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1. Neuromorphic Computing:

What is Neuromorphic Computing?

* Neuromorphic Computing (NC) is the use of hardware
LVLSI) to simulate the biological architecture of the
uman nervous system (brain, complex network of
nerves, etc.),

* NCis a new emerging field that involves biology, physics,
mathematics, computer science, and engineering in
designing hardware models of neural and sensory
systems.

* NC opens new frontiers for neuro-robotics, artificial
intellisence, and high-performance applications.




1. Neuromorphic Computing:
Conventional ANN vs Spiking Neural Networks
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Conventional ANN vs Spiking Neural Network

* Sparse input in SNN means sparse memory use.
* Spike communication means minimal power per event signal
 Event based processing in SNN also contribute to low power.
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1. Neuromorphic Computing:
Conventional ANN vs Spiking Neural Networks

= Conventional ANN: Impressive results in visual and
auditory cognitive applications. However, they are:
* Slow when deployed in software, requiring a lot of
time for training
e Consume a lot of power when accelerated in
hardware, requiring large servers for training as
their sizes increase.
= Spiking Neural Network (Neuromorphic):
* More analogous to the brain, communicating via
spikes in a sparse event driven manner.
* Exploits spike sparsity to achieve low-power.
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1. Neuromorphic Computing
Exploiting Sparsity in Neural Network
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Sparsity in Neural Network

About 0.5% to 2% of neurons in the neocortex are active at

any time

Only about 1% to 5% of connections exist between two

connected layers in the neocortex and 30% of those

connections change every few days



1. Neuromorphic Computing:
Neural Algorithms Computing in Hardware
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1. Neuromorphic Computing:
Neural Algorithms Computing in Hardware

ANN: Artificial Neural Network
SNN: Spiking Neural Network
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1. Neuromorphic Computing:

Examples of Neuromorphic Chips/Systems

The Neurogrid chip is a
specialized neuromorphic
hardware platform that
simulates large-scale
neural networks.
Developed by the Brains
in Silicon group at
Stanford, it uses a
combination of analog
and digital computation
to replicate the activity of
biological neurons and
their synaptic connections

Examples of Neuromorphic Chips/Systems (not yet commercial)

IBM TrueNorth

IBM TrueNorth is a
neuromorphic chip designed to
emulate the brain's neural
architecture. It features 1
million digital neurons and

256 million synapses.

It uses an event-driven, low-
power design for efficient,
scalable, and parallel
processing, ideal for
applications like visual
recognition and sensory
processing.

Intel Loihi

Intel's Loihi is a
neuromorphic chip that
mimics biological neural
networks. It features 128
neuromorphic cores and
on-chip learning
capabilities, making it highly
efficient for adaptive Al
applications.

This chip is known for its
low power and advanced
spiking neural network
models, enabling real-time
processing and learning.
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2. Hardware Models of Spiking Neurons:
Analogy
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Fig. 1.1: (a) Biological neuron (b) Corresponding Mathematical model.
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2. Hardware Models of Spiking Neurons:

Biological vs Traditional Neuron Models
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2. Hardware Models of Spiking Neurons:
Leaky Integrate and Fire (LIF) Neuron Model
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Fig. 2.11: Schematic diagram of the LIF model. 13
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2. Hardware Models of Spiking Neurons:
Spike Coding Schemes

Stimulus
Neuron 1
Atl Atz At3 Atq,

Neuron 2

Neuron 3

Neuron N

At t Fig. 2.3: Inter-spike-interval

Fig. 2.2: Time to first spike

* The inter-spike interval (ISI) refers to the
time period between consecutive action
potentials (spikes) generated by a neuron.

* The time to first spike (TTFS) is a
measure used in NC to indicate the
time it takes for a neuron to fire its
first action potential (spike) in

i * |tis acrucial measure in neuroscience
response to a stimulus.

used to analyze the firing patterns of

: . : : neurons.
e This metric is particularly relevant in

studies involving neural coding and
SNNs, where the timing of the first
spike can carry important information
about the stimulus

e By studying the distribution and variability
of ISls, we can gain insights into neuronal
activity, coding mechanisms, and the
overall health of neural circuits



2. Hardware Models of Spiking Neurons:
Spike Coding Schemes
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the phase relationship between spikes and this _ -
reference. * In this scheme, the relative timing of
spikes among a group of neurons is
This approach is helpful in SNNs and NG, as it can used to represent lnformat_lon, which
enhance the efficiency and robustness of can be particularly useful in SNNs and
information transmission. NC.

Phase coding can be more resilient to noise and
improve the accuracy of NNs.



2. Hardware Models of Spiking Neurons:
Spike Coding Schemes

Exercise 1

Consider a neuromorphic chip where neurons encode information using rate
coding and temporal coding schemes.

1.Rate Coding: The information is represented by the firing rate of the neuron. If
the firing rate of a neuron is 20 spikes per second, what is the average inter-spike
interval (time between spikes)?

2.Temporal Coding: The information is represented by the precise timing of
individual spikes. Given a pattern of spikes at the following times (in
milliseconds): O ms, 5 ms, 10 ms, 20 ms, and 40 ms, calculate the inter-spike
intervals and identify any noticeable patterns.



2. Hardware Models of Spiking Neurons:
Spike Coding Schemes

Exercise 1 Solution

1. Rate Coding:

* Firing rate = 20 spikes per second.
* To find the average inter-spike interval, we take the inverse of the firing rate:

Average inter-spike interval = 1/(firing rate)

Average inter-spike interval = 1/ (20 spiked/second) = 0.05 seconds=50 milliseconds

Therefore, the average inter-spike interval is 50 milliseconds.



2. Hardware Models of Spiking Neurons:
Spike Coding Schemes

Exercise 1 Solution

2. Temporal Coding:

Given spike times: 0 ms, 5 ms, 10 ms, 20 ms, and 40 ms.
Inter-spike intervals:

Interval 1:5ms—-0ms =5ms

Interval 2:10ms — 5ms = 5ms
Interval 3:20-10ms =10 ms
Interval 4:40 - 20ms =20 ms

* Noticeable patterns: The intervals are 5 ms, 5 ms, 10 ms, and 20 ms. This
pattern shows increasing intervals between spikes, representing varying
information in a temporal coding scheme.

 Understanding both codings lets you appreciate how information is encoded
and transmitted in neuromorphic systems.




2. Hardware Models of Spiking Neurons:

AER (Address Event Representation) Protocol
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Fig. 2.15: AER (Address Event Representation) protocol
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2. Hardware Models of Spiking Neurons:
AER (Address Event Representation) Protocol

Exercise 2

You have a neuromorphic chip with an Address Event Representation
(AER) system. The chip has a 64x64 pixel array, where each pixel can
generate an event when there is a change in light intensity. Each
event packet contains the address of the pixel (row and column) and
the timestamp of the event.

1. If a pixel at row 10, column 25 generates an event at timestamp
1050, what is the AER packet format for this event?

2. How would the system handle multiple events occurring
simultaneously? Provide an example with two events at the same
timestamp.

3. Explain the advantages of using AER in a neuromorphic system
compared to a frame-based system.



2. Hardware Models of Spiking Neurons:
AER (Address Event Representation) Protocol

Exercise 2 Solution

1. AER Packet Format:

e The address of the pixel is given by its row and column.

* The AER packet format typically includes the address and timestamp. Assuming the
row and column are each represented by 6 bits (since 64 = 226), the packet can be
structured as follows:

* Row (6 bits): 10 -> 001010
e Column (6 bits): 25 -> 011001
 Timestamp (e.g., 32 bits): 1050 -> 00000000000000000000010000011010

Therefore, the AER packet format would be:

| Row (6 bits) | Column (6 bits) | Timestamp (32 bits) |
| 001010 | 011001 | 00000000000000000000010000011010 |



2. Hardware Models of Spiking Neurons:

AER (Address Event Representation) Protocol
Exercise 2 Solution

2. Handling Multiple Events Simultaneously:

* If multiple events occur simultaneously, the AER system can still process them
sequentially. The events are buffered and transmitted in quick succession.

 Example: Two events at the same timestamp (1050) for pixels at (10, 25) and (30, 45):

* Event1:
* Row:10->001010
e Column: 25->011001
* Timestamp: 1050 -> 00000000000000000000010000011010

* Event 2:
e Row:30->011110
e Column:45->101101
* Timestamp: 1050 -> 00000000000000000000010000011010

The AER packets would be:

Event 1: | 001010 | 011001 | 00000000000000000000010000011010 |
Event 2: | 011110 | 101101 | 00000000000000000000010000011010 |



2. Hardware Models of Spiking Neurons:

AER (Address Event Representation) Protocol
Exercise 2 Solution

2. Advantages of Using AER in a Neuromorphic System:

* Efficiency: AER only transmits data when an event occurs, reducing the
amount of data processed and transmitted compared to frame-based systems
that send the entire frame regardless of changes.

* Low Power Consumption: Since AER systems process fewer data points, they
consume less powetr.

* Low Latency: AER provides real-time processing capabilities as events are
processed as they occur, allowing for faster response times in dynamic
environments.

* Sparse Data Representation: AER efficiently handles sparse data, where only
a small fraction of the pixels change over time, optimizing storage and
computation.
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3. Synaptic Dynamics:

Complex Structure of a Neural Network
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Fig. Complex Structure of a Neural Network [M.Bertrand,2015].

» A typical neural network has four main regions: The cell body, the dendrites, The
axon, and the presynaptic terminals.

» Each region has a distinct role in the generation of signals and the communication
between neurons.

» Neurons can communicate through electrical synapses or chemical synapses alone

or via both types of interactions. 25



3. Synaptic Dynamics:

What is Synaptic Dynamics?

* Connections between neurons are not static, but change in
amplitude and timing.

* Synaptic dynamics is the time-dependent changes in synaptic
currents that change the strength of coupling between neurons.

* Both presynaptic and postsynaptic contribute to the changes of
synaptic currents.

* Synaptic dynamics realizes adaptive learning.

" Pre-synaptic
Neuron

O Synapse

Action potential

Post-synaptic
Neuron

Fig. 2.1: Two neurons communicating via a synapse. 26
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4. Synaptic Plasticity Mechanisms & Learning:

Learning Methods

« Synaptic Plasticity: STDP is a mechanism that models synaptic
plasticity, which is the ability of synapses to strengthen or weaken
over time In response to activity levels.

« Temporal Coding: STDP captures the importance of the precise
timing of spikes in neural coding. The timing relationship
between pre-synaptic and post-synaptic spikes determines
whether the synaptic connection is strengthened or weakened.

* Hebbian Learning: STDP follows the principle of Hebbian learning,
often summarized as "cells that fire together wire together."
When a pre-synaptic neuron consistently fires shortly before a
post-synaptic neuron, the synaptic connection is strengthened
(long-term potentiation), and when it fires shortly after, the
connection is weakened (long-term depression).



4. Synaptic Plasticity Mechanisms & Learning:

Learning Methods
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4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)

STDP: adjusts the connection strengths based on the
relative timing of a particular neuron's output and input
action notentials.

Aw™
Aw™

AteE) . ifAr>0

."'_"hW: f"l”
—Ae'T) . ifAr<0

Where Aw is the change in synaptic weight. If a presynaptic spike arrives the
postsynaptic neuron within a time window 7, before the postsynaptic spike. the
synaptic weight increases Aw™, but if it arrives within a time window 7_, after the
postsynaptic spike, the synaptic weight decreases Aw™. At 1s the time difference be-
tween the presynaptic and postsynaptic spike which is expressed as At =155 — 1 pre-
while A* and A~ are potentiation and depression amplitude parameters respectively.
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4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)

Exercise 3

Consider a neuromorphic chip implementing the STDP learning algorithm. In this
algorithm, the weight of the synaptic connection between two neurons is adjusted
based on the timing difference between the pre-synaptic and post-synaptic spikes.

1. If a pre-synaptic spike occurs at time tpre = 10 ms and a post-synaptic spike
occurs at time tpost=12 ms, calculate the change in synaptic weight Aw using
the STDP rule. Assume the STDP learning rule is defined as:

.

T+

tpost — Lpre .
A_E}s:p( = ) iftost > tore

Lore — L
pre post . =
—A_E‘Ep( = —) lftpﬂst = lpre

=
.

Where A+ =0.005, A- =0.005, t™+=20 ms and t—=20 ms.

A+ and A- are potentiation and depression amplitude parameters, respectively. 31



4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)

Exercise 3 Solution

1. Calculating the change in synaptic weight Aw

* @Given: tpre=10 ms, tpost=12 ms, A+=0.005, A—=0.005, t+=20 ms, tT-=20 ms
Since tpost > tpre, we use the first case of the STDP rule:

Lnost — Lpre
&wzﬂ_exp(— post ¥ )

T4

Substituting the values:

12ms — 10 ms)

= A+ and A- are potentiation and depression amplitude
ms

parameters, respectively.

Aw = 0.00SExp( —

2ms
Aw = 0.005exp( 30 ms)

Therefore, the change in synaptic weight Aw is

s =iliEml =L approximately 0.004524.

Aw ~ 0.005 x 0.9048

32
Aw =~ 0.004524



4. Synaptic Plasticity Mechanisms & Learning:
Spike-timing-dependent plasticity (STDP)
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Fig. 1.5: STDP Architecture.

e The STDP unit Follows the spike or pulse model assumption for cortical neurons where
information lies in spike timings, and not in spike shapes.
* 16 presynaptic traces are required to initiate the learning process. The PWU mechanism

enables fast parallel on-chip learning. .
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5. Synthesizing Real-Time Neuromorphic Systems:
A framework for a Real Neurocomputing Design
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35



5. Synthesizing Real-Time Neuromorphic Systems:
Application mapping
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5. Synthesizing Real-Time Neuromorphic Systems:
Connecting Neuromorphic Chips
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5. Synthesizing Real-Time Neuromorphic Systems:
Inside the Pixel

Dendrites

Inside the Pixel
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5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

Using Crossbars
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5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars

=L

Using Crossbars
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5. Synthesizing Real-Time Neuromorphic Systems:
Using Crossbars



5. Synthesizing Real-Time Neuromorphic Systems:
Spiking Neuro-Processing Core
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5. Synthesizing Real-Time Neuromorphic Systems:

LIF Neuron Module
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5. Synthesizing Real-Time Neuromorphic Systems:

LIF Neuron Module
ipigighpipglglplgladglgligs
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lllustration of neuron update operation at the crossbar

An input presynaptic spike array is stored and checked for spike events. If present, the Have spike event signal
becomes high. Afterwards, the one hot operation to get the synapse address begins, updating the one hot spike
array for every spike event: from 00 to 0255.

The stored presynaptic spike array is also updated after each spike event is processed: from U0 to U255.

The synapse address is then used to fetch the synapse values from the synapse memory, and sent to the
postsynaptic neurons.

When the last spike event in the array has been processed, the crossbar sends a signal to the control unit Zﬂgnaling
that all spike events have been processed



5. Synthesizing Real-Time Neuromorphic Systems:
NASH Neuromorphic Architecture
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5. Synthesizing Real-Time Neuromorphic Systems:
Spiking Neuron Packet Format

(a)

|Type |Fault fIag_;l XY Z, |Timestamp| Spike array

-
-—— - - -

, Type (1bits): “0” configuration; “1” spike

, Fault flag(3bits): flag for fault-tolerant spike routing

’ XYZ (9bits): source node address

Timestamp (6bits): Time of action potential (spike)
Spike array (64bits): Identifier for neuron that spiked

-~

I
I
|
1
1
]
1
\
\
\
\

(b)
Primary Routing Table Backup Routing Table
Output Port Address Output Port
Address | pjujw|S|EINIL] IDIUIWISEINIL|

\

\ 000_000_000 0000100 000_000_000 0000100
001_000_000 0000100 001_000_000 0000100
011_000_000 0100000 I 011_000_000 | 0000010

9 9

Address 9,

Fault_flag_3 ol4
Output_port_fault ]

Spiking neuron packet format 46



5. Synthesizing Real-Time Neuromorphic Systems:
Network Interface (1/2): Encoder
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Network Interface: Encoder.

Operations of the encoder can be summarized in the following steps:
* Receive output spikes from local SNPC and packet into flits.
* After packeting, send flit to local router



5. Synthesizing Real-Time Neuromorphic Systems:
Network Interface (1/2): Decoder
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Network Interface: Decoder.

Operations of the decoder can be summarized in the following steps:
* Receive spike packets from local router and unpack.

Forward the spikes to the local SNPC as presynaptic spike train.
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6. Conclusions

Neuromorphic Computing is the use of hardware (VLSI) to
simulate the biological architecture of the human nervous system
(brain, complex network of nerves, etc.),

Spiking Neural Network (Neuromorphic):

> More analogous to the brain, communicating via spikes in a sparse event-driven
manner.

> Exploits spike sparsity to achieve low power.

Synaptic dynamics is the time-dependent changes in synaptic
currents that change the coupling strength between neurons.

There are various training/learning algorithms for SNNs:
> Unsupervised Spike-timing-dependent plasticity (STDP)
> ANN to SNN conversion

Synthesizing a Neuromorphic System:

> Define Problem—> Partition Al Tasks = Understand Constraints = Develop
Al HW/SW Model - Embed into Device = Solve the Problem
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Quizzes

Please download Quizl material from here:

https://www.u-aizu.ac.jp/~benab/classes/kit/quizl.pdf
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https://www.u-aizu.ac.jp/~benab/classes/kit/quiz1.pdf

Reference

Neuromorphic Computing Course, UoA
https://www.u-aizu.ac.jp/misc/neuro-eng/book/NeuromorphicComputing/

=

Neuromorphic

https://link.springer.com/book/9783031830884

Computing

Principles and
Organization
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