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Moore’s law is no longer providing more Compute

100,000
Intel Core i7 Extreme 4 cores 3.2 GHz (boost 10 3.5 GHz)
Intel Core 2 Extreme 2 cores, 2.9 =

__ 10,000 @%ﬁﬁﬁw e
o Intel Xeon EE 3.2 _

@O Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) g6,
= IBM Powerd, 1.3 GHz

— Intel VC820 motherboard, 1.0 GHz Pentium Il processor ¢

' Professional Workstation XP1000, 667 MHz 2126
§ 1000 Digital AiphaServer 8400 6/575, 575 MH: 1 s
= AlphaServer 4000 5/600, 600 MHz 21164 g+

g 100

£

[0}

o

10
-~

1978 1980 1982 1984 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Source: Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Communications of the ACM, September 2018, Vol. 61 No. 9, Pages 50-59



Moore’s law is no longer providing more compute

End of the Line = 2X/20 years (3%/yr)¢
Amdahl's Law = 2X/6years 12%/year) ¢
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year)

CISC 2X/2.5 years RISC 2X/1.5 years
(22%/year) (52%/year)

Major improvements in cost-
energy-performance must now

come from domain-specific hardware.

1980 1985 1990 1995 2000 2005 2010 2015

**PDennard scaling: As transistors get smaller their power density stays constant, so that the power consumption stays in proportion
with area: both voltage and current scale (downward) with length (WP).
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Four factors in promoting Al/Al-HW

Strong Gov. & Industry
Engagements

Image:kdnuggets.com

Al algorithms are Industrial
) ) Revolution

being applied to

nearly

everything

we do.
Growth of
computational

S xs 9 Larger data sets and
b models lead to better

?Ccuracy but also More compute means new solutions to
increase the previously intractable problems, i.e. &0

computation time

Image:


https://spectrum.ieee.org/tech-talk/semiconductors/processors/efinixs-programmable-chips-could-push-ai-out-to-the-edges
https://www.sas.com/de_de/news/press-releases/2016/november/pm161124.html

Al-Chips are ... everywhere
Self-driving, EV Car

Bottom Image source:

Machine Translation

_ \ Wi 2y
Bottom Image source: Bottom Image Source:


https://edition.cnn.com/2014/04/28/tech/innovation/google-self-driving-car/index.html
https://newatlas.com/alphago-defeats-ke-jie-go-victory/49675/#gallery
http://www.missqt.com/google-translate-app-now-supports-instant-voice-and-visual-translations/

Al-Chips are ... everywhere
Self-driving, EV Car Smart Robots

Weather

Electrical Load

————
___ Date & Time

Data > **[ @l [ _
storage _f ﬁﬂemalning

H Power Driver Info.
Reservation Info.

1
AEBIS ECU Hardware

FIGURE 2. The integration of the proposed AEBIS system into the
built-in Controller Area Network (CAN) of Electrical Vehicles (EVs). A
CAN bus is a robust vehicle interconnect standard allowing
microcontrollers and devices to communicate with each other. Each blue
box indicates a built-in electronic controller unit (ECU), which shares
with other ECUs its data via the CAN bus. The green box on the left
shows a customized ECU for data storage, collecting and processing the
data from other ECUs. The data storage ECU then transmits the data to
the AEBIS ECU hardware for training and inference.

Ref. Zhishang Wang, Mark Ogbodo, Huakun Huang, Chen Qiu, Masayuki Hisada, Abderazek Ben
Abdallah, "AEBIS: Al-Enabled Blockchain-based Electric Vehicle Integration System for Power
Management in Smart Grid Platform," IEEE Access, 12/2020. DOI:10.1109/access.2020.30446

Machine Translation | Gaming

-y

....................

y
Bottom Image Source:


https://newatlas.com/alphago-defeats-ke-jie-go-victory/49675/#gallery
http://www.missqt.com/google-translate-app-now-supports-instant-voice-and-visual-translations/

Al-Chips are ... everywhere

Brain implant allows paralysed monkey to walk

There really is a kind of intelligence inside the spinal cord. We are not just
talking about reflexes that automatically activate muscles. In the spinal cord
there are networks of neurons able to take their own decisions

PARALYSED PRIMATES WALK

A wireless implant bypasses spinal-cord injuries in monkeys,
enabling them to move their legs.

Wireless information
transfer

N
Electrodes ( ? Implant

| ———Brain

Injury Spinal cord

Neuronal :
impulse @

—Muscle

-Grégoire Courtine-
Neuroscientist, Federal Institute of Technology, Lausanne

IMPLANTABLE
PULSE GENERATOR

L aaes J SPINAL IMPLANT
-
Sl

Nature volumes39, pages284—288 (10 November 2016)



Deep learning requires massive compute power

A 32-bit convolutional NN requires calculations
for every floating point operation (FLOP)

« Number of FLOPS for a single inference are on
the order of billions

Input
\ Convil
) Conv2
— FCo6 FC7
i ~-.._-_1__t_:_~.\ D Conv3 Convd Conv5 FC8
D D D “Dog”
X\\\ 13x13x384 13x13x384 13x13x256 1000
55x55x96 23X XX Xa% 4036

224x224x3 27x27x256 4096



Deep learning requires massive compute power

VGG-16

GooglLeNet

(v1)

Top-5 error 16.4 7.4 6.7 9.3
Input Size 28x28 227x227 224x224 224x224 224x224
# of CONV Lavers 2 5 21 (depth) 49
Filter Sizes 5 3,511 1,3,5 7 1,3, 7
# of Channels 1,6 3-256 3-1024 3 -2048
# of Filters 6, 16 96 - 384 64 - 384 64 - 2048
Stride 1 1,4 1,2 1, 2
# of Weights 2.6k 2.3M 6.0M 23.5M
# of MACs 283k 666M 1.43G 3.86G
# of FC layers 2 3 1 1

# of Weights 58k 58.6M 1M 2M

# of MACs 58.6M 1M 2M
Total Weights ™ 25.5M
Total MACs 15.5G 1.43G 3.9G

Source: Joel Emer, ISCA Tutorial, 2017




Deep learning requires massive compute power

GooglLeNet
(v1)

Top-5 error n/a 16.4 7.4 6.7 9.3
Input Size 28x28 227X227 224x224 224x224 224x224
# of CONV Lavers 2 5 16 21 (depth) 49
Filter Sizes 5 3,51 3 1,3,5 7 1,3, 7
# of Channels 1,6 3-256 3-512 3-1024 3-2048
# of Filters 6, 16 96 - 384 64 - 512 64 - 384 64 - 2048
Stride 1 1, 4 1 1,2 1, 2
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M
# of MACs 283k 666M 15.3G 1.43G 3.86G
# of FC layers 2 3 3 1 1
# of Weights o8k 58.6M 124M 1M 2M
# of MACs 58k 58.6M 124M 1M 2M
Total Weights 60k 61M 138M ™ 25.9M
Total MACs 15.5G 1.43G 3.9G

Source: Joel Emer, ISCA Tutorial, 2017




What does it mean ?

d of Exponential
l\li‘n O, + Increase in — Needs New
ng: . Compute —  Approach

Requirements



Current State of the Art in Neural Algorithms HW Computing

Hardware

Domain-specific J

General-purpose J

Programmabl Fixed Latency Throughput

logic logic oriented oriented
FPGA [ ASIC J CPU GPU

« General; . Specific: executes STDP Most general; common programming

requires HDL - HP & efficiency

 Moderate Expensive, 40MB local
performance & memory Example: IBM
efficiency TrueNorth

languages

Lowest power efficiency and
performance

Memory separate from chip

Example: Google deep learning stddy



Current State of the Art in Neural Algorithms HW Computing

Current Hardware J
Industry ~
. Focus
Nomain-specific J General-purt;ose
Programmabl Latensy Throughput
logic ori¢nted orlented

‘ CPU ‘ GPU

e General: Most general; common programming
requires HE languages
Lowest power efficiency and
* Moderg

performance
perfor

fici Memory separate from chip
ericiend

Example: Google deep learning stcdi/
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Al HW is inspired by Nature — Biological neuron

AI-Chips are inspired by biology
= parallel computation.




Al HW is inspired by Nature — Biological neuron

AI-Chips are inspired by biology
> 4 parallel COmputation. Latest digital DL processors:

~10TOPS/W

4

. o 11 Synapse op. in brain: 0.1~1 fJ/op
# Of neurons: 10 1,000~10,000 TOPS/W

# of synapses: ~1015 TIOPOPS
Power consumption: ~ 20 W;
Operating frequency: 10~100 Hz

’0

AR

o

AR

¢ Works in parallel: 10° parallelism vs. <10!
for PC (VN)

% Faster than current computers: i.e.
simulation of a 5 s brain activity takes ~500
s on state-of-the- art supercomputer




Different approaches of Al-Chips
Poor/Simple Good/Complex

—

Izhikevich  Huxley-Hodgkin

Neuron Digital, Analog. LIF. model model
MAC . Many
. Spikin .
Synapse (weighted . pISIT?DP nonlinear
. sum) properties

Generally Used in DL algorithms

Frequency 10~100 Hz (brain)




Memristor for Synapse Design

(Chua, 1971) > Biological synapses are dense — the cortex
g ' \ needs roughly 10*° synapses/cm?

The electrical
resistor is not
constant but
depends on the
history of
current that had
previously
flowed through
the device.

“*Voltage pulses can be applied to a memristor to change its
resistance, just as spikes can be applied to a synapse to
change its weight.



iIcal neurons learn?

How biolo

large network of neurons connected and

IS a

Brain

communicating via synapses



How biological neurons learn?

Learning rules based on STDP specify changes in synaptic
strength depending on the time interval between each pair of
presynaptic and postsynaptic events.

2
(a) (b) 3
« > E
O
- | &
i &I O
=40 - 40
synapse £ AT LTD
input 7 target 2 |
S

-8 I
Atpre_post(ms)
Spike-timing-dependent plasticity (STDP)

If the presynaptic neuron fire before the postsynaptic neuron within
a preceding 20ms, LTP occurs

If the presynaptic neuron fire after the postsynaptic neuron within
the following 20ms, LTD occurs




Spiking Neuron Model

Spike Response Model
spike emission )
77(1 —1 )

S0 LTV (o] Y S A

Spike reception: EPSP

e(z—zf)

Spike reception: EPSP
Spike emission: AP

1) -1

u (r) _ ?7(/ <)>Z Z W, g(z zf)

Hi(t)—lgj ang. Z; =1




Spiking Neuron Model- Molecular Basis

potential’,
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Spiking Neuron Model- Molecular Basis

Outsice the cell,_ Hodgkin-Huxley Model o o  inside
(@)
| || | Ka
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lon pump g isiqe
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Spiking Neuron Model- Molecular Basis
inside

Ka
(potassium)

Outside the cell H Hodgkin-Huxley Model

@
Na

(sodium)

outside

lon channels lon pump

Action potential

Na® ions in

o
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S

T

o

(2 J
LD
o
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Q

) ) Jﬁ :('}l (f' _r}: K" ions out

1
Threshold Failed
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Wiring via AER (Address Event Representation)

5~
vy ‘ o - Address Event Bus o 2 ] ki
7 /’4"1‘ 1T 9 ¥ Y
3 212 (A1) 32 * *
Inputs
Outputs
Source Destination
Chip Chip
Address-Event Ref. 4

representation of
action potential

% AER is an asynchronous handshaking protocol used to transmit signals
between neuromorphic systems.
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LIF Neuro-core for NASH System

LIF Neuro-core

. Xi(t) 8b Si —_—
Architecture . . .
 Xi(t) — Spike input to the
’ Synaptic synapse
Vit-1) 4 o Integration - Gj — synaptic weight
8b v — * Vj(t) — Membrane potential
er 0
’ g  aj — Neuron threshold
Vi 4 8b 84 N Leak « Aj — Leak value
A V;B(lt)) Subtractor Integration Table 1: Area Evaluation
8b Qj Cell Internal Power 6.9680 uW 20.5040 pW
_ Net Switching Power 4.8271 pW 14.8272 pW
Th(rje;hOIdt’ Fire Total Dynamic Power 11.7950 pW 35.3312 uW
an ese Cell Leakage Power 4.6943 uW 14.3147 pW

Table 1: Power Evaluation

Combinational Area 186.998 pm 562.856001 pm

Placement of LIF- s
1N (Left) and LIE- Non-Comb Area 47.88002 um ) Hm

4N (right) Total Cell Area 234.878002 pm  776.720001 um

LIF-1IN-012018-KS LIF-4N-012018-KS

Kanta Suzuki, Yuichi Okuyama, Abderazek Ben Abdallah, "Hardware Design of a Leaky Integrate and Fire Neuron Core Towards the Design of a Low-power Neuro
inspired Spike-based Multicore SoC”, Proc. Of IPSJ, 2018
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_ . Application | o
euro-inspired Hardware System for Image Recognltlon
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The H. Vu, Ryunosuke Murakami, Yuichi Okuyama, Abderazek Ben Abdallah, "Efficient Optimization and Hardware Acceleration of CNNs towards the

Design of a Scalable Neuro-inspired Architecture in Hardware”,
(BigComp-2018), January 15-18, 2018

Proc. of the IEEE International Conference on Big Data and Smart Computing




NASH: Low-power Event-driven Adaptive Neuromorphic
System for Autonomous Cognitive Behaviour

. 14
1 Threshold (constant) ——— = 11, Output

Primary Visual 7

Cortex (V1) I 1 Spike

77 Ventral ———
Pamway

113, Membrane

Register
1 Potential

Control 3 Ldbits |

state 14 1 _reset :
B _ N VISUAL CORTEX ! Leak_value ;
iy it o [ o e . s e g — e e e e ey | (constant) !
™ ol ! : | VN 1y - 1 ; |- count 1
' . : o ’ : : set i
! h— 1 | ' e e e e e e e e e e -
] ] 1) 1 e ]
! _,.'-' e | Sy :: - — 1 LIF N
M E I (e | euron
s Ty - | 1
L - darwead N Dreprererresiitervrrrorey N oo A S Ly 1

Subneural circuit £1 Subneural circuit #2  Sybneunral circuit #3

‘ Fost-synaptic spikes ——)
Pre-synaplic spikes
Tof Fram Condro_umit
— V) s— 7/ s—

i vaﬁ - & Bafore spike ouants # ’
em =TSV B | R |m-w
Subneural circuits : @g i l -
R Sples Spike ve u: Bk Rell_Blau: ’
:g;:;;g;;;;f HHHH HHHH
#2—> ! !
i —» B  Eeae
' e
FIGURE 1: An illustration of large scale neural task mapping o il
on a 3D neuromorphic architecture. (a) illustration of infor- v
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the human brain (b) Block diagram of connections among



NASH: Low-power Event-driven Adaptive Neuromorphic
System for Autonomous Cognitive Behaviour
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FIGURE 3: High level view of the NASH System Architecture: (a)NASH system architecture illustrated in a 4 x 4 topology.
(b) A single node in the NASH system comprising of an SNPC and a FTMC-3DR. (¢) An architecture of the SNPC comprising
of the synapse memory, synapse crossbar, LIF neurons, control unit, encoder/decoder, and an STDP learmning block (d)
Architecture of the FTMC-3DR comprising of the input ports, crossbar, swich allocator, arbiter and flow control.



NASH: Low-power Event-driven Adaptive Neuromorphic

System for Autonomous Cognitive Behaviour

TABLE 3: Hardware Complexity of the KMCR and FTSP-KMCR under the benchmarks.

TABLE 4: Comparison results between the proposed NASH and existing works.

Parameters/Systems Loihi [45] ODIN [38] Seo et al [46] This work
Benchmark MNIST MNIST MNIST MNIST
Accuracy (%) 84 85 T1.2 19.4
Number of Cores 128 1 1 27
Number of Neurons / core max. 1024 256 256 256
Neuron Model IF LIF and Izh. LIF LIF
Neuron Update serial serial serial parallel
Membrane Potential Resolution 16 bits 11-bits 8-bits 14 bits
Number of Synapses /core 114k to 1M 65K 64k 65k aSynapse =Neuron mLearning Unit
Synaptic Connection Crossbar Crossbar Crossbar Crossbar
Synapse Resolution 9-to 1-bit 4-bit 1-bit 8-bits ) . )
Learning Rule On-chip STDP | On-chip Stochastic SDSP | _on-chip STDP On-chip STDP FIGURE 15: Area analysis of NASH node
Memory Technology Memristor SRAM SRAM SRAM
Interconnect 2D-NoC 2D-NoC - 3D-NoC
Implementation Digital Digital Digital Digital
Technology 14-nm FinFet 28-nm FD-SOI CMOS 45nm SOI-CMOS | 45-nm NANGATE CMOS
core Area ( mm?) (excl. pad) N/A 0.086 (ODIN) 0.8 5.03
Supply Voltage (v) 0.75 0.55-0.1 - 1.1
Power (mW) 6.45 0.28 N/A 9.588 y
References

System Spike Injector [9] SNPC (This work)
KMCR FTSP-KMCR KMCR | FTSP-KMCR
Testhench Inv. Pen. Wis. Inv. Pen. Wis. MNIST MNIST
Area (mm?) 0.102 0.346 0.108 0.365 0.549 0.616
Power (mW) 10.13 34.20 10.64 35.92 562.69 647.61 Area analysis of a NASH node

2.9%
12%— | — 0.9%

*The H. Vu,Yuichi Okuyama, Abderazek Ben Abdallah, “Comprehensive Analytic Performance Assessment and K-means based Multicast Routing
Algorithms and Architecture for 3D-NoC of Spiking Neurons,” ACM Journal on Emerging Technologies in Computing Systems (JETC), Special Issue on
Hardware and Algorithms for Learning On-a-chip for Energy-Constrained On-Chip Machine Learning, Vol. 15, No. 4, Article 34, October 2019. doi:
10.1145/3340963

*The H. Vu, Ogbodo Mark Tkechukwu, and Abderazek Ben Abdallah, “Fault-tolerant Spike Routing Algorithm and Architecture for Three Dimensional
NoC-Based Neuromorphic Systems’”, IEEE Access, vol. 7, pp. 90436-90452, 2019.

*K. N. Dang, A. B. Ahmed, A. Ben Abdallah and X. Tran, "TSV-OCT: A Scalable Online Multiple-TSV Defects Localization for Real-Time 3-D-IC

Systems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 3, pp. 672-685, 3/2020. doi: 10.1109/TVLSIL.2019.294887>
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Conclusions

*»* Memory access in Al-Chip is the bottleneck
Worst case: ALL memory R/W are DRAM accesses

Ex. AlexNet [NIPS 2012] has 724M MACs - 2896M DRAM
accesses required

Possible HW/SW techniques to cope with the memory access
problem:

“*Advanced Storage Technology

v Embedded DRAM (eDRAM) - Increase on-chip storage capacity
v 3D Stacked DRAM -> Increase memory bandwidth

v' Use memristors as programmable weights (resistance)

“*Reduce size of operands for storage/compute
v" Floating point - Fixed point
v’ Bit-width reduction

“*Reduce number of operations for storage/compute
v" Network Pruning; Compact Network Architectures
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