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Seamless mobile video streaming over HTTP/2 with gradual quality

transitions

Hung T. LE", Thang VU™, Nam PHAM NGOC'", Nonmembers, Anh T. PHAM,

SUMMARY  HTTP Adaptive Streaming (HAS) has become a popular
solution for media delivery over the mobile Internet. However, existing
HAS systems are based on the pull-based HTTP/1.1 protocol, leading to
high overheads (e.g., in terms of energy, processing, bandwidth) for clients,
servers, as well as network nodes. The new HTTP/2 protocol provides a
server push feature, which allows the client to receive more than one video
segment for each request in order to reduce request-related overheads. In
this study, we propose an adaptation method to leverage the push feature
of HTTP/2. Our method takes into account not only the request-related
overhead but also buffer stability and gradual transitions. The experimental
results show that our proposed method performs well under strong through-
put variations of mobile networks.

key words: HTTP adaptive streaming, adaptation, HTTP/2, server push.

1. Introduction

Over the past few years, HTTP adaptive streaming (HAS) has
become the key technology for delivering multimedia over
the mobile Internet thanks to the abundance of Web plat-
forms and broadband connections [1], [2]. In HAS, to cope
with network fluctuations, a video is encoded at multiple ver-
sions (with different video bitrates), each of which is further
divided into small segments. A client initiates a streaming
session by downloading a metadata file, which contains a
description of different versions and segments. After that,
an adaptation engine deployed at the client takes responsi-
bility for deciding which segments are requested, based on
the metadata and the current status of the terminal/networks.
The video is therefore delivered to the client via a sequence
of HTTP request-response transactions.

So far, the target delivery protocol in existing HTTP
streaming is HTTP/1.1, where every segment is delivered
using a request-response pair [2]. Usually, all segments have
the same duration, which is typically from two to ten seconds
[3]. If the segment duration is short, the client can react
quickly to network variations and select the bitrate for a high
video quality. However, the use of short segment durations
results in a large number of HTTP requests, which in turn
causes high overheads (e.g., in terms of energy, processing,
bandwidth) for clients, servers, and network nodes [4].

The recently ratified HTTP version 2 (HTTP/2) pro-
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vides a new feature called “server push", which enables the
client to send one request and then receive multiple objects
[5]. Hence, short segment durations can be used in HAS sys-
tems without increasing the number of HTTP requests (by
asking the server to respond to a request with multiple con-
secutive segments). Recently, the Moving Picture Experts
Group (MPEG) has started working on an extension of its
HAS standard, where an HTTP/2-based request can specify
the number of requested segments [6]. In the literature, the
server push feature with a fixed number of pushed segments
per request has been investigated for low-delay streaming [7],
low request-related overhead [4] and power efficient mobile
streaming [8]. Among existing studies, our previous studies
in [9], [10] are the first ones that raise the need to adaptively
decide the number of pushed/requested segments in each
request to balance the requirements of low request-related
overhead and buffer stability. In [11], the number of pushed
segments is adapted to avoid the “over-push" problem, in
which network resources are wasted when a user decides to
stop watching a video after checking the first few seconds.
However, the main drawback of [11] is that it only considers
stable network conditions.

To the best of our knowledge, no previous work has
taken into consideration bitrate variations. It should be noted
that in mobile networks, as the throughput is fluctuating, the
above methods may result in large bitrate reductions and
such rate-switching events definitely reduce the quality of
service [12]. In this paper, we extend our preliminary work
in [10] and additionally consider bitrate variations. Instead of
selecting an adaptation pair (R, N) of bitrate R and number
of pushed segments N for only one next request, we decide
adaptation pairs for some future requests. Since the proposed
method considers the bitrate trend in the future, it can provide
users with gradual bitrate transitions. More specifically, to
find the adaptation pairs for the next requests, we examine
all possible changes of bitrate R and number N. The optimal
option, which balances the requirements of buffer stability,
gradual down-switching and low request-related overhead,
is then selected. Experiments using variable throughput
conditions of mobile networks show that our method can
yield gradual bitrate transitions and a low number of requests
while keeping the buffer level stable.

The rest of the paper is organized as follows. We provide
the background of HAS in Section 2. Section 3 presents
the adaptation problem of video streaming over HTTP/2.
After that, our proposed method is given in Section 4. We
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present the experimental results and discussions in Section 5.
Finally, Section 6 concludes the paper.

2. Background
2.1 Streaming client in HAS

The block diagram of an HTTP client is shown in Fig. 1.
Basically, a video content is delivered from the server to the
client by a sequence of HTTP/2 request-responses. Depend-
ing on the request, the server responds by one or multiple
segments with the same bitrate. All segments downloaded
from the server are stored in the Playback buffer before
moving to the Player. A key component of the client is
Adaptation engine, where an adaptation method is deployed
to make decisions on which media parts are requested. A
good decision for the next request should be based on the
current buffer level (observed from the Playback buffer), an
estimated throughput (provided by the Throughput estima-
tion component) and the Metadata. While the metadata can
be received at the beginning of the streaming session, the
client has to estimate the throughput and measure the buffer
level during the whole session.

’ d H Ad: ion Engine } Bitrate
- [N
Throughput Medium |:||:||:||:||:|

Estimation Low,
’ Player H Playback Buffer ]
HTTP Client J

Fig. 1: Block diagram of an HTTP client

HTTP Server

A response containing
multiple segments

In the simplest way, the client can use the instant
throughput, which is average throughput 7'(!) of the last seg-
ment [, as the throughput estimate for future segments. How-
ever, due to strong throughput variations of mobile networks,
the use of the instant throughput may result in short-term
fluctuations. A popular solution to cope with this problem
is to use the smoothed throughput 7 (/) as follows:

T(1) ifl =1,
(D

where ¢ is a weight in the range [0,1]. Hereinafter, the
instant throughput and smoothed throughput measured after
receiving all segments of request i are referred to as 7; and
T?, respectively.

The playback buffer (simply referred to as the buffer)
plays an important role in coping with throughput fluctua-
tions in HAS. Basically, to maintain a seamless streaming
session, the client should buffer some amount of video data
before it can start playing. This period is referred to as the

TS = {(1—6)><Ts(l—1)+6><T(l) ifl> 1,
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initial delay. After the initial delay, the client switches to the
steady stage, where it plays and downloads video segments
simultaneously. Note that in this paper, the buffer level, as
well as the buffer size, is measured in second. During the
steady stage, if the buffer level is large enough, the client can
provide users with smooth video quality even under strong
throughput variations.

2.2 Quality influence factors

One of the primary goals for HAS is to provide good video
quality. Video quality largely depends on the video bitrate as
well as rebuffering events [13]. Usually, video rebuffering
(caused by buffer underflows) is considered as the worst
degradation of video quality, and such events should be
avoided by switching the bitrate down [14]. As for video
bitrate, an analysis of video quality in [12] showed that con-
tinuously switching down to some intermediate bitrate levels
provides a better quality than suddenly declining to the tar-
get bitrate. However, if the bitrate should be increased, an
abrupt increase of bitrate may even improve the perceived
quality since users are happy to perceive the quality improve-
ment [15]. Besides, the frequency of the bitrate switches
should be minimized for high video quality [13].

Besides video quality, streaming over HTTP also
faces the problem of request-related overhead, especially
in HTTP/1.1-based systems. The higher number of HTTP
requests is, the more energy is consumed at the mobile de-
vices [8]. Moreover, although having small data sizes, these
requests significantly increase the processing complexity of
network nodes (e.g., proxies and servers) [4]. By applying
HTTP/2, it is expected to reduce request-related overheads
in HAS.

3. Problem description

In this section, we present the adaptation problem of adaptive
streaming over HTTP/2. Some notations and their definitions
are shown in Table 1.

3.1 Overview

Suppose that a video is subdivided into small video segments
with the same duration of 7 seconds. Also, the providers
offer the client a set R of K bitrate versions R = {R¥|k =
1,2,...,K}. The bitrate becomes lower when the version
index k decreases.

At certain time ¢; right after fully receiving all segments
of the current (or last) request i, the client will decide a
sequence S of L adaptation pairs for the next L requests:

S:{(R,-,N,)}j=i+1,i+2,...,i+L}, )

where R; € R and N; > 1. Note that the adaptation pair
(R;, N;) that has already been decided for the last request i
is considered as the origin of sequence S.

We assume that the client has a set & of M push strate-
giesN = {1,2, ..., M}. Hence, there are totally M X K options
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Table 1: Notations and definitions used in this paper.

Notation Unit Definition
T second the media segment duration.
t second the time instance right after the client completely

receives all segments of request i.

T; kbps the instant throughput obtained at time ¢;.

T7  kbps the smoothed throughput obtained at the time #;.

T?  kbps the estimated throughput at time #; for the future
segments.

K the number of available video versions.

R the set of available bitrates R = {R!, R?, ..., RK}.

M the number of push strategies.

N the set of push strategies N = {1,2, ..., M }.

M the safety margin, used to decide the bitrate in (8)
and (16).

(Rj, Nj) the adaptation pair decided for request j, it contains

bitrate R; and number of pushed segments N;.

B; second the measured buffer level at time ¢;.

B¢ second the estimated buffer level after the client fully re-
ceives all segment of request j (j > i).

B:,4, second the buffer target level, it is also the buffer size.

B;nin second the minimum buffer threshold in the rate decrease
case.

S the sequence of adaptation pairs for some future
segments.

L the number of adaptation pairs in sequence S.

3 the set of sequence candidates in the rate decrease

case.

for each adaptation pair (R;, N;).
3.2 Buffer Level Estimation and Adaptation Problem

An important objective of adaptation methods is to pro-
vide seamless streaming. Therefore, sequence S should be
decided so that the buffer level is not depleted during the
session. For this purpose, we estimate the buffer level in
the near future, given the current buffer level B; and esti-
mated throughput 77. Note that the estimated throughput 77
could be either instant throughput 7; or smoothed through-
put 77 depending on the context. The detailed selections are
provided later in Section 4.

Let us denote B¢ the buffer level measured right after
the client fully receives all segments of request j (i < j <
i + L). We compute buffer level BJ‘? from the previous buffer
level qu as follows. With new N; segments, the buffer

level increases N; X 7 seconds. However, the client also

R, .
spends N; X T;g L seconds on downloading these segments.

Therefore, the estimated buffer level B; is computed by

e P
B = BJ._1+AJ if j >i+1, 3)
4 Bi+Aj 1f]=l+l,

where A; is the change of buffer level given request j:

-
AjZNjXTX - — 1. (4)

So, to avoid buffer underflows, we have a buffer constraint
for selecting sequence S as follows:

BJ‘?>Bm,-n,i<jSi+L, (5)

where B, is a predefined buffer threshold.

All sequence options of sequence S that satisfy condi-
tion (5) are gathered into a set J of sequence candidates. In
the following section, we present our solution to select the
optimal sequence from set J.

4. Proposed adaptation method

This part presents our method in details. The proposed
method includes the following distinguishing features:

* Since the method estimates the trend of buffer level in
the near future and selects a sequence from set J, it can
avoid buffer underflows even under the strong variations
of connection throughput.

* When the throughput drops, the method considers the
requirement of quality smoothness and balances it with
the requirements of buffer stability and low request-
related overhead.

* When the throughput is increased, as the quality and the
buffer level are not negatively affected, the method fast
increases the bitrate to quickly improve video quality.
Additionally, the highest possible number of pushed
segments is decided to reduce request-related over-
heads.

4.1 General adaptation process

Based on the relation between the current bitrate R; and
the instant throughput 7;, we divide our method into two
cases: Rate decrease (when R; > T;) and Rate increase
(when R; < T;). In both cases, our basic idea to decide
sequence S is to balance the requirements of buffer stability,
gradual down-switching and low request-related overhead.
The detailed algorithms for the two sub-cases are presented
in Subsections 4.2 and 4.3.

Assume that the request sequence is decided at time ;.
In an ideal condition, the client simply sends the requests
based on the current (decided) sequence S until the final
request i + L. However, at certain time, if the buffer level
is reduced below threshold B,,;,, the current sequence S is
aborted immediately, the client then selects pair (Rl, M) for
the next request to quickly improve the buffer level.

In addition, during the interval of the current sequence
S, if the throughput changes, leading to a significant buffer
variation, it is also reasonable to redetermine sequence S. In
our method, we decide a new sequence at time ¢+ (j* > i)
if the mismatch between the estimated buffer B¢, and the
actually-measured buffer level B;- at that time exceeds one
segment duration, i.e.



Algorithm 1: Request selection at time ¢;

Input : Current sequence S decided at time #; (i < j), current
buffer level B;.
Output: Adaptation pair (Rj1, Nj1) for request j + 1.
1 begin

2 if Bj > Byin then
3 if the client has requested the final adaptation pair of
sequence S or |Bje -B j| > 7 then
4 1 J;
5 Select new sequence S;
6 else
7 ‘ Continue using current sequence S;
8 end
9 Decide pair (Rj 41, Njt1) of S for request j + 1;
10 else
1 Abort current sequence S;
12 Decide pair (R!, M) for request j + 1;
13 end
14 end
|BS. - Bj-| > . (6)

Note that the sequence could be redetermined by either the
rate decrease case or the rate increase case, depending on the
relation between the bitrate and the throughput at time ¢;+.

In summary, the general process for pair selection at
time ¢;, given the current sequence S (decided at the previous
time #;), is provided in Algorithm 1. Note that this process
is invoked at every request by the client.

4.2 Rate decrease case (R; > T;)

In order to quickly capture throughput behavior in the rate
decrease case, we use the instant throughput 7; in estimating
the throughput:

T¢ =T, ™

As the throughput is higher than the current bitrate, the final
bitrate R;,; should be lower than the estimated throughput
T¢. Usually, a safety margin y in the range [0, 1] is used to
compute the final bitrate R;,r:

Rip=max{R|R€eRAR<(I-mxT|. (8

To find an optimal sequence S, we introduce a cost func-
tion, which is the tradeoff among request-related cost Cycq,
bitrate smoothness-related cost Cy,,,;, and buffer-related cost

Cbufi
C=aXxXCreq+ BXCsur +y X Cpuyp, C)

where a, 8 and 7y are tradeoff parameters.

Since the request-related overhead is inversely propor-
tional to the number of pushed segments, we propose a re-
quest cost function based on the average value of the re-
quested segments throughout a sequence:

1

I L
T X 2o N

Creq = (10)
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The smoothness cost is a function with regards to quality
changes along the sequence, it is defined by:

Come =max {V(Rj1) = V(Ry) |i<j<i+L}, (1)

where V(x) indicates the version index of bitrate x. It is
noted that Cy,,,; is the minimum when the changes of bitrate
along the sequence are equal.

The buffer cost should depend on the mismatch between
the target buffer level B, and the estimated buffer level Bf, ;
(i.e., the buffer level after using sequence S). We propose an
exponential function to compute the buffer cost Cp, ¢

Chuf = exp (B,a, - Bf+L), (12)

where BY,; is computed following (3).

So, the client computes the overall cost C for each se-
quence candidate S in set 3 and then selects the optimal
sequence that has the lowest cost. Due to strong fluctua-
tions of mobile networks, it is reasonable to set the sequence
length L small. In practical implementation in Java, we
found that with typical parameters (e.g., L = 3, M = 4, and
a set of 17 bitrate versions as in [16]), the execution time for
deciding sequence S is just a few milliseconds and thus does
not negatively affect the processing time for adaptation.

4.3 Rate increase case (R; < T;)

In this case, the smoothness of quality is also not vital.
Therefore, it is reasonable to decide an adaptation pair only
for the next requesti+1 (i.e., the sequence length L = 1). Our
idea is to maintain the current bitrate until the buffer level
reaches the target buffer level B;,,. The detailed adaptation
logic is as follows.

To avoid short-term throughput fluctuations, we addi-
tionally use the smoothed throughput 7} in estimating the
throughput:

Tf = min {Ti‘",T,-} . (13)

Here, Tis is computed by (1) with 6 = 0.125, which is rec-
ommended for smoothing computation [17].

We now divide the rate increase case into two sub-cases
depending on the current buffer level B;. If B; < By, (€.,
the first sub-case), the current bitrate R; is maintained until
the buffer level reaches the target buffer level B, :

Ris1 = R;. (14)

The number of pushed segments N;,| is computed by:
Niy = min {M, min {N|B,, > B,a,}}, (15)

where BY | is obtained from (3).

In the second sub-case (B; > B, ), the client immedi-
ately switches up to the highest bitrate, which is lower than
throughput estimate 77:

Ri+1=max{R|Re?{/\R<(1—/¢)fo}. (16)
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Algorithm 2: Sequence selection at time #;

Input : Instant throughput 7;, smoothed throughput 7, current
buffer level B;.
Output: Sequence S.
1 if R; > T; then

2 /I Rate decrease case

3 T. i"‘ «— T;;

4 for each sequence candidate S in set J do

5 Compute a set of corresponding buffer levels
{Bje.li<j <i+L};

6 Compute request cost C following (9);

7 end

8 Select the optimal sequence S which has the lowest cost;

9 else

10 /I Rate increase case

11 Tl.e « min {T[‘,T,-};

12 if B; < B;4, then

13 ‘ Compute (R;+1, N;i4+1) following (14) and (15);

14 else

15 ‘ Compute (R;+1, N;i4+1) following (16) and (17);

16 end

17 S« {Ri+1, Nis1 }h;

18 end

The number of pushed segments N, is set to M in order to
minimize request-related overheads:

Niy1 =M. a7)

It should be noted that the existing methods strictly decide the
number of pushed segment in advance (e.g., [7]) or based on
buffer level only (e.g., [10]). Meanwhile, our method flexibly
makes decisions based on both buffer level and connection
throughput. Our general procedure in both rate decrease and
rate increase cases is summarized in Algorithm 2.

5. Experiments and Discussions
5.1 Experiment settings

In this section, we evaluate our method using a simple band-
width trace and a complex bandwidth trace obtained from a
mobile network. For reference methods, we use the Push-N
method used in [4], [7] and the request-buffer-based (RBB)
method proposed in [10]. In the former method, N segments
are sent for each request. Meanwhile, in the latter method,
the number of pushed segments is adaptively decided to bal-
ance buffer stability and low request-related overhead. Note
that these two methods decide the bitrate based on the esti-
mated throughput only. Here, our focus is on the adaptation
behavior in the steady stage. In the initial buffering stage,
the simple Push-N method with N = 1 is employed.

The testbed of our experiments is similar to that of
[10], which includes an HTTP/2 web server, an HTTP/2
client and an IP network. The IP network includes a router
and wired connections connecting the server and the client.
On the server side, an HTTP/2-enable server is installed in
Ubuntu 14.04 LTS. A test video is encoded at 17 bitrate
versions based a DASH dataset in [16], i.e. R = {100,

150, 200, 250, 300, 400, 500, 700, 900, 1200, 1500, 2000,
2500, 3000, 4000, 5000, 6000} (kbps). All segments have
the same segment duration, which is provided later in each
experiment. The client is implemented in Java and runs on a
Windows 7 notebook with 2.4 GHz core i5 CPU. Dummynet
tool [18], a network emulator, is installed at the client to
emulate the characteristics of mobile networks. The round
trip time (RTT) is set to 100ms. The packet loss rate is set
to 0%, assuming that the packet loss are already included in
the fluctuations of employed bandwidth traces.

The three evaluated methods are employed with the
same target buffer level (or the buffer size) B,y = 15s and
the same safety margin ¢ = 0.05. We implement the Push-N
method with 4 options N = 1, 2, 3 and 4. The set of push
strategies of the two other methods is set to X = {1, 2, 3,
4}. The RBB method is employed with tradeoff parameter
a =0.2. Our method is implemented with B,,;,, = 3s, i.e. 3
segment durations with option 7 = Is.

In our method, a streaming provider can adjust the bal-
ance between the requirements for low request-related over-
head, gradual transitions, and buffer stability by changing
the tradeoff parameters a, § and y. Basically, we fix o and
select two others. Given « = 10, the contribution of the
request-related component to the overall cost C is at most
10 (i.e. when the client decides only one segment per re-
quest). Since we want to prioritize the requirement of grad-
ual transitions, 8 is selected so that the contribution of the
smoothness-related cost is higher than that of the request-
related cost. With parameter y, because the buffer-related
cost Cpy ¢ varies in a wide range from 20 to 2Brar | parameter
v should be small to reduce the contribution of the buffer-
related cost to the overall cost C. Based on our experience,
good empirical values of the parameters «, 5, and y are 10,
13.5, and 0.08, respectively. In our future work, the tradeoft
of these factors and other additional factors (e.g. minimum
bitrate, buffer level variation, etc.) will be investigated.

5.2 Simple bandwidth scenario

As mentioned earlier, one of the main challenges in HAS
is to provide gradual down-switching when the throughput
suddenly drops. Thus, we compare the methods when the
connection throughput suddenly declines from 2400kbps to
1200kbps as in Fig. 2a. In this experiment, the segment
duration is set to 1 second, which is lower than that of popular
HTTP streaming systems (i.e. typically from 2 to 10 seconds
[3]). Fig. 2 shows the adaptation results of the three methods.

The Push-N and the RBB methods aggressively switch
the bitrate according to throughput variations. As a conse-
quence, they all result in a large bitrate change. Especially,
the Push-1 option has the smallest bitrate curve since this
option does not leverage the push feature of HTTP/2. From
Fig. 2a, we also observe that the time to change the bitrate of
the RBB and Push-N methods are dependent on the number
of pushed segments, which is decided around time ¢ = 13s
(before the throughput drops). As seen in Fig. 2, the lower
number of pushed segments, the earlier the bitrate is changed
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Fig.2: Adaptation results of the three methods in simple
bandwidth scenario.

and so, the more stable the buffer level becomes.

As for our proposed method, besides the number of
pushed segments and buffer level, it also considers bitrate
variations. Fig. 2a shows that the proposed method gradu-
ally changes the bitrate from 2000kbps to 900kbps. Specif-
ically, at time ¢ = 22s after detecting a throughput drop, the
method decides the sequence S = {(Rj, Nj)} = {(1500kbps,
1); (1200kbps, 3); (900kbps, 4)} for the next 3 requests. It is
seen that in our method, both bitrate and number of pushed
segments are adaptively decided. The results show that our
method requires 3 requests for downloading the next 8 seg-
ments (i.e., around 3 segments per request), provides grad-
ual down-switching, and has good buffer levels (i.e. higher
than 9s). That means, when the throughput is reduced, our
method can balance between gradual down-switching, buffer
stability and number of requests.

5.3 Complex bandwidth scenario

This part investigates the performance of the three methods
using a time-varying bandwidth trace obtained from a mo-
bile network [19]. As shown in Fig. 3a, the connection
throughput widely varies from 300kbps to 2800kbps. All
other settings are the same as before.

Fig. 3 shows the adaptation results of the three meth-
ods. Because the Push-2 and Push-3 options have similar
performances to that of the Push-4 option, they are not in-
cluded in Fig. 3 for the sake of clarity, but they are still
shown in our later statistics. As seen in Figs. 3a and 3b, the
bitrate curves provided by both Push-N and RBB methods
widely vary according to throughput fluctuations. Mean-
while, our proposed method provides bitrate stability and
gradual down-switching. For example, during 60s ~ 90s, our
method maintains a bitrate of 1500kbps even the throughput
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Fig.3: Adaptation results of the three methods in complex
bandwidth scenario.

is fluctuating. At time t = 375s, when the throughput sud-
denly drops, it changes the bitrate gradually from 2000kbps
to 700kbps while other methods directly jump to a bitrate
around 400kbps. Fig. 3c shows that the Push-N method
with option N = 1 has the most stable buffer level curve
while our method’s buffer level curve is also good. The min-
imum buffer level of our method (3.2s) is still higher than
the predefined threshold B,,;,.

Some statistics of the adaptation results are provided
in Table 2. The statistics are related to adapted bitrate,
buffer level, number of requests and version decreases. Note
that version decreases are used instead of bitrate decreases
because a change of 1000kbps at a high bitrate level may be
not as severe as a change of 500kbps at a low bitrate level.

As expected, the Push-1 option has the lowest aver-
age bitrate (1081kbps) as the client has to wait one RTT
before starting receiving every segment. The statistics of
buffer level demonstrate that all adaptation methods can
avoid buffer underflows. Although giving the highest min-
imum buffer level (10.9s), the Push-1 option results in the
highest number of requests (500) and thus a high request-
related overhead. Meanwhile, the RBB method dynamically
decides the number of pushed segments based on the buffer
level. The adaptation results show that the RBB method
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Table 2: Statistics of adaptation results in complex band-
width scenario.

Table 3: Statistics of adaptation results in complex band-
width scenario with a segment duration of 500ms.

Push-N
Statistics RBB
N=1 N=2 N=3 N=4

Proposed

method

Push-N
Statistics RBB
N=1 N=2 N=3 N=4

Proposed

method

Average bitrate 1081 1148 1162 1184 1152 1180

Average bitrate 1039 1119 1138 1164 1132 1218

(kbps) (kbps)
Minimum buffer 109 89 62 32 82 32 Minimum buffer 123 109 99 86 107 8.1
level (seconds) level (s)

Number of requests 500 250 167 125 252 131

Number of requests 1000 500 334 250 371 264

Number of version

Number of version

74 62 38 32 60 21 155 87 68 54 73 48
decreases decreases
Average version 13 13 15 14 14 1.3 Average version 11 12 13 13 13 1.0
decrease decrease
Maximum version 6 5 5 5 5 3 Maximum version 6 6 5 5 6 )

decrease

decrease

can balance between buffer stability and low request-related
overhead. From the third row of Table 2, we see that our
method requires only 131 requests during a whole session,
which is comparable to 125 requests of the Push-4 option.
This good result is because our method decides the number
of pushed segments based on not only the buffer level but
also the throughput trend (increase or decrease).

In terms of version decreases, the Push-1 option has the
highest number of version decreases (up to 74) while that of
our method is the lowest (21). Our method’s result is even
30 percent lower than that of the second (32). Moreover, our
proposed method provides a small average value (1.3) and
the smallest maximum value (3) of version decreases. That
means, our method reasonably switches the bitrate down to
avoid large version decreases. The above statistics confirm
that our proposed method can provide a high average bitrate,
buffer stability, a low number of requests as well as gradual
transitions when the throughput is reduced.

As already mentioned, HTTP/2-based streaming sup-
ports small segment durations. Therefore, we investigate
the performances of the three methods with a smaller seg-
ment duration. Table 3 shows the statistics for the case
that the segment duration is reduced to 500ms. It is seen
that all the methods have better buffer behaviors but higher
numbers of requests in comparison with those for the case
of 1-second segment duration. Among the three methods,
our method has the highest average bitrate (1218kbps). In
addition, the proposed method also provides the smoothest
down-switching (with only 48 version decreases and at most
2 version decreases per switch) while still providing a very
low number of requests (264).

5.4 Discussions

From the above experiments, it can be seen that although the
Push-N method can yield buffer stability (when N = 1) or
low request-related overhead (when N = 4), setting the value
of N in the varying conditions of connection throughput is
not easy. The RBB method can decide the number of pushed
segment for each request to balance the two mentioned fac-

tors. However, the main disadvantage of these methods is
that they decide the bitrate regardless of bitrate switching
and thus leading to quality instability and sudden quality
decreases.

To overcome this problem, the proposed method fur-
ther considers the requirements of gradual down-switching
in making decisions. For gradual transitions when switch-
ing down the bitrate, our method decides the adaptation pair
(R, N) not only for one next request but also for some fu-
ture requests. The adaptation rule to provide the gradual
down-switching, together with the policy of immediate up-
switching when the buffer is full, helps our method to have
a high average bitrate during a whole session.

Interestingly, although deciding the sequence S of adap-
tation pairs for some future segments, our method is not
sacrificed by the buffer stability since it considers the buffer
trend in the future. During a session, the buffer level is mea-
sured after receiving every response; if the estimated buffer
levels become inaccurate, our method can redetermine se-
quence S to adapt to new conditions of the client/networks.
This feature enables our method to take advantage of the
buffer to better cope with throughput fluctuations.

In our method, the number of request over a streaming
session is reduced since the method decides the number of
requests depending on both buffer level and throughput trend.
If the throughput is reduced, the number of pushed segments
for each request is adaptively decided. Otherwise, the client
can select the highest option since the buffer and the video
quality are not negatively affected. It is different from the
other methods where the number of request is set in advance
[4], [7] or is based on buffer level only [10].

6. Conclusions

The recently ratified HTTP/2 protocol enables video stream-
ing systems to provide users with higher flexibility com-
pared to traditional HTTP/1.1-based systems. This paper
has presented a novel adaptation method with gradual down-
switching for video streaming over HTTP/2. In our method,
the client considers adaptation for some future segments



rather than just the next segment. If the bitrate should be
reduced, the client selects the optimal selection to balance
the requirements of buffer stability, low request-related over-
head and gradual transitions. If the bitrate is to be increased,
the method rapidly increases the bitrate to quickly improve
video quality. Experiments show that our proposed method
can provide users with high average bitrates, buffer stabil-
ity and low numbers of requests while outperforming the
reference methods in terms of quality switching.
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