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What is Neuromorphic Computing?

• Neuromorphic Computing (NC) is the use of hardware 
(VLSI) to simulate the biological architecture of the 
human nervous system (brain, complex network of 
nerves, etc.),

• NC is a new emerging field that involves biology, physics, 
mathematics, computer science, and engineering in 
designing hardware models of neural and sensory 
systems.

• NC opens new frontiers for neuro-robotics, artificial 
intelligence, and high-performance applications.

1. Neuromorphic Computing:
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Conventional ANN vs Spiking Neural Networks
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• Sparse input in SNN means sparse memory use.
• Spike communication means minimal power per event signal
• Event based processing in SNN also contribute to low power. 

Conventional ANN vs Spiking Neural Network
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1. Neuromorphic Computing:



5

▪ Conventional ANN: Impressive results in visual and 
auditory cognitive applications. However, they are:

• Slow when deployed in software, requiring a lot of 
time for training

• Consume a lot of power when accelerated in 
hardware, requiring large servers for training as 
their sizes increase.

▪ Spiking Neural Network (Neuromorphic): 
• More analogous to the brain, communicating via 

spikes in a sparse event driven manner. 
• Exploits spike sparsity to achieve low-power.

Conventional ANN vs Spiking Neural Networks

1. Neuromorphic Computing:



Exploiting Sparsity in Neural Network
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• About  0.5% to 2% of neurons in the neocortex are active at 
any time 

• Only about 1% to 5% of connections exist between two 
connected layers in the neocortex and 30% of those 
connections change every few days

Sparsity in Neural Network

1. Neuromorphic Computing:
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Neural Algorithms Computing in Hardware
1. Neuromorphic Computing:



Examples of Neuromorphic Chips/Systems
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Neurogrid IBM TrueNorth

Examples of Neuromorphic Chips/Systems (not yet commercial)

Intel Loihi

1. Neuromorphic Computing:

• The Neurogrid chip is a 
specialized neuromorphic 
hardware platform that 
simulates large-scale 
neural networks. 

• Developed by the Brains 
in Silicon group at 
Stanford, it uses a 
combination of analog 
and digital computation 
to  replicate the activity of 
biological neurons and 
their synaptic connections

• IBM TrueNorth is a 
neuromorphic chip designed to 
emulate the brain's neural 
architecture. It features 1 
million digital neurons and 
256 million synapses. 

• It uses an event-driven, low-
power design for efficient, 
scalable, and parallel 
processing, ideal for 
applications like visual 
recognition and sensory 
processing.

• Intel's Loihi is a 
neuromorphic chip that 
mimics biological neural 
networks. It features 128 
neuromorphic cores and 
on-chip learning 
capabilities, making it highly 
efficient for adaptive AI 
applications. 

• This chip is known for its 
low power and advanced 
spiking neural network 
models, enabling real-time 
processing and learning.
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Fig. 1.1: (a) Biological neuron (b) Corresponding Mathematical model.

(a)

(b)
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2. Hardware Models of Spiking Neurons:
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Biological vs Traditional Neuron Models
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2. Hardware Models of Spiking Neurons:
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Leaky Integrate and Fire (LIF) Neuron Model

Fig. 2.11: Schematic diagram of the LIF model.

2. Hardware Models of Spiking Neurons:
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Spike Coding Schemes

2. Hardware Models of Spiking Neurons:
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• The inter-spike interval (ISI) refers to the 
time period between consecutive action 
potentials (spikes) generated by a neuron. 

• It is a crucial measure in neuroscience 
used to analyze the firing patterns of 
neurons. 

• By studying the distribution and variability 
of ISIs,  we can gain insights into neuronal 
activity, coding mechanisms,  and the 
overall health of neural circuits

The inter-spike interval (ISI) refers to the time period between consecutive action potentials (spikes) generated by a neuron. It is a crucial measure in ne

• The time to first spike (TTFS) is a 
measure used in NC to indicate the 
time it takes for a neuron to fire its 
first action potential (spike) in 
response to a stimulus. 

• This metric is particularly relevant in 
studies involving neural coding and 
SNNs, where the timing of the first 
spike can carry important information 
about the stimulus



Spike Coding Schemes

2. Hardware Models of Spiking Neurons:
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• A phase coding scheme is used in neural coding 
where information is represented by the phase of 
action potentials (spikes) rather than their rate or 
timing alone. 

• In this scheme, the timing of spikes is aligned with a 
reference phase, and the information is encoded in 
the phase relationship between spikes and this 
reference.

• This approach is helpful in SNNs and NC, as it can 
enhance the efficiency and robustness of 
information transmission. 

• Phase coding can be more resilient to noise and 
improve the accuracy of NNs.

• Rank coding is a neural coding scheme 

where information is encoded based on 

the rank order of neuron firing rather 

than the precise timing of spikes. 

• In this scheme, the relative timing of 

spikes among a group of neurons is 

used to represent information, which 

can be particularly useful in SNNs and  

NC.



2. Hardware Models of Spiking Neurons:

Consider a neuromorphic chip where neurons encode information using rate 
coding and temporal coding schemes.

1.Rate Coding: The information is represented by the firing rate of the neuron. If 
the firing rate of a neuron is 20 spikes per second, what is the average inter-spike 
interval (time between spikes)?

2.Temporal Coding: The information is represented by the precise timing of 
individual spikes. Given a pattern of spikes at the following times (in 
milliseconds): 0 ms, 5 ms, 10 ms, 20 ms, and 40 ms, calculate the inter-spike 
intervals and identify any noticeable patterns.

Exercise 1

Spike Coding Schemes



2. Hardware Models of Spiking Neurons:

1. Rate Coding:

• Firing rate = 20 spikes per second.
• To find the average inter-spike interval, we take the inverse of the firing rate:

Average inter-spike interval =  1/(firing rate)

Average inter-spike interval = 1/ (20 spiked/second) =  0.05 seconds=50 milliseconds

Therefore, the average inter-spike interval is 50 milliseconds.

Exercise 1 Solution

Spike Coding Schemes



2. Hardware Models of Spiking Neurons:

2. Temporal Coding:

• Given spike times: 0 ms, 5 ms, 10 ms, 20 ms, and 40 ms.
• Inter-spike intervals:

Interval  1:5ms – 0ms = 5ms 
Interval 2:10ms – 5ms = 5ms 

Interval  3:20 – 10ms = 10  ms
Interval  4:40 – 20ms = 20 ms

• Noticeable patterns: The intervals are 5 ms, 5 ms, 10 ms, and 20 ms. This 
pattern shows increasing intervals between spikes, representing varying 
information in a temporal coding scheme.

• Understanding both codings lets you appreciate how information is encoded 
and transmitted in neuromorphic systems. 

Exercise 1 Solution

Spike Coding Schemes



AER (Address Event Representation) Protocol

2. Hardware Models of Spiking Neurons:
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Fig. 2.15: AER (Address Event Representation) protocol



Exercise 2

2. Hardware Models of Spiking Neurons:
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You have a neuromorphic chip with an Address Event Representation 
(AER) system. The chip has a 64x64 pixel array, where each pixel can 
generate an event when there is a change in light intensity. Each 
event packet contains the address of the pixel (row and column) and 
the timestamp of the event.

1. If a pixel at row 10, column 25 generates an event at timestamp 
1050, what is the AER packet format for this event?

2. How would the system handle multiple events occurring 
simultaneously? Provide an example with two events at the same 
timestamp.

3. Explain the advantages of using AER in a neuromorphic system 
compared to a frame-based system.

AER (Address Event Representation) Protocol



Exercise 2 Solution 

2. Hardware Models of Spiking Neurons:
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1. AER Packet Format:
• The address of the pixel is given by its row and column.
• The AER packet format typically includes the address and timestamp. Assuming the 

row and column are each represented by 6 bits (since 64 = 2^6), the packet can be 
structured as follows:

• Row (6 bits): 10 -> 001010
• Column (6 bits): 25 -> 011001
• Timestamp (e.g., 32 bits): 1050 -> 00000000000000000000010000011010

| Row (6 bits) | Column (6 bits) | Timestamp (32 bits) |
|    001010    |     011001       |  00000000000000000000010000011010  |

Therefore, the AER packet format would be:

AER (Address Event Representation) Protocol



Exercise 2 Solution

2. Hardware Models of Spiking Neurons:

2. Handling Multiple Events Simultaneously:
• If multiple events occur simultaneously, the AER system can still process them 

sequentially. The events are buffered and transmitted in quick succession.
• Example: Two events at the same timestamp (1050) for pixels at (10, 25) and (30, 45):

• Event 1:
• Row: 10 -> 001010
• Column: 25 -> 011001
• Timestamp: 1050 -> 00000000000000000000010000011010

• Event 2:
• Row: 30 -> 011110
• Column: 45 -> 101101
• Timestamp: 1050 -> 00000000000000000000010000011010

Event 1: | 001010 | 011001 | 00000000000000000000010000011010 |
Event 2: | 011110 | 101101 | 00000000000000000000010000011010 |

The AER packets would be:

AER (Address Event Representation) Protocol



Exercise 2 Solution

2. Hardware Models of Spiking Neurons:

2. Advantages of Using AER in a Neuromorphic System:

• Efficiency: AER only transmits data when an event occurs, reducing the 
amount of data processed and transmitted compared to frame-based systems 
that send the entire frame regardless of changes.

• Low Power Consumption: Since AER systems process fewer data points, they 
consume less power.

• Low Latency: AER provides real-time processing capabilities as events are 
processed as they occur, allowing for faster response times in dynamic 
environments.

• Sparse Data Representation: AER efficiently handles sparse data, where only 
a small fraction of the pixels change over time, optimizing storage and 
computation.

AER (Address Event Representation) Protocol
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Complex Structure of a Neural Network

3. Synaptic Dynamics: 

Fig. Complex Structure of a Neural Network [M.Bertrand,2015].

➢ A typical neural network has four main regions: The cell body, the dendrites, The 
axon, and the presynaptic terminals.  

➢ Each region has a distinct role in the generation of signals and the communication 
between neurons.

➢ Neurons can communicate through electrical synapses or chemical synapses alone 
or via both types of interactions.  



• Connections between neurons are not static, but change in 
amplitude and timing.

• Synaptic dynamics is the time-dependent changes in synaptic 
currents that change the strength of coupling between neurons. 

• Both presynaptic and postsynaptic contribute to the changes of 
synaptic currents.

• Synaptic dynamics realizes adaptive learning.

26

What is Synaptic Dynamics?

3. Synaptic Dynamics: 

Fig. 2.1: Two neurons communicating via a synapse.
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Learning Methods

4. Synaptic Plasticity Mechanisms & Learning: 

• Synaptic Plasticity: STDP is a mechanism that models synaptic 
plasticity, which is the ability of synapses to strengthen or weaken 
over time in response to activity levels. 

• Temporal Coding: STDP captures the importance of the precise 
timing of spikes in neural coding. The timing relationship 
between pre-synaptic and post-synaptic spikes determines 
whether the synaptic connection is strengthened or weakened.

• Hebbian Learning: STDP follows the principle of Hebbian learning, 
often summarized as "cells that fire together wire together." 
When a pre-synaptic neuron consistently fires shortly before a 
post-synaptic neuron, the synaptic connection is strengthened 
(long-term potentiation), and when it fires shortly after, the 
connection is weakened (long-term depression).
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Learning Methods

4. Synaptic Plasticity Mechanisms & Learning: 

Neuromorphic Learning Framework
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Spike-timing-dependent plasticity (STDP)

4. Synaptic Plasticity Mechanisms & Learning: 

STDP: adjusts the connection strengths based on the 
relative timing of a particular neuron's output and input 
action potentials. 
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4. Synaptic Plasticity Mechanisms & Learning: 

Consider a neuromorphic chip implementing the STDP learning algorithm. In this 
algorithm, the weight of the synaptic connection between two neurons is adjusted 
based on the timing difference between the pre-synaptic and post-synaptic spikes.

1. If a pre-synaptic spike occurs at time tpre = 10 ms and a post-synaptic spike 
occurs at time tpost=12 ms, calculate the change in synaptic weight Δw using 
the STDP rule. Assume the STDP learning rule is defined as:

Exercise 3

Where A+ = 0.005,  A− = 0.005 ,  τ+=20 ms and τ−=20 ms.

Spike-timing-dependent plasticity (STDP)

A+ and A- are potentiation and depression amplitude parameters, respectively. 
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4. Synaptic Plasticity Mechanisms & Learning: 

Exercise 3 Solution
1. Calculating the change in synaptic weight Δw

• Given: tpre=10 ms,  tpost=12 ms, A+=0.005, A−=0.005, τ+=20 ms, τ-=20 ms

Since tpost > tpre, we use the first case of the STDP rule:

Substituting the values:

Therefore, the change in synaptic weight Δw is 
approximately 0.004524.

Spike-timing-dependent plasticity (STDP)

A+ and A- are potentiation and depression amplitude 
parameters, respectively. 
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Fig. 1.5: STDP Architecture.

• The STDP unit Follows the spike or pulse model assumption for cortical neurons where 
information lies in spike timings, and not in spike shapes.

• 16 presynaptic traces are required to initiate the learning process. The PWU mechanism 
enables fast parallel on-chip learning.

4. Synaptic Plasticity Mechanisms & Learning: 
Spike-timing-dependent plasticity (STDP)
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A framework for a Real Neurocomputing Design

5. Synthesizing Real-Time Neuromorphic Systems: 

Define 
Problem

Partition AI 
Tasks 

Understand 
Constraints

Develop AI 
HW/SW  
Model

Embed into 
Device

Solve 
problem 

Design Framework
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Application mapping

5. Synthesizing Real-Time Neuromorphic Systems: 

Application mapping example on a 3×3×3 Neuromorphic Chip
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Connecting Neuromorphic Chips

5. Synthesizing Real-Time Neuromorphic Systems: 

Arbor



Inside the Pixel
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Inside the Pixel

5. Synthesizing Real-Time Neuromorphic Systems: 

Dendrites

Axon Soma

X

Y



Using Crossbars
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Using Crossbars

5. Synthesizing Real-Time Neuromorphic Systems: 



Using Crossbars
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5. Synthesizing Real-Time Neuromorphic Systems: 
Using Crossbars
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5. Synthesizing Real-Time Neuromorphic Systems: 
Using Crossbars
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Spiking Neuro-Processing Core

5. Synthesizing Real-Time Neuromorphic Systems: 

Architecture of Spiking Neuro-Processing Core.
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LIF Neuron Module

5. Synthesizing Real-Time Neuromorphic Systems: 

Architecture of LIF Neuron
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LIF Neuron Module

5. Synthesizing Real-Time Neuromorphic Systems: 

1. An input presynaptic spike array is stored and checked  for spike events. If present, the Have spike event signal 
becomes high. Afterwards, the one hot operation to get the  synapse address begins, updating the one hot spike 
array for every spike event: from O0 to O255. 

2. The stored presynaptic spike array is also updated after each spike event is processed: from U0 to U255.  

3. The synapse address is then used to fetch the synapse values from the synapse memory, and sent to the 
postsynaptic neurons.  

4. When the last spike event in the array has been processed,  the crossbar sends a signal to the control unit signaling 
that all spike events have been processed

Illustration of neuron update operation at the crossbar
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NASH Neuromorphic Architecture

5. Synthesizing Real-Time Neuromorphic Systems: 

Organization of the NASH Neuromorphic Chip
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Spiking Neuron Packet Format

5. Synthesizing Real-Time Neuromorphic Systems: 

Spiking neuron packet format
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Network Interface (1/2): Encoder

5. Synthesizing Real-Time Neuromorphic Systems: 

Network Interface: Encoder.

Operations of the encoder can be summarized in the following steps:
• Receive output spikes from local SNPC and packet into flits.
• After packeting, send flit to local router
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Network Interface (1/2): Decoder

5. Synthesizing Real-Time Neuromorphic Systems: 

Network Interface: Decoder.

Operations of the decoder can be summarized in the following steps:
• Receive spike packets from local router and unpack.
• Forward the spikes to the local SNPC as presynaptic spike train.
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6. Conclusions

▪ Neuromorphic Computing is the use of hardware (VLSI) to 
simulate the biological architecture of the human nervous system 
(brain, complex network of nerves, etc.),

▪ Spiking Neural Network (Neuromorphic): 
➢ More analogous to the brain, communicating via spikes in a sparse event-driven 

manner. 
➢ Exploits spike sparsity to achieve low power.

◼ Synaptic dynamics is the time-dependent changes in synaptic 
currents that change the coupling strength between neurons. 

◼ There are various training/learning algorithms for SNNs:
➢ Unsupervised Spike-timing-dependent plasticity (STDP)
➢ ANN to SNN conversion

◼ Synthesizing a Neuromorphic System: 
➢ Define Problem→ Partition AI Tasks → Understand Constraints → Develop 

AI HW/SW  Model → Embed into Device → Solve the Problem 
50



Quizzes

Please download Quiz1 material from here: 

https://www.u-aizu.ac.jp/~benab/classes/kit/quiz1.pdf
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