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A Novel Class of Quadriphase Zero-Correlation Zone Sequence Sets
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Toshiaki MIYAZAKI' ', Senior Member, Anh PHAM'9, Takao MAEDA ¢,

SUMMARY  The present paper introduces the construction of quad-
riphase sequences having a zero-correlation zone. For a zero-correlation
zone sequence set of NV sequences, each of length £, the cross-correlation
function and the side lobe of the autocorrelation function of the proposed
sequence set are zero for the phase shifts 7 within the zero-correlation zone
z, such that 7| < z (v # 0 for the autocorrelation function). The ratio
%ﬂ) is theoretically limited to one. When £ = N (z + 1), the sequence
set is called an optimal zero-correlation sequence set. The proposed zero-
correlation zone sequence set can be generated from an arbitrary Hadamard
matrix of order n. The length of the proposed sequence set can be extended
by sequence interleaving, where m times interleaving can generate 4n se-
quences, each of length 2**3n. The proposed sequence set is optimal for
m = 0, 1 and almost optimal for m > 1.

key words: optimal zero-correlation zone, quadriphase, QS-CDMA, AS-
CDMA

1. Introduction

An application system for communication needs both chan-
nel (user) separation and synchronization. A sequence set
having special correlation function properties can be used
for the channel separation.

A sequence set having the property whereby the out-of-
phase autocorrelation and cross-correlation functions are all
equal to zero in a specified phase shift zone is called a zero-
correlation zone (ZCZ) sequence set [4]. In a ZCZ sequence,
the theoretical upper bound of sequence length £, member
size N and ZCZ width z, in which the the absolute value of
the phase shift is less than or equal to z,is N(z+ 1) < £[20].
A ZCZ sequence set that satisfies the theoretical bound of
the sequence member size and the sequence period is called
an optimal ZCZ sequence set [2], [S]-[11], [13], [17], [18],
[21]-[23].

In the present paper, construction of a new quadriphase
7ZCZ sequence set is presented. The proposed sequence set
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has the following advantages:

1. The proposed sequence set can be constructed from an
arbitrary Hadamard matrix of order n.

2. Thelength of the proposed sequence set can be extended
by sequence interleaving, where m times interleaving
can generate 4n sequences, each of length 235,

3. The width z of the ZCZ of the proposed sequence set
is exactly equal to the theoretical bound for the ZCZ
sequence set when m < 1. The width z for the auto-
correlation function of the proposed sequence set is
equal to the theoretical bound 2m+l _ 1 for all m; the
width z for the cross-correlation function of the pro-
posed sequence set is exactly equal to the theoretical
bound 2*! — 1 for m < 1, and 2! - 3, which is equal
to (2"~1.3)/(2m + 1 — 1) times the theoretical bound,
form > 1.

4. Application systems using the proposed sequence set
can be easily realized by simple hardware which can
generate, transmit, and receive quadrature phase-shift
keying (QPSK) signals.

After an examination of preliminary considerations in
Sect.2, a scheme for constructing the proposed sequence
set is presented in Sect.3. The properties of the proposed
sequence sets are described in Sect.4. Finally, we present
concluding remarks.

2. Preliminary Considerations

A complex-number sequence of period ¢ is denoted by v,
= [0p. 00 - v s Up o-1] = [vr,j];f;(l). A set of N sequences {vo,
..., UN-1}isdenoted by {v,.|r =0,...,N —1}.

The ceiling of x, [x], is the smallest integer that is not
less than x, and the floor of x, | x], is the largest integer that
is not more than x. The quotient and modulo operations for
integers a and b are denoted by a @ b and a % b, respectively,
and are defined as follows:

b |¢] ifp>o0, )
[4] ifb<o,

a%b=a-blaob)

a-b|g| ifb>0,
a-b[¢] ifb<o.

(1b)
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For a pair of sequences v, and v of length ¢, the peri-
P
odic correlation function 6y, , (7) and the aperiodic corre-

A
lation function 6y, , (7) are respectively defined as follows:

4
Bo,, v, (T) = Z b j s, joos (22)
Jj=
A -1
Hvr, vy (1) = Ur, j 5s,j+‘r’ (2b)
Jj=0

where v is the complex conjugate of v.
2.1 Zero-Correlation Zone Sequence Set

If a set of sequences {v,|r =0,..., N — 1} of length ¢ sat-
isfies the following conditions, then the sequence set has a
ZCZ for a periodic correlation function and is denoted by
Z(, N, z), where z is the width of the ZCZ.

For0 < 1] < z,

P
Hvr, v, (T) = Oa (Sa)
forr #s5, 0 < |1| < 2z,

P

0v,, v, (1) =0. (3b)

A ZCZ sequence set that satisfies the following theoretical
limit is called an optimal ZCZ sequence set. In the case of
binary sequence sets, the following is true: z < % [20].

Therefore, for a binary ZCZ sequence set, w can be
reached in the case of z = 1 only. Therefore, an optimal
QPSK ZCZ sequence set can attain a higher p than can a

binary ZCZ sequence set for z > 1.
2.2 Sequence Pair Interleaving

Here we define a sequence pair interleaving of sequence pairs
v, and v,, each of length £. The sequence palr interleaving

constructs a pair of sequences, v, 69 vs and v, v s, each of
length 2¢, as follows:

+
v, QU = [Ur,O, Us,00 « « +» Ur,£—1, Us,t’—l]’ (4a)

U e—1, —Us e-1]. (4b)

For an even number 7, we can construct a different ZCZ
sequence set of n sequences of length 2¢ from a PZCZ{nz
set of n sequences of length 2¢ by sequence pair interleaving.

Here we show the facts of the correlation functlon of

v v, = [Ur,()’ —Us,05 - - -

v, 69 vs and v, o v,. For simplicity, we denote v, GB v and

v, ® v, by w™ and w), respectively.

P
Ow®, wen (27)

(-1
= Z Wi w0 + Z wi w1 40r
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S

-1

-1
vr,ivr,i+‘r+ § Us,ivs,i+r

i=0
v, 0, () + 9 , Us (7). (5a)

P
0w<+), w®) (2T + 1)
-1 -1

= Z w, D w0041 + Z /N lw( )2iv142e41
i=0 i=0

S

%-c

N
._.

-1
Ur,ias,i+‘r +
i=0 i=0

P P
=0y, 0,(T) + 0y, o, (T +1). (5b)

Us,iVri+1+7

Similarly, we can obtain the following:

0",(+), - (27) = gvr v, () - Gvé v (1), (5¢)
P P
9w<+>, oQRr+1)=- Ou,. v, (‘I‘)+9vv ,,r(T+1)

(5d)
Op), w» (27) = 9vr v, (T) — 6’ué v, (7), (5e)

P

0 ), w27 +1) = Op,., v, (T) — vv o, (T+ 1), (51)
P

Owo), wo (27) = 01),, v, (T) + evv vy (T) (5g)
O ), w )(27+1)—_ v, Vg (7')_ v, U, (r+1).

(5h)

3. Sequence Construction

The proposed scheme for sequence construction is presented
in this section.

A set of complex-number sequences having a ZCZ can
be constructed from an Hadamard matrix H of order n.
The i-th row of the Hadamard matrix H is denoted by h; =
[hi0. -+ - hin-1].
First, a set of 4n sequences ¢,,.,, each of length 4n, is
constructed from the Hadamard matrix H of order n.
Next, a set of 4n sequences {f io)}, each of length 4n, is
constructed from the sequence set {g,}.
Finally, sets of 4n sequences {f (m+1) }, each of length
2(m+D+3 are constructed by the interleaving of {f ™}, each
of length 2”3, recursively.

3.1 Construction of a Sequence Set {g,}

From the Hadamard matrix H of order n, a set of 4n se-

quences gy, ¢, €ach of length 4n, = [gar+s, 0, - - - Gar+s, 4n—11
is constructed as follows:
ForO<r<n 0<s <4,

g4r+s = [hr’ lshr’ lzshr’ l3shr]» (63)

where 1 = V—1. Equation (6a) can be formulated as follows:

ForO<r<n 0<s<4,0<j<d4n,
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Jar+s,j = ls(j@n) hr,j%n- (6b)

Since j can be expressed by j = i+nk,0 <i <n,0 < k <4,
the correlation function of g,., each of length 4n for phase
shift 0 < 7 < n, can be computed as follows:

ForO<r,r' <n 0<ys,s <4,
P
V1, 994”5’ Garvs’ (T)
13

Z 9ar+s, 1+nkg4r +5, i+nk+1
k

n

g

3
|
—_

e

lS((l+nk)®n) hr, (i+nk)%n

I
(=}
=~
Il
(=}

—s'((i+nk+7)@
ls ((Fnk+T) n)hr',(anH')%n

n-1 3
—s'(k+(i+1)@
= le pi 15 EHEDO o eyon
i=0 k=0
n-t-1 3
sk -s'(k+7@
= Z Zlb hr,il s'kerr n)hr’,(iﬂ')%n
i=0 k=0
n-1 3
—g’ 1
+ Z Z lSkhr,i S (k+1+T0n) hr/,(i+‘r)%n
i=n—-7 k=0
3
— Z l(s—s Yk—s (T®n)9hr, h, (T)
k=0
3 A
+ l(S*S Yk—5s (l+(T®n))9hr, h, (n _ T). (7)
k=0

From Eq. (7), the correlation function of 4n sequences g¢,.,
each of length 4n, satisfies the following:

ForO<r,r' <n 0<s,s" <4,

. 4n if (r,5) = (r',8"),
0 = 8
Garvss Garss (0) {() if (r,s) # (r',s'). ®

ForO<rr' <n 0<s#s <4, (r,s)# (s,
YT,

P
994r+,w Gares’ (T) = 0 (Sb)
Similarly, we have the following:

ForO<r,r'<n 0<s#s' <4 0<7t<n,
P
994r+sv Gar'vs’ (T)

A ,A
—4 (9,,,, 0, (0 + 1 0, (1 T)) . )
From Eq. (9a), we can obtain the following:
ForO<r,r' <n 0<7<n,
P P
994” G4y (T) + 094”2’ G4r'42 (T) =

P
994r+|’ Gar'+1 (T) + 094r+3’ Gar'+3 (T) =

955

80n,, n,. (7). (9b)

Hereafter, we decompose s as 2p + ¢, 0 < p,g < 2 (s =
2p + gq). For a fixed number n, we can recursively construct

a series of sets {fiTizp+q|0 <r<n0<pgqg<2ofin

sequences for m > 0, as shown in the following subsection.

3.2 Construction of a Sequence Set { f Oy

0

A sequence set {f . 2pig

} is constructed from the sequence

set {G4ri2p+gl0 < 7 < n,0 < p,g < 2}. The sequences
f Egi 10)+q and f Egi 12)+q AT€ constructed by the interleaving

of sequence pairs g 4,10)+g aNd g (442)44 as follows:

ForO<r<n 0<s=2p+¢g<4,0<pqg<?2

O _ O
dr+s f4r+2p+q
+ .
9 (4r+0)+q G_B Jarsdeg TP =0, (10)

9ari0)+qg D Guriayrg ifp=1

The sequence f 4r42piq is 2 - 4n = 8n in length, and the

member size of the sequence set { f f&rzp +q} is 4n.

3.3 Recursive Construction of a Sequence Set { (mH)}

from {f{™}

We can generate a series of sequence sets { f 4(1’:[:21; +q} by the
(m)

interleaving of {f . 2p +q} recursively.
For m > 1, we assume the construction of

{ff":lizpwlO <r <n,0<p,q <2}, each of length 27*3n

(8n for m = 0). Then, {f"*V|r =0
ated as follows:

.,4n — 1} is gener-

ForO<r<mn 0<p,g<2

f(m+1)
4r+2p+q

(m) 5 op(m) e

f(4r+2p)+0 ® f(4r+2p)+1 ifg =0, an
(m) o~ £(m) ; _

farsopyro @ Faraopyer g =1

Note that the proposed sequence construction uses the se-

. 0 0 0 0
quence pairs (f z(tr)+0’ é(tr)+2) and (f ir)ﬂ, flr)+3) form =0

in Eq. (10) and the sequence construction uses the sequence

pairs (f ") F Yand (f0, £ form > 0inEq. (11).
(m)

The length of f 4':1:2[)) 4o 18 twice thatof £

equal to 20+ D+3p,
In the following section, we present the properties of
the constructed sequences.

and is

4. Properties of the Constructed Sequences

The sequence set ff"r”lzp Gl0 <7 < n0 < pg <
2} has a ZCZ for the periodic correlation function,
P

6 (1) for phase shift 7.

f(m) f(m)
4r+2p+q’ 4 4r'+2p’+q’
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4.1 Properties of the Proposed Sequence Setfor0 < m < 1

The ZCZ of the sequence set { f 5”’) } is stretched via doubling
of the interleaving sequence length.
We then have the following theorem.

Theorem 1. The periodic correlation function of

{f i’ﬂzp g }, each of length 235, has a ZCZ from —(2"*! —

1) to 2™ — 1) for0 < m < 1. That is,

ForO<m <1,

Yr, p, g |7| < om+l _
P

6 (m) ,f(M) (T) =

f4r+2p+q 4r+2p+q

2m+3, ifr =)
’ 12
{0 if0 < |7] < 27 1, (122)
and
Var +2p+q #4r' +2p" + ¢, |t| < 2™ -1,
0 pom) (1) = 0. (12b)

f f(m)
4r+2p+q’ 4 4r'+2p’+q’

Proof. Here, we compute the correlation function of the
proposed sequences f 51;”3217 +q O show Theorem 1 by using
Egs. (5a)—(5h), (6a), (6b), (8a), (8b), and (10). We consider
7 > 0 without any loss of generality. From Eqgs. (10), (5a),

(5¢), (5¢), and (5g), we obtain the following:

P

0.0 fO )

dr+2p+q’ Y Ar'+2p’+q’
P

= 0g(4r+())+q’ g @4r'+0)+q’ (0)

+(=)PPg 0). (13a)

9 4r+2)+q> 9@4r'+2)+q’ (
From Eq. (8a), we obtain the following:
P

0.0 fO )

f4r+2p+q 4r'+2p’+q’
_ 8n if(r,p,q)=(",p,q"),
0 if(r,pq)#F,p.q").
(13b)

Similarly, we obtain the following from Egs. (5b), (5d), (5f),
(5h), and (10):

ForO<r,r'<n 0<pp.qq <2

P
0.0 i f«)) (1)

are2prq L arriapreg
= 1 Oy 090010 O)

Dy 1 (D (14a)
From Egs. (8a) and (8b), we obtain the following:

ForO<r,r'<n 0<pp.qq <2
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P

0,0

f f(o)
4r+2p+q’ Y 4r’+2p’+q’

(1) =0. (14b)

We also obtain the following from Egs. (10), (5a), (5¢), (Se),
and (5g):

P

0.0 O 2)

f4r+2p+q 4r'+2p’+q’
P

= 69(4r+0)+q’ 9 4r'+0)+q’ (1)

+ (=) Pg (152)

9 4r+2)+q> 9 4r'+2)+q’ (1)
From Egs. (8b) and (15a), we have the following:

P

6,0 1O )
Ar+2p+0> 4 4r’+2p’+1

P

= 09(4r+0>+0’ 9 (4r'+0)+1 (l)

P
—_1)-pP")
+ ( 1) 99(4r+2)+0’ G (4r’+2)+1 (1)

=0. (15b)
From Eqgs. (9b) and (15a), we have the following:

For p = p’,
P

9f<0) fO )

Ar+2p+q’ Y 4r'+2p+q’
P
= 99 (4r+0)+q> 9 4r'+0)+q’ (l)
P
+ 09(4r+2)+q, 9 4r'+2)+q’ (1)

= 86,1, (7). (16a)

Then we obtain

P

0.0 © 2) =

f(4r+0)+q’ f(4r’+0)+q'
P

00 1o (2). (16b)

@r+2)+q° 4 (4r'+2)+q’
For m > 0, we can compute the correlation functions of the
proposed sequence set as follows.
From Egs. (5a), (5¢), (5e), (5g), and (11), we obtain the
following:

P

9f<m+1) f(m+]) (2‘1’)

4r+2p+q’ Y 4r'+2p’+q’

P
= Qf(m)
4r+2p+0°

_oh 7"
+ (=10 ) o (7)
4r+2p+1°J 4r’42p’+1

Also, from Egs. (5b), (5d), (5f), (5h), and (11), we obtain the
following:

£om (1)

4r’+2p’+0

(17a)

P

0 (m+1 f(m+1) (2T+ 1)

4r+2p+q’> 4 4r'+2p’+q’

, P
=(-1? Qf(m)

f(m)
4r+2p+0° 4 4r’+2p’+1

(t+1). (17b)

(1)

+(=1)40

(m) (m)
f4r+2p+1’ f4r’+2p’+0
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Then we obtain the following from Egs. (13b), (17a), and,
(17b):

P

0p0 £ 0)

Ar+2p+q’ Y 4r'+2p’+q’

P
=0 ) o)
4r+2p+0> 4 4r+2p’ +0

0)

+ (—1)((1_‘1/)9}«(0) © 0)

4r+2p+1° f4r/+2p’+1

lon ifd4r+2p+q=4r' +2p’ +¢’, (18)
= a
0 ifdr+2p+q+#4r' +2p" +4q’.
From Egs. (5b), (5d), (5f), (5h), and (10), we obtain
Hffllr)+2p+q’ fitlr)’+2p’+q’ (l)
,P

= (=1)4

( ) efz(t(l)+2p+0’ fft(;)’+2p’+l (0)

P
+(-1)20 0 1o (H
4r+2p+1° 7 4r’4+2p’+0
=0. (18b)
From Egs. (5b), (5d), (5f), (5h), and (10), we obtain

Hffllr)+2p+q’ fitlr)’+2p’+q’ (2)

P
= 1

efz(t(i)+2p+0’ fi(:")/+2p/+0( )

1 (q*q’)g 1

* (_ ) fl(g)+2p+l’ ffl(:f)'+2p’+l( )
=0. (18¢)

Next, we can compute the correlation function for phase shift
7 = 3 from Egs. (5a)—(5h), and eqrsOdef as follows:

P

9f<1> £ 3)

4r+2p+q’ ' +2p’+q’

,P
=(-1)4 Qf(O) 1o (1)
4

4r+2p+0° r’+2p’+1

+ (—1)q5 © © 2). (18d)

f4r+2p+l’ f4r’+2p’+()

From Egs. (14b) and (15b),

P

0.m m 3)=0. (18e)

f4r+2p+q’ f4r’+2p’+q’
Then, from Egs. (10) and (5¢), we can compute the correla-
tion function for 7 = 4 as follows:

P

0p0 £ “4)

4r+2p+0° Y 4r+2p+1
P
=0,0 (0) )
f4r+2p+0’ f4r+2p+0
P
-0.,.0 0 ). (18f)

4r+2p+1° f4r+2p+l

From Egs. (16b) and (18f),

957
0 4
fftlr)+2p+0’ fz(t]r)’+2p’+l ( )
=0. (18g)
Thus, from Egs. (13b), (14b), and Egs. (18a)—(18e),
Theorem 1 is proved. O

4.2 Properties of the Proposed Sequence Set for m > 1

We also have the following theorem:

Theorem 2. For m > 1, the autocorrelation function of the
generated sequences, {fﬁm)lr =0,...,4n -1}, has a ZCZ
from —(2™*! — 1) to (2™*! = 1), and the cross-correlation
function of the sequences has a ZCZ from —2""13 to 213,
as in the following:

Form > 1,

Vr, p,g V|| <2 -1,
P

0 com ,fom (7)

f4r+2p+q 4r+2p+q

2(m+3) ) if :0’
:{ n, ifrt (19)

0, 0< 7] <2m*+l —1.
Form > 1,

V(r,p,q) # (r',p',q'), V1, 7] <2713,
P

6 (m) (m) (T) =0. (l9b)

f4r+2p+q’ f4r’+2p’+q’
Form > 1,

vr, p,

P

60 om) w (@M =0, (19¢)

4r+2p+0° f4r+2p+l
P

0 m)

f(m)
4r+2p+0° 7 4r+2p+0

(2m+1) —

P

et £ - (19d)
Proof. Proof of Theorem 2 For m > 1, we prove Theorem
2 by mathematical induction on m > 1. Here, we consider
7 > 0 without any loss of generality. For m = 1, Theorem
2 is identical to Theorem 1. Thus, Theorem 2 is proved for
m = 1. For m > 1, we assume that Theorem 2 is satisfied
for (£ 5p4ql0 <7 <40 <pg <2} {fy) 10<
r <4,0 < p,q < 2}. From Egs. (5g), (5g), (11), and (19a),
we can compute the autocorrelation function of the proposed
sequences as follows:

Vr,p,g ¥t <2 1,

P

% (m+1) f(m+1) (2‘1‘)

4r+2p+q’ Y 4r+2p+q

P
= Qf(m) f(m) (T)
4r+2p+0°> Y 4r+2p+0

P
tOpom o (T)

4r+2p+1> VY 4r+2p+1
~ {2<m+3>+1n, if 7 =0,

_ 20
0. if0<7<2ml_ 1 (202)
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From Egs. (5b), (5h), (11), and (19a), we obtain the follow-
ing:

vYr,p,q, V1 < m-13

P

0 ,(m+1) f(m+1)
4r+2p+q’ Y Ar+2p+q

P
=D o (7)

4r+2p+0> v 4r+2p+1

Qr+1)

+ (—1)‘19f<m> (m) (T + 1)

4r+2p+1° f4r+2p+0

= 0. (20b)

From Egs. (5¢), (5e), (11), and (19¢), we can compute the
cross-correlation function of the proposed sequences as fol-
lows:

vr, p,
P (m+1)+1
9 (m+1) f(m+l) (2 )
4r+2p+0° Y 4r+2p+1
A m+1
=0pm e (277)
4r+2p+0> v 4r+2p+0
’ m+1
D) m  (2")=0. (21a)
4r+2p+1° f4r+2p+]

From Egs. (5b), (5h), (11), and (19c), we can compute the
autocorrelation function of the proposed sequences as fol-
lows:

P

0 ,(m+1) f(m+l)
4r+2p+0° Y 4r+2p+0

- (2m+1 )

P
I
4r+2p+0> v 4r+2p+0

0 w271 (22a)

f4r+2p+1’ f4r+2p+1

(2(m+1)+l )

Similarly, we obtain

(2(m+1)+1 )

P
f(m+]) f(m+l)
4r+2p+1° 4 4r+2p+1

P
m+1
= Gf(m) f(m) (2 )
4r+2p+0° v 4r+2p+0

P
+ 0 0m o (2M, (22b)

f4r+2p+l’ f4r+2p+l

Then we have

P

0 ,(m+1) f(m+l)
4r+2p+0° Y 4r+2p+0

(2(m+1)+l )

p (m+1)+1
fimzl) ] fz(tm+2]) l(2 ) (220)
r+2p+1° r+2p+
From Egs. (5b), (5h), (11), and (19¢), we can compute the
q p
autocorrelation function of the proposed sequences as fol-
lows:

vr,p.q,
P
Opmen w20V 1)
4r+2p+q’ 4 4r+2p+q
P
= D (B @)
4r+2p+0° v 4r+2p+1
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P

+Opom e
4r+2p+1> 4 dr+2p+1

(2’”“)) . (23a)

From Egs. (20b), (21a), and (22c), we consequently obtain
the following:
Yr,p,g V1 < pm+D+L _

9f(m+1> _flmeh (1)

4r+2p+q 4r+2p+q

2((m+1)+3) ) ifr = 0’
= S Dot (23b)
0, if0 <7< 20mDl
Similarly, we also obtain the following from Egs. (11) and
(5a)-Eqgs. (5h):

V(r.p.q) # (r'.p'.q), 0 < 7 <2713,

P

0 (m+1) f(m+l) (27‘)

4r+2p+q’ Y Ar'+2p’+q’

P
=0 pom e
4r+2p+0° Y 4r’+2p’+0

()

+ (—l)q_q,9f<m> (m) ()

4r+2p+1’f4r’+2p’+0

=0, (24a)
ForO<r,r' <n 0<pp.qq <2

(r,p.q) # (. pq), 0<t<2m 131,

P

Qf(m+|) f(m+l) Q2r+1)

4r+2p+q’ Y 4r'+2p’+q’

= (—l)q’ef(m,) o (1)

4r+2p+0> L 4r’+2p’+1

+ (=)0 .o (t+1)

s 1)
4r+2p+1> J 4r’+2p’+0

=0. (24b)
Then we have the following:

V(r,p.q) # (r',p,q'), VT < 20m*D=13

P

9f<m+1> _flmeD (r) =0. (24c¢)

4r+2p+q’ Y 4r’+2p’+q’

From Egs. (23b), (24¢), (21a), and (22c), we obtain the fol-
lowing:

Vr,p, g ¥t < 20D+l

P

Qf(m+1) ’f(m+l) (T)

4r+2p+q 4r+2p+q
233y if 7 = ),
o, 0 < 7| <20m+D+l

V(r,p.q) # (', pq"), V1, |7] < 2mtD-13,

(25a)

P

Qf(m+1) f(m+l) (T) =0. (25b)

Ar+2p+q’ 7 4r'+2p’+q’
vr, p,

P

0 pm1)  pmry (Um+D+ly = (25¢)

4r+2p+0° v 4r+2p+1
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P

6 om+1) fomsD (2<m+1)+1) =
4r+2p+0° v 4r+2p+0
5 (m+1)+1
= fimeh pmeD) 2 ). (25d)
4r+2p+1° J 4r+2p+1
Thus, Theorem 2 is proved. m]

O

Theorems 1 and 2 indicate that the sequence set
{(fi)r =0,...,4n -1} is Z@2™n, 4n, 271 — 1) for
0 <m < 1and Z(2™3n, 4n, 2™13)) form > 1.

The theoretical upper bound of the sequence member
size of a Z(L, N, z) sequence set is z% 131, [12], [17],
[20]. Theorem 1 indicates that the width of the ZCZ of
the proposed sequence set is exactly equal to the theoretical
bound for the ZCZ sequence set, from —(2"*! —1) to (2! -
1), form < 1. Theorem 2 indicates that the width of the ZCZ
of the autocorrelation function of the proposed sequence is
equal to the theoretical upper bound, from —(2"*! - 1) to
(2m+1 -1.

We can generate the following ZCZ sequence set
Z(32, 8, 3) from an Hadamard matrix of order 2:

1 - -

(()) = [+9 + L L L
o h oS R L L h L
1 - -

fg ) = [+9 -ttt +L— L5

+, 4, L L+ L T,

1 _

2 = [+9 + -+t HLHL+HLH
oo h o h LR LR L

M _ o

3 - [+$ B e e T A A
+H+H—-—+tt - HL L L+ l]a

1 _ s 7

4 = [+’ +H+H+H ==L =L L
B e ) +9i7_9 I, — 1+, TL

1 _ - _

5 = [+’ -+t ==+t =+t +HL—-L—L ]
+++H+ = _72_,1-’-, l]’

1 _ _ _ _ _ I

6 - [+9 +’ L »+5 +’ +9 l: +» l’ ’l5 315
AR St P S SR S A A &

1 _ 4 LT a7

7 - [+9 > 7+a ’+7 +7 ,+9 l’ +7 l’ 71’ ’la
SRR S e e L

where1 = V-1 and7 = —1.

4.3 Communications Applications

In a Ds-cpma system, a sequence set is used for channel sepa-
ration. However, inaccurate synchronization and multi-path
propagation cause a time delay that destroys the orthogonal-
ity of the channel separation. In an approximately synchro-
nized cbMA (AS-CDMA) system or quasi CDMA (QS-CDMA)
system, a ZCZ sequence set allows co-channel interference
to be eliminated [16]. The application of a ternary ZCZ se-
quence set to an As-CDMA system was demonstrated in [17].
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-4
2.2x10
. Proposed sequence of length 64
A GNW sequence of length 63
-4 M-sequence of length 63
2.1x10 hd

2.0x10™

Bit Error Rate

Timing Error (Chips)

Fig.1 Biterror eate with respect to the timing error.

10 p
5
o 10°F
©
o @ Proposed sequence T =5
-10 Proposed sequence T =10
5 1070 | O Propoed sspence
= A GMW sequence T =5
L A GMW sequence TC=IO
5 10_15 | | ® M-sequence T=5
& M-sequence T =10
20 |
0 C v v v b v by 1

10
Eb/NO (dB)

Fig.2  Biterror rate in terms of Ej/No.

The proposed ternary ZCZ sequence set can be applied to
As-cDMA in the same manner.

To show the performance of the proposed sequence sets
for an as-cpma system, the bit error rate (BER) of an as-
cpMa system using the proposed sequence set (Z(64, 4, 12))
(n =1 and m = 3) is estimated as shown in [1], [14], [15]

Figure 1 shows the BER performance with respect to
the timing error for the case of E;,/Ny = 8 dB. The perfor-
mance of the proposed sequence set, which is Z(84, 6, 13),
is compared with that of a GMW sequence of length 63 and
an M-sequence of length 63. The BER performance in terms
of E;/Ny is shown in Fig. 2. These figures demonstrate the
advantage of the proposed sequence set when applied to an
As-CDMA system with timing error. Tang et al. proposed a
sequence set having a low correlation sequence zone [19].

5. Conclusions

A new construction scheme of a quadriphase ZCZ se-
quence set was presented. The proposed sequence set
{fﬁm)lr =0,...,4n — 1} is constructed from an Hadamard
matrix of order n for a non-negative integer m > 0.

The proposed sequence construction can gen-
erate sequence  sets {fﬁm)lr =0,...,2n—1} having
Z@2™4n, 8n, 21 — 1)) for 0 < m < 1 and
Z(2™*4n, 8n, 2m713)), for m > 1, for given Hadamard ma-
trix of order n. The width of the ZCZ of the proposed
sequence set is exactly equal to the theoretical bound for the
ZCZ sequence set, from —(2"*! 1) to (2"*! 1) form < 1.
A quadriphase sequence can be easily applied to an actual
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system as a binary sequence. The optimal perfect binary
sequence is only Z(4, 1, 1). The proposed sequence set can
realize a flexible design of application systems. ZCZ width
z < 3 is sufficient for usual applications.

For m > 1, the width of the ZCZ of the autocorrelation
function of the proposed sequence set is exactly equal to the
theoretical bound for the ZCZ sequence set, from —(2"*! - 1)
to (2+! — 1), whereas the width of the ZCZ of the cross-
correlation function of the proposed sequence is equal to the
theoretical upper bound, from —(27"13) to (2!3).

The simulation results of the application to an approxi-
mately synchronized cbMA (As-CDMA) system or quasi CDMA
(@s-cpma) system show the high performance of the pro-
posed sequence set.
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