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Comments on “Energy-Efficient Beamforming
Design for MU-MISO Mixed RF/VLC

Heterogeneous Wireless Networks”
Thanh V. Pham Member, IEEE, and Anh T. Pham Senior Member, IEEE

Abstract—We show that the use of Schur complement lemma to
derive equivalent convex constraints to those non-convex in (54)
and (55) of the above paper is not valid. In this comment, an
alternative approach is presented to convexify those constraints.

Index Terms—Visible light communication, beamforming
design, convex optimization, energy efficiency.

I. INTRODUCTION

In [1], the authors studied coordinated beamforming designs
for mixed RF/VLC heterogeneous networks from the perspect-
ive of energy efficiency. In particular for the case imperfect
channel state information (CSI), a robust beamforming was
formulated to take into account the channel estimation errors.
The nature of this robust design essentially gave rise to infin-
itely many non-convex constraints, which render the optimal
solution infeasible. To handle this, the S-procedure [2] and
Schur complement lemma [2], [3] were used. Unfortunately,
the use of Schur complement lemma as presented by the
authors is not valid since a condition for the lemma being
applicable does not hold. As a result, the derived convex
constraints are not equivalent to the original non-convex ones.
In this comment, we propose an alternative approach, which
uses semidefinite relaxation (SDR) technique [4], to convexify
the non-convex constraints.

II. THE SCHUR COMPLEMENT LEMMA

Using the S-procedure, the infinitely many constraints [1,
(54)] and [1, (55)] are reformulated into a finite number of
positive-semidefinite constraints as
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The above constraints are not convex due to quadratic forms
in each matrix. The authors then made use of the Schur

complement lemma to obtain the claimed equivalent convex
constraints. The lemma cited from [3, Lemma 18] states that:
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Schur complement lemma [3]: Suppose A, B, C, D are
respectively n⇥n, n⇥ p, p⇥n and p⇥ p matrices, and A is
invertible. Let

M =


A B
C D

�
(3)

so that M is a (n+p)⇥(n+p) matrix. The Schur complement
of the block D of the matrix M is the n⇥ n matrix

A�BD�1C. (4)

Let D be positive definite. Then M is positive semi-definite
if and only if the Schur complement of D in M is positive
semidefinite.

The lemma can also be equivalently stated as in the authors’
paper: The Schur complement of the block A of the matrix
M is the p⇥ p matrix

D�CA�1B. (5)

Let A be positive definite. Then M is positive semi-definite
if and only if the Schur complement of A in M is positive
semidefinite.

Applying the above stated lemma to (1) with A = 1,

B =


wT

k

⇣
ĥT

k
wk

⌘T �
, C =


�wk

�ĥT
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, we obtain the constraint [1, (59)]

(similarly for constraints [1, (60)] and [1, (61)]). However, the
above mentioned Schur complement lemma as the authors cited
from [3] is not in its correct form. In fact, the correct statement
of the lemma requires that C is the transpose of B [2, pp. 650].
Obviously, this is not always the case for constraints [1, (59)]
and [1, (60)]. Hence, [1, (54)] and [1, (55)] are, in general, not
equivalent to [1, (59)] and [1, (60)] as claimed by the authors.
More importantly, the use of [1, (54)] and [1, (55)] would
result in an infeasibility of the original problem [1, Problem
(62)]. Indeed, it is obvious to see that the only possible values
of wk and vk satisfying [1, (54)] and [1, (55)] respectively are
wk = 0 and vk = 0. The resulting RVLC

k
{wk} and RRF

k
{vk}

are thus 0 as well. Hence, the constraint [1, (13b)] can not
be satisfied unless �k = 0, which however makes the energy
efficiency be 0.

III. ALTERNATIVE APPROACH

In this section, we present an alternative approach using
SDR technique. SDR works by introducing Wk = wkwT

k
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and Vk = vkvH

k
, 8k. Accordingly, (1), (2), and [1, (56)] are

equivalent to
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+ ĝH

k
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In [1], two algorithms were proposed to solve the robust
beamforming design, namely: Robust Dinkelbach Algorithm

Combined with Successive Convex Approximation (SCA) and
Robust Low-Complexity SCA Algorithm. For brevity, we de-
scribe the use of SDR for the former in the following. The
use of SDR for the latter follows the same manner.

Similar to [1, Problem (62)], however with the use of (6),
(7), and (8), the algorithm involves solving the following
surrogate problem
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+ ĝH

k
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Vk ⌫ 0, 8k, (9n)
rank (Wk) = 1, 8k, (9o)
rank (Vk) = 1, 8k. (9p)

It should be noted that the original constraint [1, (13d)] can
not be equivalently represented in terms of Wk. Instead,

due to (
PK

k=1|eT
nwk|)2

K
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Wken, we replace it by

a more stringent constraint (9f). As a result, problem (9)
generally gives a lower bound solution to the original problem
[1, Problem(43)]. It is seen that except (9o) and (9p), all
constraints (9b)-(9n) are convex. Thus, we omit (9o), (9p) and
solve the following convex optimization problem

Q1|(�) , maximize
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s.t. (9b) � (9n).

The remaining issue now is to verify whether the solution to
(10) is also optimal for (9). Indeed, the following theorem
proves the equivalence of the two problems.

Theorem 1: If problem (10) is feasible then its optimal
solutions W⇤

k
and V⇤

k
always satisfy that rank (W⇤

k
) = 1 and

rank (V⇤
k
) = 1.

For brevity, we omit the proof of this theorem in this
comment. Interested readers may find it in [5]. In addition, one
can realize that an upper bound solution to [1, Problem(43)]
can be given by replacing [1, (13d)] by a looser constraint
as
P
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��
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. This constraint
replacement, however, does not change the conclusion of
Theorem 1.

IV. CONCLUSION

In this comment, we showed that the use of Schur com-

plement lemma to derive equivalent convex constraints to [1,
(54)] and [1, (55)] is not valid. While the two proposed
algorithms (i.e. [1, Algorithm 4 and Algorithm 5]) is still
applicable in the sense that their convergence properties are
unchanged, without the mentioned equivalence, the numerical
results related to the robust beamforming design (i.e. Figs. 7,
8, 9, and 10) may not be valid [5].
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A Proof of the Equivalence of Semidefinite
Relaxation

Thanh V. Pham Member, IEEE, and Anh T. Pham Senior Member, IEEE

Abstract—In this note, we present a proof of Theorem 1

and numerical examples to demonstrate the feasibility of our

proposed approach in [1].

I. PROOF OF THEOREM 1 [1]

Let us recall [1, Problem (10)] written as follows

Q|(�) , maximize
Wk,Vk,r

VLC
k ,r

RF
k

⇢k,zk,k,zk,j ,↵k,�k

�k�0,�k,k�0,�k,j�0

 
KX

k=1

rVLC
k

+
KX

k=1

rRF
k

!
�

⌘

 
PVLC + PRF + ⇠1

KX

k=1

Tr (Wk) + ⇠2

KX

k=1

Tr (Vk)

!
, (1a)

s.t. rkVLC  1

2
log2

✓
1 +

2⇢k
⇡e�2

zk

◆
, 8k, (1b)

rkRF  log2
�
1 + e↵̄k

�
+

e↵̄k (↵̄k � ↵k)

ln 2 (1 + e↵̄k)
, 8k, (1c)

e↵k+�k  zk,k, 8k, (1d)

e�̄k
�
�k � �̄k + 1

�
�
X

j 6=k

zk,j + �2
nk
, 8k, (1e)

P
K

k=1 e
T

n
Wken

K
 (min{p

n
, p

n
� p

max
})2 , 8n, (1f)

KX

k=1

Tr (Vk)  PRF,max, (1g)

ĥ
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We first proof that the optimal W⇤
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1. The Karush-Kuhn-Tucker (KKT) equations relevant to the
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ĥk

ĥ
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ĥk can also be linearly expressed by the

column vectors of [�⇤
k
IN +W

⇤
k
]. Together with (6), we get

rank (Ak) = rank
�⇥
�⇤
k
IN +W

⇤
k

⇤�
. (7)

If �⇤
k
= 0 then

⇥
�h

⇤T
k

1
⇤  W

⇤
k

W
⇤
k
ĥk

ĥ
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No. 1 2 3 4 5

VLC channel 10�4

2

64

0.2014
0.4076
0.2050
0.1214

3

75 10�4

2

64

0.0997
0.0566
0.1263
0.3160

3

75 10�4

2

64

0.3815
0.2594
0.1255
0.1627

3

75 10�4

2

64

0.0730
0.1800
0.3393
0.1068

3

75 10�4

2

64

0.3619
0.1531
0.1303
0.2839

3

75

RF channel

2

666664

0.3301 + 0.0256i
�0.0339 + 0.4130i
�0.0976 + 0.7635i
�0.1088 + 0.2335i
�0.1516� 0.1049i
0.0115 + 0.3126i

3

777775

2

666664

0.1959 + 0.0062i
�0.6253� 1.5146i
�0.4740� 0.2285i
�0.3706 + 0.6212i
�0.2539� 0.5334i
�0.1603 + 0.4669i

3

777775

2

666664

0.0912� 0.3671i
�0.7825� 0.0154i
�0.0423 + 0.1162i
0.8020 + 0.2132i
0.0492� 0.1864i
0.0207� 0.1182i

3

777775

2

666664

1.1147 + 0.2114i
0.1688� 0.8351i
0.5000 + 0.2358i
�0.8321� 0.6064i
�0.2950 + 0.0331i
�0.1390 + 0.3262i

3

777775

2

666664

�0.3452 + 0.5102i
�0.3258 + 0.4309i
0.5961 + 0.0006i
�0.8059� 0.0354i
�0.0122� 1.2431i
�0.9744 + 0.2906i

3

777775

Results

Authors’ method [2] Infeasible Infeasible Infeasible Infeasible Infeasible

Our method

wk

2

64

0.05
0.05
0.05
0.05

3

75

2

64

0.05
0.05
0.05
0.05

3

75

2

64

0.05
0.05
0.05
0.05

3

75

2

64

0.05
0.05
0.05
0.05

3

75

2

64

0.05
0.05
0.05
0.05

3

75

vk

2

666664

0.2747
0.0040
�0.0215
�0.0718
�0.1334
0.0337

3

777775

2

666664

�0.0769
0.0831
0.1628
0.2141
0.0426
0.1141

3

777775

2

666664

0.0846
�0.2239
�0.0307
0.1981
0.0438
0.0247

3

777775

2

666664

�0.2261
�0.1357
�0.0849
0.1163
0.0702
0.0695

3

777775

2

666664

0.0463
0.0467
�0.1323
0.1809
0.0765
0.1990

3

777775

rVLC
k 4.2903 3.6479 4.2807 3.8710 4.2810
rRF
k 17.0818 19.2098 20.1566 20.8746 20.9117
⌘ 2.7743⇥107 2.8655⇥107 3.1047⇥107 3.0937⇥107 3.1863⇥107

Table I: Numerical Results.
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words
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ĥk

ĥ
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⌘
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⇣
ĥk +�h

⇤
k

⌘
� ⇢⇤0 = �⇢⇤

k
. This means

⇢⇤
k
= 0, which obviously violates the constraint in (1b) as a

positive VLC channel rate is assumed. Therefore, �⇤
k
> 0,

which results in rank (Ak) = N .
From (3), according to the rank-nullity theorem

rank
�
X

1⇤
k

�
 Nullity (Ak) = (N + 1)� rank (Ak) = 1.

(9)

From (2), since {'⇤
n
} � 0, {!⇤

i
} � 0, and ⇠1 > 0 we have

rank
⇣
X

4⇤
k

+ bHkX
1⇤
k
bHT

k

⌘

= rank
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@⇠1IN +
NX

n=1
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n
ene

T

n
+

KX
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ĥiĥ

T

i

1

A

= N. (10)

Also, rank
⇣
X

4⇤
k

+ bHkX
1⇤
k
bHT

k

⌘
 rank

�
X

4⇤
k

�
+

rank
⇣
bHkX

1⇤
k
bHT

k

⌘
 rank

�
X

4⇤
k

�
+ 1. Thus,

rank
�
X

4⇤
k

�
� N � 1. Moreover, we can see from (4)

that rank (W⇤
k
)  Nullity

�
X

4⇤
k

�
= N � rank

�
X

4⇤
k

�
 1. If

rank (W⇤
k
) = 0 then W

⇤
k
= 0, hence ⇢⇤

k
= 0, which does not

satisfy the constraint in (1b). Therefore rank (W⇤
k
) = 1.

Following the same arguments, one can prove that the
optimal V

⇤
k

always satisfies rank (V⇤
k
) = 1. This completes

the proof. The beamformers wk and vk are then obtained by
wk =

p
 wqw and vk =

p
 vqv , where qw and qv are the

eigenvectors of W
⇤
k

and V
⇤
k
, which associate with the non-

zero eigenvalues  w and  v .

II. NUMERICAL EXAMPLES

In this section, numerical results are presented to demon-
strate the feasibility of our proposed approach. All parameters
are the same as in [2]. As the authors did not mention the
noise power of the RF link, we choose the typical value
�2
n1

= · · · = �2
nK

= 10�7, which corresponds to the noise
spectral density N0 = 10�14. For brevity, simulations are
performed for the Robust Dinkelbach Algorithm Combined
with SCA (i.e. [2, Algorithm 4]) with 1 user (K = 1) and 5
different random realizations of VLC and RF channels given
in Table I. Initial points ↵̄k = �̄k = �1.5, threshold �k = 2,
maximum iteration number Lmax = 50, and error tolerance
✏4 = 10�3 are chosen. Numerical results are obtained using
CVX [3] with SDPT3 solver version 4.0 and given in Table
I. As expected, the authors’ approach results in an infeasible
design problem for all examined channel realizations while our
approach gives explicit results of the beamformers wk and vk.
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