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Abstract—This paper studies the average achievable rate
(AAR) of spatial diversity multiple-input multiple-output
(MIMO) free-space optical (FSO) communications over correl-
ated Gamma-Gamma (G-G) fading channels. In particular, we
derive the AAR for two different combining techniques at the
receiver, namely: equal gain combining (EGC) and maximal ratio
combining (MRC). Based on the atmospheric fading correlation
analysis and by employing an approximation method for the
sum of correlated G-G random variables (RVs), closed-form
expressions for AAR are derived for the EGC scheme. For the
case of the MRC technique, we first derive the joint probability
distribution of correlated G-G RVs with arbitrary correlation
coefficient. The AAR is then computed based on the use of
the moment generating function (MGF). Numerical results with
practical channel correlation coefficients are presented to demon-
strate the negative impact of channel correlation on the system
performance. Monte-Carlo (M-C) simulations are also performed
to validate the analytical results, and an excellent agreement
between the analytical and simulation results is confirmed.

Index Terms—FSO, MIMO, correlated Gamma-Gamma fad-
ing, average achievable rate.

I. INTRODUCTION

Free-space optical (FSO) communications has emerged as a
promising alternative solution for metro and mobile backhaul
networks due to its ability of providing full-duplex, gigabits
per second connections [1], [2]. Operating over unlicensed
optical frequencies, the technology also effectively addresses
the spectrum scarcity problem in radio-frequency (RF) com-
munications. The uncertainty of atmospheric channel, how-
ever, poses various challenges in the design of FSO systems.
One of the main concerns arises from the presence of atmo-
spheric turbulence, which causes fluctuation in the transmitted
optical signal. This fluctuation is known as the turbulence-
induced fading or scintillation, which considerably degrades
the system performance. Over the years, many techniques
have been proposed to alleviate the negative impact of fading,
including, remarkably, spatial diversity and multi-hop relaying
transmission.

As the turbulence strength is proportional to the link
distance, using relay nodes to divide the transmission path
into short hops appears to be an obvious solution to reduce
the impact of fading [3]–[5]. Though multi-hop transmission
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technique can significantly improve the link availability, it is
not always a cost-effective solution due to the high cost and
sometimes infeasibility in construction of FSO relay nodes.
In this regard, the use of multiple transmitters and multiple
receivers to form a multiple-input multiple-output (MIMO)
transmission could be a less complex and more economical
solution to combat fading. This technique has also been
proven to be effective for improving the reliability of the
communication channels by means of spatial diversity [6]–[8].
By introducing additional degrees of freedom in the spatial
domain, i.e, transmitting multiple replicas of the same signal
over multiple channels and combining them at the receiver,
the depth of fading can be substantially reduced [9]. In
practical MIMO systems, however, the promising benefit of
spatial diversity may not be fully achieved when the fading
among sub-channels are correlated, i.e., the separations among
transmitters are smaller than the correlation length of the
fading. Hence, the impact of channel correlation is crucially
important in evaluating the system performance.

Over the past decade, studies on performance analysis of
FSO systems have been reported for various channel models
[7], [8], [10]–[15]. Of which, the Gamma-Gamma (G-G)
turbulence model is mostly assumed due to its accuracy for
a wide range of turbulence conditions and tractable math-
ematical form. For MIMO-FSO systems over correlated G-G
channels, there were several studies with the assumption of
a simplified channel correlation model, e.g., the exponential
correlation model [16], [17]. Nonetheless, the exponential
correlation model, which is originally used in RF communica-
tions, is not suitable to characterize the correlated atmospheric
turbulence channels. Therefore, recent works have been con-
ducted to investigate the characteristics of the atmospheric
turbulence-induced fading correlation [18]–[20]. In [18] and
[19], by using wave-optics and Monte-Carlo (M-C) simula-
tions, the impacts of turbulence strength, link span, diameter
and separation of receiver apertures on the channel correlation
have been clarified for receive and transmit diversity systems,
respectively. However, since simulation methods can only
focus on specific configurations, it is difficult to extend the
results to general cases. To deal with this issue, study in [20]
has presented the correlation coefficient as a function of the
above-mentioned parameters.

Our goal in this paper is to study the average achievable
rate (AAR) of spatial diversity MIMO-FSO systems over
correlated G-G fading channels with an arbitrary correlation
using the analysis in [20]. Regarding the AAR of spatial di-
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versity MIMO-FSO systems, most of previous studies assumed
independent fading channels. The AAR over log-normal fading
channels were considered in [21] and [22] with and without
bandwidth constraints, respectively. The authors in [23] in-
vestigated the AAR for both spatial multiplexing and spatial
diversity MIMO-FSO links with pointing error also over log-
normal channels. To the best of our knowledge, our study in
[7] was the first work on the AAR of spatial diversity MIMO-
FSO systems over independent and identically distributed G-G
fading. Zhang et al. in [8] generalized the results for inde-
pendent but not necessarily identically distributed fading. In
this paper, we aim to extend our previous study by considering
correlated G-G fading channels. In particular, the AAR will
be computed for two different combining techniques, namely:
equal gain combining (EGC) and maximal ratio combining
(MRC). To do so, we first utilize an approximation method to
the sum of correlated G-G random variables (RVs) proposed in
[19] as a benchmark for further analyses. The error behavior
of the approximation is also investigated by employing the
Kolmogorov-Smirnov (KS) goodness-of-fit test. For the case
of EGC, by using the approximation, a closed-form expression
in terms of Meijer-G function for the AAR is derived. In
the case of MRC, it is more challenging to compute the
AAR due to the cumbersome expression of the combined
signal. We first derive the joint distribution of correlated G-
G RVs with arbitrary correlation matrix. It should be noted
that such distribution was studied in [24]. In that work, the
G-G fading was considered as arising from multipath fading
and shadowing where the shadowing components are generally
assumed to be independent. Hence, the correlation coefficient
of the G-G fading is a function of the correlation coefficient
of the multipath fading only. In the case of atmospheric turbu-
lence channels, the G-G fading arises from large- and small-
scale turbulence eddies. As a result, the fading correlation is
represented in terms of the correlation coefficients between
large- and small-scale turbulence components whose values
depend on channel conditions and the structure of receivers.
In the conference version of the paper [25], we adopted the
joint PDF expression of correlated G-G RVs in [24], which is
only valid for the case of independent small-scale turbulence
fading, to characterize the atmospheric turbulence channels
in FSO systems. The assumption of independent small-scale
turbulence fading, however, is not always realistic especially
in the case of strong turbulence regime. As a result, a joint
PDF expression for the correlated G-G fading (correlated G-G
RVs) with arbitrary correlation coefficients of small-scale and
large-scale turbulence components should be derived. More
explicitly, the main contributions of the paper include

• A closed-form expression for the joint PDF of correlated
G-G RVs with arbitrary correlation coefficients of small-
scale and large-scale turbulence components. Having the
joint distribution of correlated G-G RVs, we then adopt
the moment generating function (MGF)-based framework
in [26] to calculate the AAR in the case of MRC.

• A proof of the approximation method to the sum of
correlated G-G RVs proposed in [19] (Proposition 1)
is provided (Appendix A). The error behaviors of the

method for different correlation coefficient parameters are
thoroughly evaluated through KS goodness-of-fit statist-
ical test.

• Numerical results with realistic link parameters including
the turbulence strength and correlation coefficients are
comprehensively demonstrated.

The remainder of the paper is organized as follows. In
Section II, the G-G fading model and the turbulence channel
correlation analysis are described. Section III focuses on an
approximation method for the sum of correlated G-G RVs.
Based on the method, closed-form expressions for the AAR
are derived in Section IV. Section V presents some numerical
results and finally we conclude the paper in Section VI.

II. GAMMA-GAMMA TURBULENCE-INDUCED FADING

A. Gamma-Gamma Model

The G-G model (also known as the Generalized-K model
in some studies) has been widely used to characterize the
turbulence-induced fading in FSO communications. Let X be
a G-G RV which represents the turbulence fading. Originally,
X is derived from the product of two independent Gamma
RVs, which describe the fading caused by the large-scale
and small-scale turbulence components [27]. The probability
density function (PDF) of the G-G distribution is given by

fX(x) =
2(αβΩ )(α+β)/2

Γ(α)Γ(β)
x(α+β)/2−1Kα−β

(
2

√
αβx

Ω

)
, (1)

where Γ(·) is the gamma function, Kα−β(·) is the modified
Bessel function of the second kind and order α − β and Ω
is the expected value which, without loss of generality, is
normalized to 1. α and β are the shaping parameters of the
RV which represent the effective numbers of large-scale and
small-scale turbulences, and in the case of zero-inner scale
they are given by [28]

α =

{
exp

[
0.49σ2

R(
1 + 1.11σ

12/5
R

)7/6

]
− 1

}−1

, (2)

β =

{
exp

[
0.51σ2

R(
1 + 0.69σ

12/5
R

)5/6

]
− 1

}−1

. (3)

The parameter σ2
R denotes the Rytov variance, and for the case

of plane wave propagation, it is given by [27]

σ2
R = 1.23C2

nk
7/6L11/6, (4)

where k = 2π/λ, with λ is the optical wavelength, is the
optical wave number, L represents the transmission distance
and C2

n is the altitude-dependent index of the refractive
structure parameter which determines the turbulence strength.
The n−th moment of X is given by [29]

E[Xn] =
Γ(α+ n)Γ(β + n)

Γ(α)Γ(β)

(
αβ

Ω

)−n
. (5)
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Figure 1: (a) Correlation coefficient versus aperture separa-
tion for different values of turbulence strength, link range
L = 2000 m; (b) Correlation coefficient versus link range for
different values of turbulence strength with receiver separation
d = 6 cm.

B. Channel Correlation Analysis

1) General Turbulence Conditions: In practical MIMO-
FSO systems, the correlation among sub-channels is some-
times inevitable, especially, for an extended link and/or a
relatively small aperture separation. The prediction of the
channel correlation is of importance in evaluating the system
performance since it significantly affects the spatial diversity
gain. In general, the correlation coefficient is a function of the
turbulence strength, the link span, the aperture diameter, and
the receiver separation. The correlation coefficient ρ between
two receivers separated by the distance d is given by

ρ =
ω(d)

ω(0)
, (6)

where ω(d) is the spatial covariance function of irradiance,
which is given as

ω(d) = exp

{
8π2k2L

∫ 1

0

∫ ∞
0

κΦn,eff(κ)J0(κd)

× exp
(
−D2κ2

16

)[
1− cos

(
Lκ2ξ

k

)]
dκdξ

}
− 1, (7)

where D is the receiver aperture diameter, J0(·) is the Bessel
function of the first kind and zero order, and Φn,eff(κ) rep-
resents the effective atmospheric spectrum [20]. Assume the
case of zero-inner scale and infinity-outer scale, Φn,eff(κ) can
be given by [28]

Φn,eff(κ) =0.033C2
nκ
−11/3

×

[
exp

(
− κ2

κ2
X,0

)
+

κ11/3

(κ2 + κ2
Y,0)11/6

]
, (8)

with

κ2
X,0 =

k

L

2.61

1 + 1.11σ2
R

, (9)

κ2
Y,0 =

3k

L

(
1 + 0.69σ

12/5
R

)
. (10)

An illustration of the relationship between the correlation
coefficient and different system parameters is presented in Fig.
1. Generally, the correlation coefficient decreases dramatically
when the aperture separation increases and is proportional to
the transmission distance. It is also seen that the correlation
coefficient increases in accordance with the increase in the
refractive structure parameter C2

n. The observation is logical
due to the fact that channel correlation between two channels
mainly arises from the deflection of optical beams propagating
through large-scale turbulence eddies whose sizes are larger
than the scattering disk L/kρ0, where ρ0 =

(
1.46C2

nk
2L
)−3/5

is the transverse correlation width (a.k.a spatial coherence
scale) [28]. Along the transmission path, these large-scale
turbulence eddies can be divided into common eddies where
both optical beams go through and independent eddies where
either one of the two beams does. The common eddies deflect
the two optical beams simultaneously and thus cause channel
correlation. When L and/or C2

n increases, the scattering disk
increases as well (C2

n is inversely proportional to ρ0 thus is
proportional to the L/kρ0), resulting in an increase in the
average size of the large-scale turbulence eddies. Accordingly,
the probability of having common eddies increases, leading to
the higher channel correlation.

2) Gamma-Gamma (G-G) Turbulence Condition: In par-
ticular to the G-G turbulence model, the correlation ρ can
be considered arising partly from large- and small-scale tur-
bulence eddies. As a result, the fading correlation can be
represented in terms of the correlation coefficients between
large- and small-scale turbulence components. Particularly,
given Xi ∼ ΓΓ(αi, βi,Ωi)

1, Xj ∼ ΓΓ(αj , βj ,Ωj) and
the independence of large- and small-scale, the correlation
coefficient between Xi and Xj is given by [27]

ρij = ρji =
Cov(Xi, Xj)√
Var(Xi)Var(Xj)

=
ρsij
√
αiαj + ρlij

√
βiβj + ρsijρlij√

αi + βi + 1
√
αj + βj + 1

, (11)

where ρsij and ρlij are small- and large-scale fading coeffi-
cients between Xi and Xj , respectively. Cov(·) and Var(·) de-
note the covariance and the variance operators. Specifically, for
the case of identically correlated, i.e., ρsij = ρs and ρlij = ρl,
and identically distributed G-G RVs, i.e., αi = αj = α,
βi = βj = β, Eq. (11) reduces to

ρ =
αρs + βρl + ρsρl

α+ β + 1
. (12)

It is seen from the above equation that given a value of
ρ, there are an infinite number of solutions for ρs and ρl.
Therefore, ρs and ρl should be chosen appropriately to predict

1In this paper, we use the notation X ∼ ΓΓ(α, β,Ω) to indicate that the
RV X follows the G-G distribution with parameters (α, β,Ω).
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the system performance accurately. However, there is a set of
criteria for selecting the values of ρs and ρl depending on the
turbulence conditions. In particular, in the strong turbulence
regime, the intensity fluctuations arising from the small-scale
turbulence can be averaged out effectively, leading to ρs ≈ 0.
On the other hand, under weak-to-moderate turbulence regime,
all turbulence eddies of any size affect the propagating beam,
which results in ρs = ρl. Finally, under moderate-to-strong
turbulence regime2, both small- and large-scale turbulence
components affect the multiple apertures simultaneously, while
the correlation for the large-scale component is higher than
that of the small-scale one. In this case, we can only conclude
that ρs < ρl and the system performance lies between those
of the cases when ρs ≈ 0 and ρs = ρl.

III. APPROXIMATION TO THE SUM OF CORRELATED
GAMMA-GAMMA RANDOM VARIABLES

A. Approximation Method

In this section, we investigate the distribution of the sum of
correlated G-G RVs as the foundation for further performance
analyses. Let {Xi ∼ ΓΓ(αi, βi,Ωi)}K1 be a set of K correlated
G-G RVs. The sum of them is defined as

Z =

K∑
i=1

Xi. (13)

The exact statistic of Z, however, remains unknown. There-
fore, an approximation approach for the sum of correlated
G-G RVs is of great interest due to its simple mathematical
form while still providing an acceptable accuracy. For the case
of correlated G-G RVs, several approximation methods have
been proposed in the literature. In [30], using the moment
matching method, the sum of two correlated G-G RVs was
approximated by an α − µ RV. Numerical results showed a
good accuracy of the method. However, the parameters of the
approximating α − µ RV can only be obtained numerically
using software packages, e.g., MATLAB, due to the difficult
nonlinear equations. The use of a Gamma RV as the approx-
imating RV has been studied in [31]. The main drawback of
the approach is the need of adjustment parameters, which are
introduced to tighten the accuracy in the case of large values
of the standard deviation of the summands. In [32], the PDF
and the cumulative distribution function (CDF) of the sum of
correlated G-G RVs were approximately represented through
finite series forms that are cumbersome to use in analyzing the
channel achievable rate. Another approach that uses a G-G RV
for the approximation has been proposed in [19]. However,
expressions for deriving the parameters of the approximating
G-G RV had not been clarified. In this paper, we adopt the
approach in [19] and provide a proof for it. Furthermore,
we quantitatively evaluate the error behavior of the method
through Kolmogorov-Smirnov (KS) goodness-of-fit statistical
test [33].

2For the sake of simplicity, this uncertain case is excluded in this study.
It should be noted that the moderate-to-strong turbulence regime, which is
defined as σ2

R is slightly larger than 1, does not necessarily include the strong
turbulence one which corresponds to σ2

R apparently larger than 1.
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Figure 2: PDF plots of the sum of correlated G-G RVs and
the approximating G-G RV.
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Figure 3: CDF plots of the sum of correlated G-G RVs and
the approximating G-G RV.

Proposition 1: The sum of K statistically correlated and
identically distributed G-G RVs, i.e., {Xi ∼ ΓΓ(α, β,Ω)}K1 ,
can be accurately approximated by another G-G RV, e.g., Y
whose parameters (α, β,Ω) are given by

α = hα, β = hβ, Ω = KΩ, (14)

where h is given by

h = K

(
1 +

2

K

K∑
i=1

K∑
j=i+1

ρij

)−1

, (15)

with ρij being the correlation coefficient between Xi and Xj .
Proof: See appendix A.

B. Numerical Examples

We demonstrate the accuracy of the approximation method
by comparing the statistic of the approximating RV Y with that
of the simulation data. The simulated PDF and CDF of the sum
of G-G RVs generated from 2× 106 samples by Monte-Carlo
(M-C) method are used for reference. The generation of K
correlated G-G RVs for the simulation is based on generating
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Figure 4: KS goodness-of-fit test for K = 2 and ρs = ρl =
0.3.

two separate sets of K correlated Gamma RVs. Using the
Decomposition Method [34], correlated Gamma RVs with
arbitrary correlation coefficient can be generated efficiently.

Firstly, Fig. 2 and Fig. 3 compare the PDFs and CDFs of
the approximating G-G RV with that of the simulation data
for different shaping parameters (α, β) of the approximated
G-G RVs, correlation coefficients and numbers of summands
K, respectively. Specifically, Table I shows the obtained
parameters of the approximating G-G RV for the considered
settings.

Table I: Parameters of the approximating G-G RV.

Approximated G-G RVs, Xi Approximating G-G RV, Y

K = 2

α = 4.5, β = 3.3 α = 7.0525

ρs = ρl = 0.3 β = 5.1719
Ω = 1 Ω = 2
α = 2, β = 2 α = 3.4483

ρs = 0, ρl = 0.4 β = 3.4483
Ω = 1 Ω = 2

K = 4

α = 4.5, β = 3.3 α = 9.8446

ρs = ρl = 0.3 β = 7.2194
Ω = 1 Ω = 4
α = 2, β = 2 α = 5.4054

ρs = 0, ρj = 0.4 β = 5.4054
Ω = 1 Ω = 4

It is clearly seen that there are always excellent fits between
the approximation and the simulation results. To quantitatively
evaluate the error behavior of the approximation method,
we employ the Kolmogorov-Smirnov (KS) goodness-of-fit
statistical test, which measures the maximum value T of the
absolute different between the empirical CDF of the sum
Z =

∑K
i=1Xi and the approximating RV Y , i.e.,

T
∆
=
∣∣∣FZ(x)− FY (x)

∣∣∣ (16)

To verify an approximation, the KS goodness-of-fit test com-
pares the statistical test value T with a critical level Tmax
for a significance level φ. An approximation is said to be
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Figure 5: KS goodness-of-fit test for K = 2 and ρs = 0,
ρl = 0.4.

accepted with significance level (1 − φ) if T ≤ Tmax, while
it is considered to be rejected with the same significance
level if T > Tmax. The critical value of Tmax is given by
Tmax =

√
− 1

2v ln φ
2 with φ is the significance level and v is

the number of samples of RV for the simulation. Here, we
choose the typical values φ = 5% and v = 104, resulting in
the critical value Tmax = 0.0136 [35]. In Fig. 4, we show the
KS statistic test of the approximation method with K = 2,
ρs = ρl = 0.3 and Ω = 1 for different values of α and β.
The presented result is obtained by averaging the results of 80
simulation runs. We observed that the approximation method
is valid, i.e., T ≤ 0.0136 when either α or β is smaller than
2. On the other hand, the method fails when both α ≤ 2 and
β ≤ 2, i.e., very strong turbulence conditions. Fig. 5 illustrates
the KS statistic test for the case when ρs = 0 and ρl = 0.4. It
is seen that compared to the case of ρl = ρs, the approximation
method performs worse, especially when α and β are small. In
particular, it fails when both α ≤ 4 and β ≤ 4 and is accepted
when at least one of the parameters is larger than 4. We will
show later in Section V that with typical setup parameters, the
value of α is always larger than 4 thus revealing the validity
of the approximation method in characterizing the AAR.

IV. AVERAGE ACHIEVABLE RATE ANALYSIS

A. MIMO-FSO Transmission

We consider a MIMO-FSO system which is equipped with
M transmitters and N receivers. The commonly used intensity
modulation/direction detection (IM/DD) scheme with On-Off
Keying (OOK) signaling is assumed. The received signals at
the receivers are combined by either equal gain combining
(EGC) technique or maximum ratio combing (MRC) tech-
nique. In both cases, the received signal at the output of the
n−th receiver can be written as

rn = ηPtx

M∑
m=1

Imn + zn, (17)

where Pt is the average received optical power, x ∈ [0, 1]
represents the information bits, η is the optical-to-electrical



6

conversion coefficient and zn is the receiver thermal noise
which is modeled as stationary Gaussian random process with
zero mean and variance N0/2. Imn denotes the fading gain
of the link connecting the m−th transmitter and the n−th
receiver, which is modeled as a G-G RV. The spatial separa-
tions among transmitters as well as receivers are much smaller
than the link range, hence Imn’s can be reasonably assumed
to be identically distributed. Without lost of generality, we
normalize E[Imn] = 1, i.e., Imn ∼ ΓΓ(α, β, 1), to ensure that
the fading does not degrade or amplify the average transmitted
signal power.

B. Average Achievable Rate

It is well known that the atmospheric turbulence over FSO
channels is slow in fading, which is equivalent to communica-
tion over channels where there is a nonzero probability that any
given transmission rate cannot be supported by the channel.
Since the coherence time of the channel is in the order of
milliseconds, atmospheric turbulence-induced fading remains
constant over a large number of transmitted bits [36], [37].
Without any delay constraints, if the codeword extends over
at least several atmospheric coherence times, which allows
coding across both deep and shallow fade channel realizations,
the fast fading regime can be assumed. With proper coding
and interleaving, the AAR can be expressed as an average over
many independent fades of the atmospheric channel. The AAR
is the expectation with respect to the gains of the instantaneous
rate [23], [38]

C = B

∫ ∞
0

log2(1 + γ)fγ(γ)dγ, (18)

where γ denotes the instantaneous SNR of the channel, fγ(γ)
is the PDF of γ and B is the channel bandwidth.

1) Equal Gain Combining (EGC): For the EGC scheme,
the combined signal r at the destination is given as

r =
ηPx

MN

N∑
n=1

M∑
m=1

Imn + z, (19)

where P = MPt is the total received optical power and,
without lost of generality, is normalized to unity. The scaling
factor MN in Eq. (19) appears to guarantee that the total
transmitted power and the total received power of the MIMO
channel are the same with that of a single-input single-
output (SISO) channel. To evaluate the AAR, it is required to
characterize the statistic of the combined signal. Specifically
in this case, we need to deal with the distribution of the sum of
MN correlated G-G RVs I =

∑N
n=1

∑M
m=1 Imn. According

to Proposition 1, I can be approximated by a G-G RV Ĩ whose
PDF is given by

fĨ (̃i) =
2
(
αsβs
MN

)αs+βs
2

Γ(αs)Γ(βs)
ĩ
αs+βs

2 −1Kαs−βs

2

√
αsβs
MN

ĩ

 ,

(20)

where αs and βs are the shaping parameters of Ĩ , whose values
are obtained by Proposition 1.

From Eq. (19), as P is normalized to unity, the instantan-
eous SNR γ is given by γ = (ηI)2

M2N2N0
≈ (ηĨ)2

M2N2N0
and after

some simple mathematical transformations, we obtain the PDF
of γ as

fγ(γ) =

(αsβs
MN

)αs+βs
2

Γ(αs)Γ(βs)

γ
αs+βs

4 −1

γ
αs+βs

4
0

Kαs−βs

2

√
αsβs
MN

√
γ

γ0

 ,

(21)

where γ0 = η2

M2N2N0
. Plugging Eq. (21) into Eq. (18), then

expressing the logarithmic and the Bessel functions in terms of
the Meijer-G functions [40, Eq. (8.4.6.5)] [40, Eq. (8.4.23.1)],
a closed-form expression for the AAR can be obtained as

C =
B

4π

(
αsβs
MN

)αs+βs
2

Γ(αs)Γ(βs)

1

γ
αs+βs

4
0

×G6,1
2,6

 αs
2βs

2

16M2N2γ0

∣∣∣∣∣∣∣
−αs+βs4 , −αs+βs4 + 1

αs−βs
4 , αs+βs+2

4
βs−αs

4 , βs−αs+2
4 ,−αs+βs4 ,−αs+βs4

 .
(22)

2) Maximum Ratio Combining (MRC): In the case of MRC
scheme, the gain of each sub-channel is made proportional to
the received signal intensity. The total transmitted power is
also normalized to unity, resulting in the combined signal

r =
xη

M
√
N

√√√√ N∑
n=1

I2
n + z, (23)

where In =
∑M
m=1 Imn is the combined signal at the n−th

receiver. Compared to the case of EGC, in this combining
scheme, the combined signal involves the square of the sum
of G-G RVs which is more cumbersome to handle. To calculate
the AAR in this case, we utilize the moment generating func-
tion (MGF)-based framework developed in [26]. According to
this method, Eq. (18) can be expressed in the following form

C =
1

ln 2

∫ ∞
0

Ei(−γ)M(1)
γ (γ)dγ, (24)

where Ei(·) is the exponential integral function [41, Eq.
(5.1.2)] and M(1)

γ (γ) is the first derivative of the MGF of
γ. Using [26, Corollary 2], Eq. (24) can be computed as

C =
π

Q ln 2

Q∑
q=1

H
(

tan(θq)√
2

)
sin(2θq)

+RQ, (25)

where H(x) = xEi(−x)M(1)
γ (x) and θq = (2q − 1)π/(4Q).

The remainder term RQ denotes the error as described in [41,
Ch. 25]. From Eq. (23), the combined SNR is given by

γ =
η2

M2NN0

N∑
n=1

I2
n =

N∑
n=1

γn, (26)

where γn = η2

M2NN0
I2
n. As can be seen from Eq. (25), in order

to compute the channel achievable rate, we first need to derive
the MGF of γ. In the case of uncorrelated fading, Mγ(x)
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can be obtained as the product of the individual Mγn(x).
However, in the case of correlated fading, it is necessary to
find the joint probability distribution of (γ1, γ2, . . . , γN ) for
the derivation of Mγ(x).

To characterize the joint statistic of (γ1, γ2, . . . , γN ), the
distribution of In should be known beforehand. Similar to the
case of EGC, In can be well approximated by a G-G RV
zn ∼ ΓΓ(αn, βn,M) with its shaping parameters αn, βn are
given by Proposition 1. Once In is approximated as a G-G
RV, γ can be considered as a squared G-G RV. As a result,
the PDF of γn can be written as

fγn(γn) =

(
αnβn
M

)αn+βn
2

Γ(αn)Γ(βn)

γ
αn+βn

4 −1
n

γ
αn+βn

4
0

×Kαn−βn

2

√
αnβn
M

√
γn
γ0

 , (27)

where γ0 = η2

M2NN0
.

Proposition 2: The correlation coefficient ϕm,n between
Im and In (m 6= n) is given in Eq. (28) at the top of the
next page, where ρmn,pq denotes the correlation coefficient
between the link connecting the m−th transmitter and the
n−th receiver with that connecting the p−th transmitter and
the q−th receiver.

Proof: See Appendix B.
Let us denote ϕlm,n and ϕsm,n be the large- and small-

scale correlation coefficients between Im and In, respectively.
Based on Eq. (12) with known ϕm,n and the criteria for setting
the correlation coefficients as stated in Section II, the values
of ϕlm,n and ϕsm,n can easily be obtained. We then define
Ψl and Ψs as the large- and small-scale correlation matrices,
which are given by

Ψl =


ϕl1,1 ϕl1,2 · · · ϕl1,N
ϕl2,1 ϕl2,2 · · · ϕl2,N

...
...

. . .
...

ϕlN,1 ϕlN,2 · · · ϕlN,N

 , (29)

Ψs =


ϕs1,1 ϕs1,2 · · · ϕs1,N
ϕs2,1 ϕs2,2 · · · ϕs2,N

...
...

. . .
...

ϕsN,1 ϕsN,2 · · · ϕsN,N

 , (30)

respectively.
Corollary 1: The joint PDF of N identically distributed

squared G-G RVs γ1, γ2, · · · , γN , i.e., αm = αn = α and
βm = βn = β, is given by

fγγγ(γγγ)=
2N |Wl|α|Ws|β

Γ(α)Γ(β)

∞∑
i1,...,iN−1=0
k1,...,kN−1=0

(
αβ

M

)N(α+β)
2 +

N−1∑
n=1

(in+kn)

×
N∏
n=1

γ
µn−1

2
n

γ
µn+1

2
0

ωsn,n
ωln,n

K2νn

2

√
ωln,nωsn,nαβ

M

√
γn
γ0


×
N−1∏
n=1

[ |ωln,n+1 |2in
in!Γ(α+ in)

][ |ωsn,n+1 |2kn

kn!Γ(β + kn)

]
, (31)

where µn =
α+δj+εn+β

2 − 1, νn = α+δn+εn−β
2 with δn =

in + kj , εn = in − kn for n = 1, δn = iN−1 + kN−1, εn =
iN−1 − kN−1 for n = N and δn = in−1 + in + kn−1 + kn,
εn = in−1 + in−kn−1−kn for n = 2, 3, . . . , N − 1. Wl and
Ws denote the inverse of Ψl and Ψs with elements ωlm,n and
ωsm,n , respectively.
Proof: See Appendix C.

The joint PDF in (31) requires Wl and Ws to have the
tridiagonal property. However, the inverses of Ψl and Ψs

are not tridiagonal matrices in the general case. To make
the expression in Eq. (31) applicable for arbitrary correlation
matrices, one possible approach is to approximate Ψl and Ψs

with Green matrices Cl and Cs, respectively. Details on the
Green maxtrix approximation can be found in [39].

Corollary 2: The joint MGF of (γ1, γ2, · · · , γN ) is given
by

Mγγγ(sss)=
|Wl|α|Ws|β

Γ(α)Γ(β)

∞∑
i1,...,iN−1=0
k1,...,kN−1=0

(
αβ

M

)N(α+β)
2 +

N−1∑
n=1

(in+kn)

×
(

1

4π

)N N∏
n=1

1

γ
µn+1

2
0

(
ωsn,n
ωln,n

)νn
sn
−µn+1

2

×G4,1
1,4

[
(ωsn,nωln,nαβ)2

16M2γ0sn

∣∣∣∣∣ 1−µn
2

νn
2 ,

νn+1
2 , −νn2 , −νn+1

2

]

×
N−1∏
n=1

[ |ωln,n+1 |2in
in!Γ(α+ in)

][ |ωsn,n+1 |2kn

kn!Γ(β + kn)

]
. (32)

Proof: Based on Eq. (31), the joint MGF of
(γ1, γ2, · · · , γN ) is given by

Mγγγ(sss) =

∫ ∞
0

· · ·
∫ ∞

0

exp

(
−

N∑
n=1

snγn

)
fγγγ(γγγ)dγγγ. (33)

By expressing the Bessel function in terms of the Meijer-G
function and using the identity [40, Eq. (2.24.1.1)], the joint
MGF is derived as in Eq. (32) .

By denoting

A=
|Wl|α|Ws|β

Γ(α)Γ(β)

∞∑
i1,...,iN−1=0
k1,...,kN−1=0

(
αβ

M

)N(α+β)
2 +

N−1∑
n=1

(in+kn)

×
(

1

4π

)N N∏
n=1

1

γ
µn+1

2
0

(
ωsn,n
ωln,n

)νn
×
N−1∏
n=1

[ |ωln,n+1 |2in
in!Γ(α+ in)

][ |ωsn,n+1 |2kn

kn!Γ(β + kn)

]
, (34)

and

B(sn)=sn
−µn+1

2

×G4,1
1,4

[
(ωsn,nωln,nαβ)2

16M2γ0sn

∣∣∣∣∣ 1−µn
2

νn
2 ,

νn+1
2 , −νn2 , −νn+1

2

]
,

(35)
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ϕm,n =

M∑
i=1

M∑
j=1

ρmi,nj√√√√(M + 2
M∑
i=1

M∑
j=i+1

ρmi,mj

)(
M + 2

M∑
i=1

M∑
j=i+1

ρni,nj

) (28)
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Figure 6: Effective numbers of large-, small-scale turbulences
and Rytov variance versus the refractive structure index for
different transmission distances.

Eq. (32) can be rewritten as

Mγγγ(sss) = A

N∏
n=1

B(sn). (36)

Taking the derivative with respect to sss, we obtain

M(1)
γγγ (sss) = A

N∑
n=1

B(1)(sn)

N∏
m=1,m 6=n

B(sm)

 . (37)

With the help of [40, Eq. (8.2.1.30)], the derivative of B(sj)
can be given by

B(1)(sn)=−s−
µn+3

2
j

×G4,2
2,5

[
(ωsn,nωln,nαβ)2

16M2γ0sn

∣∣∣∣∣ −µn+1
2 , 1−µn

2
νn
2 ,

νn+1
2 , −νn2 , −νn+1

2 , 1−µn
2

]
.

(38)

Finally, by substituting Eqs. (38) and (37) into Eq. (24), a
closed-form expression for the AAR of the MRC scheme can
be obtained.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results for the AAR derived in
section IV are presented. Unless otherwise noted, the AWGN
noise variance N0 = 2 × 10−14 is assumed. The optical
wavelength λ = 1.55 µm, the receiver aperture diameter
D = 8 cm, the separation distance among apertures d = 6
cm and the link length L = 2000 m are chosen.

First, Fig. 6 illustrates the effective numbers of large-,
small-scale turbulences and the Rytov variance σ2

R versus
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Figure 7: AAR versus transmit SNR for different number of
transmitters and receivers with EGC scheme, C2

n = 5×10−15.
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Figure 8: AAR versus transmit SNR for different number of
transmitters and receivers with EGC scheme, C2

n = 5×10−14.

the refractive structure index C2
n for different transmission

distances. Typically, weak, moderate and strong turbulence
conditions correspond to σ2

R < 1, σ2
R ≈ 1 and σ2

R > 1,
respectively. As mentioned previously in the paper, we are
interested in weak and strong turbulence regimes whose
representative C2

n values at a 2 km transmission link are
chosen to be 5 × 10−15 and 5 × 10−14, respectively. For the
examined transmission distances, we observed that the value
of α is always approximately greater than 4. The value of β
is inversely proportional to C2

n and approaches 1 as C2
n goes
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Figure 10: AAR versus transmit SNR for different number of
transmitters and receivers with MRC scheme, C2

n = 5×10−14.

to infinity. According to the KS test results in Figs. 4 and 5,
since there is at least one effective number parameter larger
than 4, the approximation method in Section II is valid to use.

Figures 7 and 8 show the AAR of the EGC scheme
versus the transmit SNR γ̄0 = η2

N0
with different numbers

of transmitters and receivers for weak and strong turbulence
conditions. Both uncorrelated and correlated fading cases are
taken into considered. In the case of correlated fading, the
correlation coefficients are ρ = 0.2 and 0.4 for weak and
strong turbulence, respectively. These values of the correlation
coefficient are obtained through Fig. 1a under the aforemen-
tioned system parameters. M-C simulations are performed and
a good agreement between the analytical and the simulation
results can be confirmed. In the case of weak turbulence, it
is obvious that the impact of channel correlation is negligible,
i.e., the gap between uncorrelated and correlated performance
is small due to the small value of the correlation coefficient. In
the case of strong turbulence, however, the effect of channel
correlation is more severe as we observed a clear performance

degradation in the case of correlated channel. Also, it is
seen that deploying diversity at both transmitter and receiver,
i.e., 2 × 2 MIMO configuration, results in a slightly better
performance compared to having receive diversity only, i.e.,
1 × 3 MIMO configuration. Furthermore, the two figures
confirm the benefit of using MIMO transmission, especially
in strong turbulence conditions. At the rate of 4 bits/s/Hz,
the uncorrelated and correlated 2× 2 MIMO systems achieve
2.4 dB and 1.4 dB power gains, respectively, for the strong
turbulence regime. In the case of weak turbulence, these gains
are 0.8 dB and 0.6 dB, respectively. The accuracy of the Green
matrix approximation is confirmed in the case of correlated
1× 3 MIMO. Assume that the apertures are placed circularly
so that their separations are the same, the small- and large-
scale correlation matrices are identical and given by

Ψ =

 1 0.2116 0.2116
0.2116 1 0.2116
0.2116 0.2116 1

 , (39)

whose inverse is not tridiagonal. A Green matrix approxima-
tion to Ψ is obtained as

C =

 1 0.25 0.0625
0.25 1 0.25

0.0625 0.25 1

 , (40)

with the mean square error of 0.0056.
In Figs. 9 and 10, the AAR of the MRC scheme with the

same setting as in the EGC case is depicted for weak and
strong turbulence regimes. First, it is confirmed that the MRC
scheme outperforms the EGC one in both uncorrelated and
correlated scenarios. Interestingly, unlike the EGC scheme, the
1×3 configuration performs better than the 2×2 configuration.
Thus, the higher diversity order (i.e., the number of sub-
channels) means the greater diversity gain. In case of MRC, as
the output SNR is the sum of SNRs at each receive aperture,
hence the more receiver apertures generally offers better
performance (e.g., the 1 × 3 SIMO with 3 receive apertures
performs better than the 2×2 MIMO with 2 receive apertures
does). However, one must take the number of transmitters (in
MIMO configurations) into account as well. If the number
of transmitters is large, the combined signal quality at each
receive aperture in MIMO configurations is much better than
that in SIMO ones. In this case, the results in these figures may
not hold. For the EGC scheme in strong turbulence condition
and at the capacity of 4 bits/s/Hz, the correlated 2 × 2 and
1 × 3 MIMO systems result in 1.2 dB and 0.9 dB power
penalties compared to the uncorrelated ones. In the case of
MRC, these power penalties are both 0.4 dB. This reveals that
the MRC scheme is more resilient to the channel correlation
than the EGC is. For the correlated 1×3 MIMO in this strong
turbulence scenario, the large-scale correlation matrix is given
by

Ψl =

 1 0.6225 0.6225
0.6225 1 0.6225
0.6225 0.6225 1

 , (41)
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whose approximating Green matrix is

Cl =

 1 0.7059 0.5
0.7059 1 0.7083

0.5 0.7083 1

 , (42)

where the mean square error is 0.0065.

VI. CONCLUSIONS

This paper studied the AAR of spatial dviersity MIMO-
FSO systems over correlated G-G fading channels. The closed-
form expressions for the both schemes of EGC and MRC
were analytically derived by employing the Green matrix
approximation and a novel method to the sum of correlated
G-G RVs. Numerical results and M-C simulations confirmed
the validity of these approximations. It was seen that in
the case of weak turbulence, the channel correlation was
relatively small. Its impact on the AAR was thus negligible.
When the turbulence became stronger, the channel correlation
considerably degraded the capacity performance and the use
of MIMO transmission proved to be essential to alleviate this
negative effect.
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APPENDIX A
PROOF OF PROPOSITION 1

Suppose that the sum of K identically but not necessarily
independently distributed G-G RVs Xi ∼ ΓΓ(α, β,Ω) (i =
1, · · · ,K) is approximated by a G-G RV Y ∼ ΓΓ(αs, βs,Ωs),
i.e., Y ≈

∑K
i=1Xi. The first and second moments of

∑K
i=1Xi

are given by

E
[ K∑
i=1

Xi

]
=

K∑
i=1

E[Xi] = KΩ, (43)

and

E

( K∑
i=1

Xi

)2
 =

K∑
i=1

E
[
X2
i

]
+ 2

K∑
i=1

K∑
j=i+1

E [XiXj ]

=

K∑
i=1

E
[
X2
i

]
+2

K∑
i=1

K∑
j=i+1

(
E[Xi]E[Xj ]

+ ρij

√
Var(Xi)Var(Xj)

)
=

K∑
i=1

E
[
X2
i

]
+ 2

K∑
i=1

K∑
j=i+1

(
Ω2 + ρijσ

2
)
. (44)

The variance of
∑K
i=1Xi is then given by

Var(Y ) = E

( K∑
i=1

Xi

)2
−(E[ M∑

i=1

Xi

])2

=

K∑
i=1

Var (Xi) + 2

K∑
i=1

K∑
j=i+1

ρijσ
2

=

(
1

α
+

1

β
+

1

αβ

)(
K + 2

K∑
i=1

K∑
j=i+1

ρij

)
Ω2. (45)

On the other hand, the mean and variance of Y are written as

E[Y ] = Ωs, (46)

and

Var(Y ) =

(
1

αs
+

1

βs
+

1

αsβs

)
Ω

2

s (47)

Matching the mean and variance of Y with that of
∑K
i=1Xi

yields Ωs = KΩ, and

K2

(
1

αs
+

1

βs
+

1

αsβs

)
=

(
1

α
+

1

β
+

1

αβ

)(
K + 2

K∑
i=1

K∑
j=i+1

ρij

)
. (48)

To solve αs and βs, it is required to have one more equation
which can be obtained from matching higher moments. How-
ever, it will lead to complex expressions. For simplicity, an
approximate solution to Eq. (48) can be given by

αs = K

(
1 +

2

K

K∑
i=1

K∑
j=i+1

ρij

)−1

α, (49)

βs = K

(
1 +

2

K

K∑
i=1

K∑
j=i+1

ρij

)−1

β, (50)

This also completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

The correlation coefficient between Im and In is given by

ϕmn =
E[ImIn]− E[Im]E[In]√

Var(Im)Var(In)
. (51)
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Firstly, the numerator can be written as

E[ImIn]− E[Im]E[In] = E

( M∑
i=1

Imi

) M∑
j=1

Inj


− E

[
M∑
i=1

Imi

]
E

 M∑
j=1

Inj


=

M∑
i=1

M∑
j=1

E [ImiInj ]−
M∑
i=1

M∑
j=1

E [Imi]E [Inj ]

=

M∑
i=1

M∑
j=1

(
ρmi,nj

√
Var(Imi)Var(Inj)

)

=

M∑
i=1

M∑
j=1

(
ρmi,njσ

2
)
, (52)

where σ2 is the variance of Imi and Inj .
Next, for the denominator in Eq. (51)

Var(Im) = E[I2
m]−

(
E[Im]

)2
= E

[( M∑
i=1

Imi
)2]− ( M∑

i=1

E[Imi]

)2

=

M∑
i=1

(
E[I2

mi]− (E[Imi])
2
)

+ 2

M∑
i=1

M∑
j=i+1

(
E[ImiImj ]− E[Imi]E[Imj ]

)
= Mσ2 + 2

M∑
i=1

M∑
j=i+1

(
ρmi,mjσ

2
)
. (53)

Similarly, we obtain

Var(In) = Mσ2 + 2

M∑
i=1

M∑
j=i+1

(
ρni,njσ

2
)
. (54)

Substituting Eqs. (52), (53) and (54) into Eq. (51) we arrive
at Eq. (28).

APPENDIX C
PROOF OF COROLLARY 1

It is well-known that a G-G RV can be derived from the
product of two independent Gamma RVs [27]. Therefore, a
multivariate squared G-G RVs can also be obtained from the
product of two independent multivariate squared Gamma RVs.
Assume that r

∆
= [r1, r2, . . . , rN ] be a set of N identically

distributed Gamma RVs with the correlation matrix Ψl given
in (29) and E[rn] = M being the average power. The PDF of
each element is written as

frn(rn) =
αα

Γ(α)Mα
rα−1
n e−

αrn
M , (55)

where α is the shape parameter.
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Figure 11: Correlation coefficients of Gamma and the corres-
ponding squared Gamma RVs.

From [24, Eq. (5)], the joint PDF of r is expressed as

fr(r) =
|Wl|αe−

∑N
n=1

αωln,n
M rn

Γ(α)

∞∑
i1,...,iN−1=0

rα+i1−1
1 r

α+iN−1−1
N

×
(
M

α

)−Nα−2
∑N−1
n=1 in N−1∏

n=2

rα+in−1+in−1
n

×
N−1∏
n=1

[ |ωln,n+1
|2in

in!Γ(α+ in)

]
. (56)

To derive the joint PDF of a squared multivariate Gamma RV,
its correlation matrix needs to be determined from the cor-
relation matrix of the corresponding multivariate Gamma RV.
To the best of authors’ knowledge, there is no expression re-
garding the relationship between the two correlation matrices.
However, the correlation coefficient of squared Gamma RVs
can be taken identical to the corresponding coefficient of
Gamma RVs with satisfactory accuracy as numerically valid-
ated in Fig. 11. Let u

∆
= [u1, u2, . . . , uN ] be a set of N squared

Gamma RVs with un = r2
n. After some simple mathematical

manipulations, the joint PDF of u can be written as

fu(u) =
|Wl|αe−

∑N
n=1

αωln,n
M u

1
2
n

2NΓ(α)

×
∞∑

i1,...,iN−1=0

u
1
2 (α+i1)−1
1 u

1
2 (α+iN−1)−1

N

×
(
M

α

)−Nα−2
∑N−1
n=1 in N−1∏

n=2

u
1
2 (α+in−1+in)−1
n

×
N−1∏
n=1

[ |ωln,n+1
|2in

in!Γ(α+ in)

]
. (57)

Next, let t
∆
= [t1, t2, . . . , tN ] be a set of N identically

distributed Gamma RVs with the correlation matrix Ws,
shape parameter β and assume that E[tn] = 1. Similarly,
let v

∆
= [v1, v2, . . . , vN ] be a set squared Gamma RVs with
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vn = t2n, the joint PDF of v can be expressed as

fv(v) =
|Ws|βe−

∑N
n=1 βωsn,nv

1
2
n

2NΓ(β)

×
∞∑

i1,...,iN−1=0

v
1
2 (β+i1)−1
1 v

1
2 (β+iN−1)−1

N

×
(

1

β

)−Nβ−2
∑N−1
n=1 in N−1∏

n=2

v
1
2 (β+in−1+in)−1
n

×
N−1∏
n=1

[ |ωsn,n+1 |2in

in!Γ(β + in)

]
. (58)

To obtain a multivariate squared G-G Rvs, let us define z
∆
=

[z1, z2, . . . , zN ] where zn = unvn. The joint PDF of z can be
derived as

fz(z) =

∫ ∞
0

. . .

∫ ∞
0

N∏
n=1

v−1
n fu

( z

v

)
fv(v)dv. (59)

By substituting (57) and (58) into (59) and with help of [42,
Eq. (3.471.9)], the joint PDF of z is given by

fz(z)=
2N |Wl|α|Ws|β

Γ(α)Γ(β)

∞∑
i1,...,iN−1=0
k1,...,kN−1=0

(
αβ

M

)N(α+β)
2 +

N−1∑
n=1

(in+kn)

×
N∏
n=1

z
µn−1

2
n

ωsn,n
ωln,n

K2νn

2

√
ωln,nωsn,nαβ

M

√
zn


×
N−1∏
n=1

[ |ωln,n+1 |2in
in!Γ(α+ in)

][ |ωsn,n+1 |2kn

kn!Γ(β + kn)

]
. (60)

Finally, since γn = η2

M2NN0
zn, the joint PDF of γγγ is derived

as in (31).
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