Proc. 2009)

Required energy cost

fJ/bit

Conventional photonics

Tucker (IEEE Photonics Jnl 2011).

Small transmission energy, but high processing energy.



We need a “Spring-Revolution”to deal 
with the Power/Energy Wall!

• The computation power of CPU is still progressing 
exponentially, and there are strong demands to keep this 
progress rate for the next decades.

• If we assume the same progress rate, the allowable energy for 
transmitting a single bit in a chip should be around a few fJ in 
2025 [Miller 2009]. 

• The problem of on-chip electric communication is largely 
attributed to the finite RC of wirings. 
– As the bit rate goes up, we have to use wider and shorter wires in order 

to avoid the RC delay  Conflicting with the limited space-budget in a 
chip!!.
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Why optical interconnection ?

• Larger bandwidth is possible for a long wire

– Bandwidth can be enhanced by WDM.

• Efficient Energy at high bit rate communications.

– No energy cost for transfer (no charging energy)
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• A photon can generate ≈1 volt (via 
photo‐electric effect), which is NOT bound by 
the light intensity (number of photons).



Transmission over Si  Wire/Waveguide

Snell’s Law of Refraction:
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incident ray

reflected ray refracted ray
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For 1 > c, light ray is completely reflected.

Total internal reflection

Total internal reflection in Si  
Wire/Waveguide
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incident ray
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Total internal reflection keeps all 

optical energy within the core, 

even if the fiber bends. 

  



ncladding ncore
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Total internal reflection in Si  
Wire/Waveguide
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image from Wikipedia



Main components

• Laser Source: Inject the required laser lights into waveguide

• Modulators: Modulate the laser lights to ‘0’ and ‘1’ states

• Photodetectors: Detect the laser lights and convert to electrical signal

• Turn Resonators: Control the routing direction of the laser lights

P+

N+

Vm

Photodetectors

Resonator Modulator

Si-Photonics building blocks

Laser Source (input)
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Problems in Photonic Integration

• Fabrication cost  Being explored by Si 
photonics.

• Low energy cost for data transmission 
 This is a big issue. How much should 
we reduce ?

• Larger scale with higher density What 
applications for large‐scale photonics ?
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NoC

Tail flit Body flit Head flit

Typical Packet format

Flit 

information

Carried

Payload 

Ending 

flit

RX

TX

RX

TX

RX

TX

Multihop communication

Receive -> Buffer - > Transmit

every flit at every switch.

R: Router. NI: Network interface. PE： Processing Element 

OASIS-1:
Overview of Electronic Packet Switched NoC

Scalability issue if chip is very large 

Latency, bandwidth, and power problems.
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OASIS-1:
Overview of Electronic Packet Switched NoC



OASIS Network-on-Chip System
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(7/14)

Power: 222.387 uW, Number of Pins: 557

OASIS-1:
Overview of Electronic Packet Switched NoC

Credit: Y. Matsumoto 
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OASIS-1:
Overview of Electronic Packet Switched NoC



PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

December 21, 2014 benab@u-aizu.ac.jp 29

TX RX
TX

RX

TX

RX

TX

RX

TX

RX

TX
RX

• Buffer, receive and re-transmit at every switch
• Off chip is pin-limited 
• Large power/energy 

• Modulate/receive ultra-high bandwidth 
data stream once per communication. 

• Switch routes entire multi-wavelength 
high BW stream

• Low power switch fabric, scalable

Electrical NoC Electrical-Photonic NoC
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Basic Optical Switching Element

PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

1. crossing element

ON State OFF State

2. parallel element

input

drop

input

drop

through

addadd

ON State OFF State

ON OFF
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PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!
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PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!
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PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

Routing in Hybrid 
Si-Photonic NoC
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1.Reserve the path

2.ACK

3. Transmit data on the 

Photonic layer

4.Release (tear-down)

PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

Routing in Hybrid 
Si-Photonic NoC
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1. Reserve the path 

A path setup message is sent by the source in the electrical 
network to establish a path for the optical network.  

2. ACK 

A pulse is sent back to the source node by the destination 
node in the optical network, and optical data can be 
transferred.

3. Transmit data on the Photonic layer

4. Release (tear-down)

Teardown message is sent by the source node in the electrical 
control network to release the optical circuit. 
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PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

Routing in Hybrid Si-Photonic NoC



E-Router for Path Setting and Short Messages 
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PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

OASIS-RV2 Chip Layout
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PHENIC: Hybrid Si-Photonic NoC
Replace Wires with Waveguides and Electrons with Photons!

Bandwidth, power and latency
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Si-Photonics interposer

• Optical I/O’s for chip-to-chip and chip-to-board links (IBM, Intel, Fujitsu)
• E-O-E transceivers for Opto-Silicon Interposer

Si-Photonics in computing system today

benab@u-aizu.ac.jpDecember 21, 2014
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DRAM

Multicore Processor (CMP)

Receiver/Transmitter

Optical link

• Uses monolithic integration that reduces energy consumption
• Utilizes the standard bulk CMOS flow
• Cladding is used to increase the total internal reflection  reduces data loss

Transmission over fiber

Photonics in computing system
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DRAM
Multicore Processor (CMP)

Transmission over fiber

(WDM)

>1 TBps

<1 mW/Gbps

λ1 λ2 λ3 …λn

WDM, DWDM

• Supports WDM that improves bandwidth density
• DWDM can transports tens to hundreds of wavelengths per fiber.
• Integrated Tb/s optical link on a single chip  is ongoing

Receiver/Transmitter

channel

Photonics in computing system
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Raman Silicon Laser 
Simulated Raman Scattering (SRS)A reversely biased p-i-n diode to 

eliminate the TPA-induced FCA

Current Research in Photonic 

Components

benab@u-aizu.ac.jpDecember 21, 2014

IBM/Columbia

Si  Wire/Waveguide

Modulator

Laser

Photodetectors



Photonic Components and Future 
Demands

• The necessity of low energy in optical output 
devices, with a ~ 10 fj/bit device energy target 
emerging.

– Some Modulators and lasers meet this 
requirement

– Low (few fF or less) photodetector capacitance is 
important

– Very compact wavelength splitters are essential

– Dense waveguides are also necessary on chip or 
on-boards for guided wave optical scheme. 
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Concluding remarks 
• Nanophotonics will play a crucial role for on-

chip interconnects 

• Several technologies: 

– Si photonics, high-index contrast waveguides, 
photonic crystals, and plasmonics.

• Si-Photonics design approach can reduce total 
energy , and improve system throughput by 15-
20x

– Several approaches have been explored

– Much more other studies should be done
December 21, 2014 benab@u-aizu.ac.jp 47
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