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A Novel Class of Quadriphase Zero-Correlation Zone Sequence Sets

Takafumi HAYASHI†a), Senior Member, Yodai WATANABE††b), Member,
Toshiaki MIYAZAKI††c), Senior Member, Anh PHAM††d), Takao MAEDA††e),

and Shinya MATSUFUJI†††f), Members

SUMMARY The present paper introduces the construction of quad-
riphase sequences having a zero-correlation zone. For a zero-correlation
zone sequence set of N sequences, each of length ℓ, the cross-correlation
function and the side lobe of the autocorrelation function of the proposed
sequence set are zero for the phase shifts τ within the zero-correlation zone
z, such that |τ | ≤ z (τ , 0 for the autocorrelation function). The ratio
N (z+1)

ℓ is theoretically limited to one. When ℓ = N (z + 1), the sequence
set is called an optimal zero-correlation sequence set. The proposed zero-
correlation zone sequence set can be generated from an arbitrary Hadamard
matrix of order n. The length of the proposed sequence set can be extended
by sequence interleaving, where m times interleaving can generate 4n se-
quences, each of length 2m+3n. The proposed sequence set is optimal for
m = 0, 1 and almost optimal for m > 1.
key words: optimal zero-correlation zone, quadriphase, QS-CDMA, AS-
CDMA

1. Introduction

An application system for communication needs both chan-
nel (user) separation and synchronization. A sequence set
having special correlation function properties can be used
for the channel separation.

A sequence set having the property whereby the out-of-
phase autocorrelation and cross-correlation functions are all
equal to zero in a specified phase shift zone is called a zero-
correlation zone (ZCZ) sequence set [4]. In a ZCZ sequence,
the theoretical upper bound of sequence length ℓ, member
size N and ZCZ width z, in which the the absolute value of
the phase shift is less than or equal to z, is N (z+1) ≤ ℓ [20].
A ZCZ sequence set that satisfies the theoretical bound of
the sequence member size and the sequence period is called
an optimal ZCZ sequence set [2], [5]–[11], [13], [17], [18],
[21]–[23].

In the present paper, construction of a new quadriphase
ZCZ sequence set is presented. The proposed sequence set
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has the following advantages:

1. The proposed sequence set can be constructed from an
arbitrary Hadamard matrix of order n.

2. The length of the proposed sequence set can be extended
by sequence interleaving, where m times interleaving
can generate 4n sequences, each of length 2m+3n.

3. The width z of the ZCZ of the proposed sequence set
is exactly equal to the theoretical bound for the ZCZ
sequence set when m ≤ 1. The width z for the auto-
correlation function of the proposed sequence set is
equal to the theoretical bound 2m+1 − 1 for all m; the
width z for the cross-correlation function of the pro-
posed sequence set is exactly equal to the theoretical
bound 2m+1 − 1 for m ≤ 1, and 2m−1 · 3, which is equal
to (2m−1 · 3)/(2m + 1 − 1) times the theoretical bound,
for m > 1.

4. Application systems using the proposed sequence set
can be easily realized by simple hardware which can
generate, transmit, and receive quadrature phase-shift
keying (QPSK) signals.

After an examination of preliminary considerations in
Sect. 2, a scheme for constructing the proposed sequence
set is presented in Sect. 3. The properties of the proposed
sequence sets are described in Sect. 4. Finally, we present
concluding remarks.

2. Preliminary Considerations

A complex-number sequence of period ℓ is denoted by vr
= [vr, 0, . . . , vr, ℓ−1] = [vr, j]ℓ−1

j=0 . A set of N sequences {v0,
. . . , vN−1} is denoted by {vr |r = 0, . . . , N − 1}.

The ceiling of x, ⌈x⌉, is the smallest integer that is not
less than x, and the floor of x, ⌊x⌋, is the largest integer that
is not more than x. The quotient and modulo operations for
integers a and b are denoted by a⊘ b and a % b, respectively,
and are defined as follows:

a ⊘ b =

⌊
a
b

⌋
if b > 0,⌈

a
b

⌉
if b < 0,

(1a)

a % b = a − b(a ⊘ b)

=


a − b
⌊
a
b

⌋
if b > 0,

a − b
⌈
a
b

⌉
if b < 0.

(1b)
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For a pair of sequences vr and vs of length ℓ, the peri-
odic correlation function

p
θvr , vs (τ) and the aperiodic corre-

lation function
a
θvr , vs (τ) are respectively defined as follows:

p
θvr , vs (τ) =

ℓ∑
j=0
vr, j vs, j+τ, (2a)

a
θvr , vs (τ) =

ℓ−τ∑
j=0
vr, j vs, j+τ, (2b)

where v is the complex conjugate of v.

2.1 Zero-Correlation Zone Sequence Set

If a set of sequences {vr |r = 0, . . . , N − 1} of length ℓ sat-
isfies the following conditions, then the sequence set has a
ZCZ for a periodic correlation function and is denoted by
Z (ℓ, N, z), where z is the width of the ZCZ.

For 0 < |τ | ≤ z,
p
θvr , vr (τ) = 0, (3a)

for r , s, 0 ≤ |τ | ≤ z,
p
θvr , vs (τ) = 0. (3b)

A ZCZ sequence set that satisfies the following theoretical
limit is called an optimal ZCZ sequence set. In the case of
binary sequence sets, the following is true: z ≤ N

2ℓ [20].
Therefore, for a binary ZCZ sequence set, N (z+1)

ℓ can be
reached in the case of z = 1 only. Therefore, an optimal
QPSK ZCZ sequence set can attain a higher ρ than can a
binary ZCZ sequence set for z > 1.

2.2 Sequence Pair Interleaving

Here we define a sequence pair interleaving of sequence pairs
vr and vr , each of length ℓ. The sequence pair interleaving
constructs a pair of sequences, vr

+
⊕ vs and vr

−
⊕ vs , each of

length 2ℓ, as follows:

vr
+
⊕ vr = [vr,0, vs,0, . . . , vr,ℓ−1, vs,ℓ−1], (4a)

vr
−
⊕ vr = [vr,0,−vs,0, . . . , vr,ℓ−1,−vs,ℓ−1]. (4b)

For an even number n, we can construct a different ZCZ
sequence set of n sequences of length 2ℓ from a PZCZℓnz
set of n sequences of length 2ℓ by sequence pair interleaving.

Here we show the facts of the correlation function of
vr
+
⊕ vs and vr

−
⊕ vs . For simplicity, we denote vr

+
⊕ vs and

vr
−
⊕ vs by w (+) and w (−) , respectively.

p
θw (+), w (+) (2τ)

=

ℓ−1∑
i=0
w (+)

2i w
(+)2i+2τ +

ℓ−1∑
i=0
w (+)

2i+1w
(+)2i+1+2τ

=

ℓ−1∑
i=0
vr,ivr,i+τ +

ℓ−1∑
i=0
vs,ivs,i+τ

=
p
θvr , vr (τ) +

p
θvs, vs (τ). (5a)

p
θw (+), w (+) (2τ + 1)

=

ℓ−1∑
i=0
w (+)

2i w
(+)2i+2τ+1 +

ℓ−1∑
i=0
w (+)

2i+1w
(+)2i+1+2τ+1

=

ℓ−1∑
i=0
vr,ivs,i+τ +

ℓ−1∑
i=0
vs,ivr,i+1+τ

=
p
θvr , vs (τ) +

p
θvs, vr (τ + 1). (5b)

Similarly, we can obtain the following:
p
θw (+), w (−) (2τ) =

p
θvr , vr (τ) −

p
θvs, vs (τ), (5c)

p
θw (+), w (−) (2τ + 1) = −

p
θvr , vs (τ) +

p
θvs, vr (τ + 1),

(5d)
p
θw (−), w (+) (2τ) =

p
θvr , vr (τ) −

p
θvs, vs (τ), (5e)

p
θw (−), w (+) (2τ + 1) =

p
θvr , vs (τ) −

p
θvs, vr (τ + 1), (5f)

p
θw (−), w (−) (2τ) =

p
θvr , vr (τ) +

p
θvs, vs (τ), (5g)

p
θw (−), w (−) (2τ + 1) = −

p
θvr , vs (τ) −

p
θvs, vr (τ + 1).

(5h)

3. Sequence Construction

The proposed scheme for sequence construction is presented
in this section.

A set of complex-number sequences having a ZCZ can
be constructed from an Hadamard matrix H of order n.
The i-th row of the Hadamard matrix H is denoted by hi =
[hi,0, . . . , hi,n−1].
First, a set of 4n sequences g4r+s , each of length 4n, is
constructed from the Hadamard matrix H of order n.
Next, a set of 4n sequences { f (0)

∗ }, each of length 4n, is
constructed from the sequence set {g∗}.
Finally, sets of 4n sequences { f (m+1)

∗ }, each of length
2(m+1)+3, are constructed by the interleaving of { f (m)

∗ }, each
of length 2m+3, recursively.

3.1 Construction of a Sequence Set {g∗}

From the Hadamard matrix H of order n, a set of 4n se-
quences g4r+s , each of length 4n, = [g4r+s, 0, . . . g4r+s, 4n−1]
is constructed as follows:

For 0 ≤ r < n, 0 ≤ s < 4,

g4r+s = [hr, ı
shr, ı

2shr, ı
3shr ], (6a)

where ı =
√
−1. Equation (6a) can be formulated as follows:

For 0 ≤ r < n, 0 ≤ s < 4, 0 ≤ j < 4n,
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g4r+s, j = ı
s( j⊘n) hr, j%n. (6b)

Since j can be expressed by j = i+nk, 0 ≤ i < n, 0 ≤ k < 4,
the correlation function of gr , each of length 4n for phase
shift 0 ≤ τ < n, can be computed as follows:

For 0 ≤ r, r ′ < n, 0 ≤ s, s′ < 4,

∀τ,
p
θg4r+s, g4r′+s′ (τ)

=

n−1∑
i=0

3∑
k=0
g4r+s, i+nkg4r′+s′, i+nk+τ

=

n−1∑
i=0

3∑
k=0
ıs((i+nk)⊘n) hr,(i+nk)%n

ı−s
′((i+nk+τ)⊘n) hr′,(i+nk+τ)%n

=

n−1∑
i=0

3∑
k=0
ıskhr,i ı−s

′(k+(i+τ)⊘n) hr′,(i+τ)%n

=

n−τ−1∑
i=0

3∑
k=0
ıskhr,i ı−s

′(k+τ⊘n) hr′,(i+τ)%n

+

n−1∑
i=n−τ

3∑
k=0
ıskhr,i ı−s

′(k+1+τ⊘n) hr′, (i+τ)%n

=

3∑
k=0
ı(s−s

′)k−s′(τ⊘n)
a
θhr , hr′ (τ)

+

3∑
k=0
ı(s−s

′)k−s′(1+(τ⊘n))
a
θhr , hr′ (n − τ). (7)

From Eq. (7), the correlation function of 4n sequences gr ,
each of length 4n, satisfies the following:

For 0 ≤ r, r ′ < n, 0 ≤ s, s′ < 4,
p
θg4r+s, g4r+s (0) =

4n if (r, s) = (r ′, s′),
0 if (r, s) , (r ′, s′).

(8a)

For 0 ≤ r, r ′ < n, 0 ≤ s , s′ < 4, (r, s) , (r ′, s′),
∀τ,

p
θg4r+s, g4r+s′ (τ) = 0. (8b)

Similarly, we have the following:

For 0 ≤ r, r ′ < n, 0 ≤ s , s′ < 4, 0 ≤ τ < n,
p
θg4r+s, g4r′+s′ (τ)

= 4
(a
θhr , hr′ (τ) + ı

s′
a
θhr , hr′ (n − τ)

)
. (9a)

From Eq. (9a), we can obtain the following:

For 0 ≤ r, r ′ < n, 0 ≤ τ < n,
p
θg4r , g4r′ (τ) +

p
θg4r+2, g4r′+2 (τ) =

p
θg4r+1, g4r′+1 (τ) +

p
θg4r+3, g4r′+3 (τ) =

8
a
θhr , hr′ (τ). (9b)

Hereafter, we decompose s as 2p + q, 0 ≤ p, q < 2 (s =
2p + q). For a fixed number n, we can recursively construct
a series of sets { f (m)

4r+2p+q |0 ≤ r < n, 0 ≤ p, q < 2} of 4n
sequences for m ≥ 0, as shown in the following subsection.

3.2 Construction of a Sequence Set { f (0)
∗ }

A sequence set { f (0)
4r+2p+q } is constructed from the sequence

set {g4r+2p+q |0 ≤ r < n, 0 ≤ p, q < 2}. The sequences
f (0)

(4r+0)+q and f (0)
(4r+2)+q are constructed by the interleaving

of sequence pairs g(4r+0)+q and g(4r+2)+q as follows:

For 0 ≤ r < n, 0 ≤ s = 2p + q < 4, 0 ≤ p, q < 2

f (0)
4r+s = f (0)

4r+2p+q

=


g(4r+0)+q

+
⊕ g(4r+2)+q if p = 0,

g(4r+0)+q
−
⊕ g(4r+2)+q if p = 1.

(10)

The sequence f (0)
4r+2p+q is 2 · 4n = 8n in length, and the

member size of the sequence set { f (0)
4r+2p+q } is 4n.

3.3 Recursive Construction of a Sequence Set { f (m+1)
∗ }

from { f (m)
∗ }

We can generate a series of sequence sets { f (m+1)
4r+2p+q } by the

interleaving of { f (m)
4r+2p+q } recursively.

For m ≥ 1, we assume the construction of
{ f (m)

4r+2p+q |0 ≤ r < n, 0 ≤ p, q < 2}, each of length 2m+3n

(8n for m = 0). Then, { f (m+1)
r |r = 0, . . . , 4n − 1} is gener-

ated as follows:

For 0 ≤ r < n, 0 ≤ p, q < 2

f (m+1)
4r+2p+q

=


f (m)

(4r+2p)+0
+
⊕ f (m)

(4r+2p)+1 if q = 0,

f (m)
(4r+2p)+0

−
⊕ f (m)

(4r+2p)+1, if q = 1.
(11)

Note that the proposed sequence construction uses the se-
quence pairs ( f (0)

4r+0, f
(0)
4r+2) and ( f (0)

4r+1, f
(0)
4r+3) for m = 0

in Eq. (10) and the sequence construction uses the sequence
pairs ( f (m)

4r+0, f
(m)
4r+1) and ( f (m)

4r+2, f
(m)
4r+3) for m > 0 in Eq. (11).

The length of f (m+1)
4r+2p+q is twice that of f (m)

4r+2p+q and is
equal to 2(m+1)+3n.

In the following section, we present the properties of
the constructed sequences.

4. Properties of the Constructed Sequences

The sequence set { f (m)
4r+2p+q |0 ≤ r < n, 0 ≤ p, q <

2} has a ZCZ for the periodic correlation function,
p
θ f (m)

4r+2p+q, f
(m)
4r′+2p′+q′

(τ) for phase shift τ.
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4.1 Properties of the Proposed Sequence Set for 0 ≤ m ≤ 1

The ZCZ of the sequence set { f (m)
r } is stretched via doubling

of the interleaving sequence length.
We then have the following theorem.

Theorem 1. The periodic correlation function of
{ f (m)

4r+2p+q }, each of length 2m+3n, has a ZCZ from −(2m+1−
1) to (2m+1 − 1) for 0 ≤ m ≤ 1. That is,

For 0 ≤ m ≤ 1,

∀r, p, q |τ | ≤ 2m+1 − 1,
p
θ f (m)

4r+2p+q, f
(m)
4r+2p+q

(τ) =

2m+3n if τ = 0,
0 if 0 < |τ | ≤ 2m+1 − 1,

(12a)

and

∀4r + 2p + q , 4r ′ + 2p′ + q′, |τ | ≤ 2m+1 − 1,
p
θ f (m)

4r+2p+q, f
(m)
4r′+2p′+q′

(τ) = 0. (12b)

Proof. Here, we compute the correlation function of the
proposed sequences f (m)

4r+2p+q to show Theorem 1 by using
Eqs. (5a)–(5h), (6a), (6b), (8a), (8b), and (10). We consider
τ ≥ 0 without any loss of generality. From Eqs. (10), (5a),
(5c), (5e), and (5g), we obtain the following:

p
θ f (0)

4r+2p+q, f
(0)
4r′+2p′+q′

(0)

=
p
θg (4r+0)+q, g (4r′+0)+q′ (0)

+ (−1)(p−p′) p
θg (4r+2)+q, g (4r′+2)+q′ (0). (13a)

From Eq. (8a), we obtain the following:
p
θ f (0)

4r+2p+q, f
(0)
4r′+2p′+q′

(0)

=
8n if (r, p, q) = (r ′, p′, q′),

0 if (r, p, q) , (r ′, p′, q′).

(13b)

Similarly, we obtain the following from Eqs. (5b), (5d), (5f),
(5h), and (10):

For 0 ≤ r, r ′ < n, 0 ≤ p, p′, q, q′ < 2,
p
θ f (0)

4r+2p+q, f
(0)
4r′+2p′+q′

(1)

= (−1)p
′ p
θg (4r+0)+q, g (4r′+2)+q′ (0)

+ (−1)p
p
θg (4r+2)+q, g (4r′+0)+q′ (1). (14a)

From Eqs. (8a) and (8b), we obtain the following:

For 0 ≤ r, r ′ < n, 0 ≤ p, p′, q, q′ < 2,

p
θ f (0)

4r+2p+q, f
(0)
4r′+2p′+q′

(1) = 0. (14b)

We also obtain the following from Eqs. (10), (5a), (5c), (5e),
and (5g):

p
θ f (0)

4r+2p+q, f
(0)
4r′+2p′+q′

(2)

=
p
θg (4r+0)+q, g (4r′+0)+q′ (1)

+ (−1)(p−p′) p
θg (4r+2)+q, g (4r′+2)+q′ (1). (15a)

From Eqs. (8b) and (15a), we have the following:
p
θ f (0)

4r+2p+0, f
(0)
4r′+2p′+1

(2)

=
p
θg (4r+0)+0, g (4r′+0)+1 (1)

+ (−1)(p−p′) p
θg (4r+2)+0, g (4r′+2)+1 (1)

= 0. (15b)

From Eqs. (9b) and (15a), we have the following:

For p = p′,
p
θ f (0)

4r+2p+q, f
(0)
4r′+2p+q′

(2)

=
p
θg (4r+0)+q, g (4r′+0)+q′ (1)

+
p
θg (4r+2)+q, g (4r′+2)+q′ (1)

= 8
a
θhr , hr′ (τ). (16a)

Then we obtain
p
θ f (0)

(4r+0)+q, f
(0)
(4r′+0)+q′

(2) =

p
θ f (0)

(4r+2)+q, f
(0)
(4r′+2)+q′

(2). (16b)

For m ≥ 0, we can compute the correlation functions of the
proposed sequence set as follows.
From Eqs. (5a), (5c), (5e), (5g), and (11), we obtain the
following:

p
θ f (m+1)

4r+2p+q, f
(m+1)
4r′+2p′+q′

(2τ)

=
p
θ f (m)

4r+2p+0, f
(m)
4r′+2p′+0

(τ)

+ (−1)(q−q′) p
θ f (m)

4r+2p+1, f
(m)
4r′+2p′+1

(τ). (17a)

Also, from Eqs. (5b), (5d), (5f), (5h), and (11), we obtain the
following:

p
θ f (m+1)

4r+2p+q, f
(m+1)
4r′+2p′+q′

(2τ + 1)

= (−1)q
′ p
θ f (m)

4r+2p+0, f
(m)
4r′+2p′+1

(τ)

+ (−1)q
p
θ f (m)

4r+2p+1, f
(m)
4r′+2p′+0

(τ + 1). (17b)
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Then we obtain the following from Eqs. (13b), (17a), and,
(17b):

p
θ f (1)

4r+2p+q, f
(1)
4r′+2p′+q′

(0)

=
p
θ f (0)

4r+2p+0, f
(0)
4r′+2p′+0

(0)

+ (−1)(q−q′) p
θ f (0)

4r+2p+1, f
(0)
4r′+2p′+1

(0)

=
16n if 4r + 2p + q = 4r ′ + 2p′ + q′,

0 if 4r + 2p + q , 4r ′ + 2p′ + q′.
(18a)

From Eqs. (5b), (5d), (5f), (5h), and (10), we obtain

p
θ f (1)

4r+2p+q, f
(1)
4r′+2p′+q′

(1)

= (−1)q
′ p
θ f (0)

4r+2p+0, f
(0)
4r′+2p′+1

(0)

+ (−1)q
p
θ f (0)

4r+2p+1, f
(0)
4r′+2p′+0

(1)

= 0. (18b)

From Eqs. (5b), (5d), (5f), (5h), and (10), we obtain

p
θ f (1)

4r+2p+q, f
(1)
4r′+2p′+q′

(2)

=
p
θ f (0)

4r+2p+0, f
(0)
4r′+2p′+0

(1)

+ (−1)(q−q′) p
θ f (0)

4r+2p+1, f
(0)
4r′+2p′+1

(1)

= 0. (18c)

Next, we can compute the correlation function for phase shift
τ = 3 from Eqs. (5a)–(5h), and eqrs0def as follows:

p
θ f (1)

4r+2p+q, f
(1)
4r′+2p′+q′

(3)

= (−1)q
′ p
θ f (0)

4r+2p+0, f
(0)
4r′+2p′+1

(1)

+ (−1)q
p
θ f (0)

4r+2p+1, f
(0)
4r′+2p′+0

(2). (18d)

From Eqs. (14b) and (15b),

p
θ f (1)

4r+2p+q, f
(1)
4r′+2p′+q′

(3) = 0. (18e)

Then, from Eqs. (10) and (5c), we can compute the correla-
tion function for τ = 4 as follows:

p
θ f (1)

4r+2p+0, f
(1)
4r+2p+1

(4)

=
p
θ f (0)

4r+2p+0, f
(0)
4r+2p+0

(2)

−
p
θ f (0)

4r+2p+1, f
(0)
4r+2p+1

(2). (18f)

From Eqs. (16b) and (18f),

p
θ f (1)

4r+2p+0, f
(1)
4r′+2p′+1

(4)

= 0. (18g)

Thus, from Eqs. (13b), (14b), and Eqs. (18a)–(18e),
Theorem 1 is proved. □

4.2 Properties of the Proposed Sequence Set for m ≥ 1

We also have the following theorem:

Theorem 2. For m ≥ 1, the autocorrelation function of the
generated sequences, { f (m)

r |r = 0, . . . , 4n − 1}, has a ZCZ
from −(2m+1 − 1) to (2m+1 − 1), and the cross-correlation
function of the sequences has a ZCZ from −2m−13 to 2m−13,
as in the following:

For m ≥ 1,

∀r, p, q ∀|τ | ≤ 2m+1 − 1,
p
θ f (m)

4r+2p+q, f
(m)
4r+2p+q

(τ)

=
2(m+3)n, if τ = 0,

0, 0 < |τ | < 2m+1 − 1.
(19a)

For m ≥ 1,

∀(r, p, q) , (r ′, p′, q′), ∀τ, |τ | ≤ 2m−13,
p
θ f (m)

4r+2p+q, f
(m)
4r′+2p′+q′

(τ) = 0. (19b)

For m ≥ 1,
∀r, p,

p
θ f (m)

4r+2p+0, f
(m)
4r+2p+1

(2m+1) = 0, (19c)
p
θ f (m)

4r+2p+0, f
(m)
4r+2p+0

(2m+1) =

=
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+1

(2m+1). (19d)

Proof. Proof of Theorem 2 For m ≥ 1, we prove Theorem
2 by mathematical induction on m ≥ 1. Here, we consider
τ ≥ 0 without any loss of generality. For m = 1, Theorem
2 is identical to Theorem 1. Thus, Theorem 2 is proved for
m = 1. For m ≥ 1, we assume that Theorem 2 is satisfied
for { f (1)

4r+2p+q |0 ≤ r < 4, 0 ≤ p, q < 2}, . . . , { f (m−1)
4r+2p+q |0 ≤

r < 4, 0 ≤ p, q < 2}. From Eqs. (5g), (5g), (11), and (19a),
we can compute the autocorrelation function of the proposed
sequences as follows:

∀r, p, q ∀τ ≤ 2m+1 − 1,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r+2p+q

(2τ)

=
p
θ f (m)

4r+2p+0, f
(m)
4r+2p+0

(τ)

+
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+1

(τ)

=
2(m+3)+1n, if τ = 0,

0, if 0 < τ ≤ 2m+1 − 1.
(20a)
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From Eqs. (5b), (5h), (11), and (19a), we obtain the follow-
ing:

∀r, p, q, ∀τ ≤ 2m−13,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r+2p+q

(2τ + 1)

= (−1)q
p
θ f (m)

4r+2p+0, f
(m)
4r+2p+1

(τ)

+ (−1)q
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+0

(τ + 1)

= 0. (20b)

From Eqs. (5c), (5e), (11), and (19c), we can compute the
cross-correlation function of the proposed sequences as fol-
lows:

∀r, p,
p
θ f (m+1)

4r+2p+0, f
(m+1)
4r+2p+1

(2(m+1)+1)

=
p
θ f (m)

4r+2p+0, f
(m)
4r+2p+0

(2m+1)

−
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+1

(2m+1) = 0. (21a)

From Eqs. (5b), (5h), (11), and (19c), we can compute the
autocorrelation function of the proposed sequences as fol-
lows:

p
θ f (m+1)

4r+2p+0, f
(m+1)
4r+2p+0

(2(m+1)+1)

=
p
θ f (m)

4r+2p+0, f
(m)
4r+2p+0

(2m+1)

+
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+1

(2m+1). (22a)

Similarly, we obtain

=
p
θ f (m+1)

4r+2p+1, f
(m+1)
4r+2p+1

(2(m+1)+1)

=
p
θ f (m)

4r+2p+0, f
(m)
4r+2p+0

(2m+1)

+
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+1

(2m+1). (22b)

Then we have
p
θ f (m+1)

4r+2p+0, f
(m+1)
4r+2p+0

(2(m+1)+1)

=
p
θ f (m+1)

4r+2p+1, f
(m+1)
4r+2p+1

(2(m+1)+1). (22c)

From Eqs. (5b), (5h), (11), and (19c), we can compute the
autocorrelation function of the proposed sequences as fol-
lows:

∀r, p, q,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r+2p+q

(2(m+1)+1 − 1)

= (−1)q
( p
θ f (m)

4r+2p+0, f
(m)
4r+2p+1

(2m+1)

+
p
θ f (m)

4r+2p+1, f
(m)
4r+2p+1

(2m+1)
)
. (23a)

From Eqs. (20b), (21a), and (22c), we consequently obtain
the following:

∀r, p, q ∀τ ≤ 2(m+1)+1 − 1,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r+2p+q

(τ)

=
2((m+1)+3)n, if τ = 0,

0, if 0 < τ ≤ 2(m+1)+1 − 1.
(23b)

Similarly, we also obtain the following from Eqs. (11) and
(5a)–Eqs. (5h):

∀(r, p, q) , (r ′, p′, q′), 0 ≤ τ < 2m−13,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r′+2p′+q′

(2τ)

=
p
θ f (m)

4r+2p+0, f
(m)
4r′+2p′+0

(τ)

+ (−1)q−q
′ p
θ f (m)

4r+2p+1, f
(m)
4r′+2p′+0

(τ)

= 0, (24a)
For 0 ≤ r, r ′ < n, 0 ≤ p, p′, q, q′ < 2,

(r, p, q) , (r ′, p′, q′), 0 ≤ τ < 2m−13 − 1,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r′+2p′+q′

(2τ + 1)

= (−1)q
′ p
θ f (m)

4r+2p+0, f
(m)
4r′+2p′+1

(τ)

+ (−1)q
p
θ f (m)

4r+2p+1, f
(m)
4r′+2p′+0

(τ + 1)

= 0. (24b)

Then we have the following:

∀(r, p, q) , (r ′, p′, q′), ∀τ ≤ 2(m+1)−13,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r′+2p′+q′

(τ) = 0. (24c)

From Eqs. (23b), (24c), (21a), and (22c), we obtain the fol-
lowing:

∀r, p, q ∀τ ≤ 2(m+1)+1 − 1,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r+2p+q

(τ)

=
2((m+1)+3)n, if τ = 0,

0, 0 < |τ | < 2(m+1)+1 − 1.
(25a)

∀(r, p, q) , (r ′, p′, q′), ∀τ, |τ | ≤ 2(m+1)−13,
p
θ f (m+1)

4r+2p+q, f
(m+1)
4r′+2p′+q′

(τ) = 0. (25b)

∀r, p,
p
θ f (m+1)

4r+2p+0, f
(m+1)
4r+2p+1

(2(m+1)+1) = 0, (25c)
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p
θ f (m+1)

4r+2p+0, f
(m+1)
4r+2p+0

(2(m+1)+1) =

=
p
θ f (m+1)

4r+2p+1, f
(m+1)
4r+2p+1

(2(m+1)+1). (25d)

Thus, Theorem 2 is proved. □
□

Theorems 1 and 2 indicate that the sequence set
{ f (m)

r |r = 0, . . . , 4n − 1} is Z (2m+3n, 4n, 2m+1 − 1) for
0 ≤ m ≤ 1 and Z (2m+3n, 4n, 2m−13)) for m ≥ 1.

The theoretical upper bound of the sequence member
size of a Z (L, N, z) sequence set is L

z+1 [3], [12], [17],
[20]. Theorem 1 indicates that the width of the ZCZ of
the proposed sequence set is exactly equal to the theoretical
bound for the ZCZ sequence set, from−(2m+1−1) to (2m+1−
1), for m ≤ 1. Theorem 2 indicates that the width of the ZCZ
of the autocorrelation function of the proposed sequence is
equal to the theoretical upper bound, from −(2m+1 − 1) to
(2m+1 − 1).

We can generate the following ZCZ sequence set
Z (32, 8, 3) from an Hadamard matrix of order 2:

f (1)
0 = [+,+,+,+,+,+,+,+,+, ı,−, ı̄,+, ı,−, ı̄,

+,−,+,−,+,−,+,−,+, ı̄,−, ı,+, ı̄,−, ı],
f (1)

1 = [+,−,+,−,+,−,+,−,+, ı̄,−, ı,+, ı̄,−, ı,
+,+,+,+,+,+,+,+,+, ı,−, ı̄,+, ı,−, ı̄],

f (1)
2 = [+,+,−,−,+,+,−,−,+, ı,+, ı,+, ı,+, ı,

+,−,−,+,+,−,−,+,+, ı̄,+, ı̄,+, ı̄,+, ı̄],
f (1)

3 = [+,−,−,+,+,−,−,+,+, ı̄,+, ı̄,+, ı̄,+, ı̄,
+,+,−,−,+,+,−,−,+, ı,+, ı,+, ı,+, ı],

f (1)
4 = [+,+,+,+,−,−,−,−,+, ı,−, ı̄,−, ı̄,+, ı,

+,−,+,−,−,+,−,+,+, ı̄,−, ı,−, ı,+, ı̄],
f (1)

5 = [+,−,+,−,−,+,−,+,+, ı̄,−, ı,−, ı,+, ı̄,
+,+,+,+,−,−,−,−,+, ı,−, ı̄,−, ı̄,+, ı],

f (1)
6 = [+,+,−,−,−,−,+,+,+, ı,+, ı,−, ı̄,−, ı̄,

+,−,−,+,−,+,+,−,+, ı̄,+, ı̄,−, ı,−, ı],
f (1)

7 = [+,−,−,+,−,+,+,−,+, ı̄,+, ı̄,−, ı,−, ı,
+,+,−,−,−,−,+,+,+, ı,+, ı,−, ı̄,−, ı̄],

where ı =
√
−1 and ı̄ = −ı.

4.3 Communications Applications

In a ds-cdma system, a sequence set is used for channel sepa-
ration. However, inaccurate synchronization and multi-path
propagation cause a time delay that destroys the orthogonal-
ity of the channel separation. In an approximately synchro-
nized cdma (as-cdma) system or quasi cdma (qs-cdma)
system, a ZCZ sequence set allows co-channel interference
to be eliminated [16]. The application of a ternary ZCZ se-
quence set to an as-cdma system was demonstrated in [17].

Fig. 1 Bit error eate with respect to the timing error.

Fig. 2 Bit error rate in terms of Eb /N0.

The proposed ternary ZCZ sequence set can be applied to
as-cdma in the same manner.

To show the performance of the proposed sequence sets
for an as-cdma system, the bit error rate (BER) of an as-
cdma system using the proposed sequence set (Z (64, 4, 12))
(n = 1 and m = 3) is estimated as shown in [1], [14], [15]

Figure 1 shows the BER performance with respect to
the timing error for the case of Eb/N0 = 8 dB. The perfor-
mance of the proposed sequence set, which is Z (84, 6, 13),
is compared with that of a GMW sequence of length 63 and
an M-sequence of length 63. The BER performance in terms
of Eb/N0 is shown in Fig. 2. These figures demonstrate the
advantage of the proposed sequence set when applied to an
as-cdma system with timing error. Tang et al. proposed a
sequence set having a low correlation sequence zone [19].

5. Conclusions

A new construction scheme of a quadriphase ZCZ se-
quence set was presented. The proposed sequence set
{ f (m)

r |r = 0, . . . , 4n − 1} is constructed from an Hadamard
matrix of order n for a non-negative integer m ≥ 0.

The proposed sequence construction can gen-
erate sequence sets { f (m)

r |r = 0, . . . , 2n − 1} having
Z (2m+4n, 8n, 2m+1 − 1)) for 0 ≤ m ≤ 1 and
Z (2m+4n, 8n, 2m−13)), for m ≥ 1, for given Hadamard ma-
trix of order n. The width of the ZCZ of the proposed
sequence set is exactly equal to the theoretical bound for the
ZCZ sequence set, from−(2m+1−1) to (2m+1−1) for m ≤ 1.
A quadriphase sequence can be easily applied to an actual
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system as a binary sequence. The optimal perfect binary
sequence is only Z (4, 1, 1). The proposed sequence set can
realize a flexible design of application systems. ZCZ width
z ≤ 3 is sufficient for usual applications.

For m ≥ 1, the width of the ZCZ of the autocorrelation
function of the proposed sequence set is exactly equal to the
theoretical bound for the ZCZ sequence set, from−(2m+1−1)
to (2m+1 − 1), whereas the width of the ZCZ of the cross-
correlation function of the proposed sequence is equal to the
theoretical upper bound, from −(2m−13) to (2m−13).

The simulation results of the application to an approxi-
mately synchronized cdma (as-cdma) system or quasi cdma
(qs-cdma) system show the high performance of the pro-
posed sequence set.
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