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1. Introduction. In this note we are concerned with the coordinate-free approach

to control systems. This approach is a factorization approach but does not require the

coprime factorizations of the plant.

It is known that Anantharam[1] showed an example of a stabilizable plant which

does not admit a doubly coprime factorization. In this report, we show (i) that a diago-

nal matrix consisting of its plant with even size admits a doubly coprime factorization

and (ii) that a diagonal matrix consisting of its plant with odd size does not admit a

doubly coprime factorization.

2. Preliminaries. In the following we begin by introducing notations used in this

note. Then we give the formulation of the feedback stabilization problem.

2.1. Notations.

Commutative Rings. We will consider that the set of all stable causal transfer

functions is a commutative ring, denoted by A. The total ring of fractions of A is

denoted by F ; that is, F = {n/d |n, d ∈ A, d is a nonzerodivisor}. This will be

considered to be the set of all possible transfer functions. If the commutative ring A
is an integral domain, F becomes a field of fractions of A. However, if A is not an

integral domain, then F is not a field, because any zerodivisor of F is not a unit.

Matrices. Suppose that x and y denote sizes of matrices.

The set of matrices over A of size x × y is denoted by Ax×y. In particular, the

set of square matrices over A of size x is denoted by (A)x. The identity and the zero

matrices are denoted by Ex and Ox×y, respectively, if the sizes are required, otherwise

they are denoted simply by E and O.

Matrices A and B over A are right-coprime over A if there exist matrices X̃ and Ỹ

over A such that X̃A + Ỹ B = E. Analogously, matrices Ã and B̃ over A are left-

coprime over A if there exist matrices X and Y over A such that ÃX + B̃Y = E. Fur-

ther, pair (N, D) of matrices N and D is said to be a right-coprime factorization of P

over A if (i) the matrix D is nonsingular over A, (ii) P = ND−1 over F , and (iii) N

and D are right-coprime over A. Also, pair (Ñ , D̃) of matrices Ñ and D̃ is said to be a

left-coprime factorization of P over A if (i) D̃ is nonsingular over A, (ii) P = D̃−1Ñ

over F , and (iii) Ñ and D̃ are left-coprime over A. As we have seen, in the case where

a matrix is potentially used to express left fractional form and/or left coprimeness, we

usually attach a tilde ‘˜’ to a symbol; for example Ñ , D̃ for P = D̃−1Ñ and Ỹ , X̃ for
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FIG. 2.1. Feedback system Σ.

Ỹ N + X̃D = E.

2.2. Feedback Stabilization Problem. The stabilization problem considered in

this note follows that of Sule in [2] and Mori and Abe in [3] who consider the feedback

system Σ [4, Ch.5, Figure 5.1] as in Figure 2.1. For further details the reader is referred

to [4, 3]. Throughout this note, the plant we consider has m inputs and n outputs, and

its transfer matrix, which itself is also called simply a plant, is denoted by P and

belongs to Fn×m.

DEFINITION 2.1. Define F̂ad by

F̂ad = {(X, Y ) ∈ Fx×y × Fy×x | det(Ex + XY ) is a unit of F ,

x and y are positive integers}.

For P ∈ Fn×m and C ∈ Fm×n, the matrix H(P, C) ∈ (F)m+n is defined by

H(P, C) =

[
(En + PC)−1 −P (Em + CP )−1

C(En + PC)−1 (Em + CP )−1

]
(2.1)

provided (P, C) ∈ F̂ad. This H(P, C) is the transfer matrix from [ ut
1 ut

2 ]t to [ et
1 et

2 ]t

of the feedback system Σ. If (i) (P, C) ∈ F̂ad and (ii) H(P, C) ∈ (A)m+n, then we say

that the plant P is stabilizable, P is stabilized by C, and C is a stabilizing controller

of P .

Here we define the causality of transfer functions, which is an important physical

constraint, used in this note. We employ the definition of causality from Vidyasagar et

al.[5, Definition 3.1] and Mori and Abe[3].

DEFINITION 2.2. Let Z be a prime ideal of A, with Z 6= A, including all zerodi-
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visors. Define the subsets P and Ps of F as follows:

P = {n/d ∈ F |n ∈ A, d ∈ A\Z}, Ps = {n/d ∈ F |n ∈ Z, d ∈ A\Z}.

A transfer function in P (Ps) is called causal (strictly causal). Similarly, if every

entry of a transfer matrix over F is in P (Ps), the transfer matrix is called causal

(strictly causal).

It should be noted that when using “a stabilizing controller,” we do not guarantee

the causality. However, in the classical case of the factorization approach, once we

restrict ourselves to strictly proper plants, it is known that any stabilizing controller

of strictly causal plant is causal (cf. Corollary 5.2.20 of [4], Theorem 4.1 of [5], and

Proposition 6.2 of [3]). One can see, in fact, that many practical systems are strictly

causal. On the other hand, including noncausal stabilizing controllers seems to make

the theory easy and simple in the mathematical viewpoint. From these observations,

we have accepted the possibility of the noncausality of stabilizing controllers.

NOTE 2.1. Let P be a plant and C a stabilizing controller. Suppose that P and C

admit a doubly coprime factorization as follows:

Ỹ N + X̃D = I,(2.2)

where N , D, Ỹ , X̃ are matrices over A with P = ND−1 and C = X̃−1Ỹ .

NOTE 2.2. ([4, 5.1.32]) Let P be a plant and C a stabilizing controller. Suppose

that (X̃, Ỹ ) be a left-coprime factorization of C. Let

[
H11 H12

H21 H22

]
= H(P, C).

Then (−H12X̃
−1,−H22X̃

−1) is a right-coprime factorization of P .

3. Main Result. In this section, we consider that A = Z
√
−5 and p = (1 +

√
−5)/2.

Our main results can be stated as follows.

THEOREM 3.1. The plant Diag(p, p) admits a doubly coprime factorization.

THEOREM 3.2. The plant Diag(p, p, p) does not admit a doubly coprime factor-

ization.
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Proof of Theorem 3.1. The work we need is to present an example.

Let P = Diag(p, p). Thus

P = Diag((1 +
√
−5)/2, (1 +

√
−5)/2) =

[
(1 +

√
−5)/2 0

0 (1 +
√
−5)/2

]
.

Let

N = Ñ =

[
1 +

√
−5 2 −

√
−5

2 −
√
−5 −3

]
,

D = D̃ =

[
2 −1 −

√
−5

−1 −
√
−5 −1 +

√
−5

]
,

Y =

[
1 1

1 0

]
, Ỹ =

[
3 + 2

√
−5 3 − 2

√
−5

5 −2 − 2
√
−5

]
,

X =

[−1 0

0 1

]
, X̃ =

[
3 − 2

√
−5 −6

−2 − 2
√
−5 −3 + 2

√
−5

]
.

Then we see that P = ND−1 = D̃−1Ỹ and
[

X̃ Ỹ

−Ñ D̃

] [
D −Y

N X

]
= I.

Thus, P admits a doubly coprime factorization.

Note that from this proof, we see that a stabilizing controller is given as

(X̃−1Ỹ =) Y X−1 =

[−1 1

−1 0

]
.

This matrix is obviously over A. Hence the plant Diag(p, p) is strongly stabilizable.

Proof of Theorem 3.2. Let P = Diag(p, p, p).

Let N and D be



1 +
√
−5 2 −

√
−5 0

2 −
√
−5 −3 0

0 0 1 +
√
−5


 and




2 −1 −
√
−5 0

−1 −
√
−5 −1 +

√
−5 0

0 0 2


 ,
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respectively. We then see that P = ND−1 holds. Note that the submatrices of the first

two rows and columns of N and D here are equal to N and D, respectively, of the

proof of Theorem 3.1.

Now let T be [N t Dt]t, that is,

T =

[
N

D

]
=




1 +
√
−5 2 −

√
−5 0

2 −
√
−5 −3 0

0 0 1 +
√
−5

2 −1 −
√
−5 0

−1 −
√
−5 −1 +

√
−5 0

0 0 2




.(3.1)

Let I be the ideal generated by the all full-size minors of T .

Let T ′ be the first two columns of the matrix T , that is,

T ′ =




1 +
√
−5 2 −

√
−5

2 −
√
−5 −3

0 0

2 −1 −
√
−5

−1 −
√
−5 −1 +

√
−5

0 0




.(3.2)

From the proof of Theorem 3.1, we know that the ideal generated by the all full-size

minors of T ′ is equal to A. It follows that the ideal I is generated by the (3, 3)- and the

(6, 3)-entries of T . That is, the ideal I is equal to (1 +
√
−5, 2). It is known that this is

not equal to A (see [1]).

Thus the plant Diag(p, p, p) does not admit a doubly coprime factorization.

From the main results above, we have the following corollary.

COROLLARY 3.3. Let A = Z
√
−5 and p = (1 +

√
−5)/2. Then the plant

Diag(p, p, . . . , p) with even size admits a doubly coprime factorization. On the other

hand, the plant Diag(p, p, . . . , p) with odd size does not admit a doubly coprime fac-

torization.

NOTE 3.1. Let A be a commutative ring and p a plant. Suppose that Diag(p, p)

admits a doubly coprime factorization. Even so, we cannot determine whether p admits

a doubly coprime factorization or not. It depends on the commutative ring A.
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