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1 Introduction

Solid modeling methods have so far focused on developing models of objects
for capturing their geometry. Since most of the objects were considered to
be homogeneous, such approach was sufficient until now. Recently, particular
attention has been paid to modeling heterogeneous objects. In heterogeneous
object modeling, an object has a number of non-uniformly distributed attributes
assigned at each point and varying in 3D space. Such attributes may or may
not be continuous and are of different natures such as photometric, material,
physical, and others. Heterogeneous objects are used in different areas such
as CAD/CAM, rapid prototyping, physical simulations, geological and medical
modeling.

Constructive modeling is based on successively applying set-theoretic and
other operations to predefined shapes, called primitives. We provide in this work
a new set of functions defining set-theoretic operations to be used in constructive
modeling of heterogeneous objects. Such functions provide a controlled approx-
imation of the signed distance function, under the condition that the primitives
used in modeling are defined by exact distance functions. They also preserve
C' continuity of the resulting function. With signed distance functions, one
can control and model accurately material distribution in heterogeneous object
modeling.

1.1 Previous works

Several techniques to model heterogeneous objects have been proposed dur-
ing the recent years. Analogies to homogeneous object modeling can be easily
noticed. Existing homogeneous object models include surface based boundary
representation (BRep), feature based models, or parametric models; and volume
based models such as voxel arrays and cellular complexes as discrete represen-
tations, or FRep as a continuous representation [PASS95]. Each homogeneous
model has been extended for the underlying model to handle heterogeneity. In
the following, we propose a brief review of the existing models used in hetero-
geneous object modeling.

A non-manifold BRep scheme is considered in [KD97]. An object is subdi-
vided in components; each of them is homogeneous inside and has an assigned
material index. Set theoretic operations can be applied to the solid’s compo-
nents with the corresponding operations on the material. Unfortunately, such
modeling techniques are limited to the representation of discretely varying ma-
terial properties. In [KBDH99], a more general model is proposed: the geometry
is represented by the point set decomposition into a finite set of closed 3-cells,
whereas the attributes are defined by a collection of functions mapping the ob-
ject geometry to several attributes. Such a mathematical model is known as
a fiber bundle, with the geometric model playing the role of the base space.
Several other works are using the model proposed in [KBDH99], and extend it
in various directions ([BSD00, CF03]). Unfortunately, as noticed by [BST02],
such model does not offer concrete computational solutions.

Volumetric representations naturally define solids due to their inherent vol-
umetric nature. An homogeneous object is defined as a subset of the 3D space,
with an additional scalar value. In the case of a spatial enumeration, in other
words in the case of voxels [Req80], extension to heterogeneity consists in adding



a scalar value for each attribute [Nie0O]. The drawback of this method is the
difficulty to directly describe the material distribution, without the use of a
data acquisition device (and therefore it is supposed that the object to be mod-
eled already exists). Furthermore, the discrete property requires some special
approximation procedures.

A continuous volumetric representation has been proposed in [QDO01], where
a B-spline volume is used to model the object geometry, whereas the attributes
are modeled by mean of diffusion. This model suffers from the lack of flexibility
as the geometry is restricted to volume splines. Other continuous volumetric
models exist in the literature, but are related to other areas than CAD/CAM.
For instance, in computer graphics, the CVG model, Constructive Volume Ge-
ometry [CT00], defines an object as a tuple of scalar fields, where the first field
of the tuple defines the opacity of the object and determines its geometry, and
the other tuples define the object properties, such as photometric, density, tem-
perature properties, and others. This model, initially proposed in the volume
graphics area, hardly meets the requirements of the CAD area.

1.2 Problem statement

The above review briefly introduced some of the recent works on heterogeneous
object modeling. In most of the proposed techniques, a common terminology
can be retrieved. A heterogeneous object is usually composed of different parts,
called features. Elements of object’s geometry are called geometric features or
form features. A material feature is a subset of the object’s geometry space
with known material property. In heterogeneous object modeling, one of the
problems is how to model variable material distribution. More generally, given
the object’s geometry and some material features, how to model, to compute,
and to control the distribution functions for different materials.

1.3 Contribution

To solve the above problem, an interesting idea was proposed by [BST02]: the
Euclidean space can be parameterized by distance to material features, either
exactly or approximately. Functions describing the distance from the given point
to material features provide intuitive means for modeling any desired material
distributions as they appear in design and manufacturing.

The underlying idea of this proposal is to introduce the use of signed ap-
proximate real distance functions in modeling. Object’s geometry can be fully
described by such functions, i.e., its inside is defined where the distance func-
tion takes positive values, its outside is where the distance function is negative,
and its boundary as an iso-valued point set, where the distance function usually
equals to zero.

After considering the existing works, it appears that the BRep model and its
derivatives for heterogeneous object modeling are difficult to extend in a general
manner such that they meet the above idea. A more natural solution is to use
a model based on a continuous volumetric representation. Unfortunately, this
method presents also some drawbacks. Indeed, deriving analytical expressions
for a distance function may be a tedious work in the general case. Therefore,
the constructive approach would be very helpful in the design of heterogeneous
objects.



A general continuous representation of heterogeneous objects, called a con-
structive hypervolume model, was proposed in [PASS01]. In the following sub-
section, we first present an outline of this model. Then, we propose to restrict
this model in order to support distance-based material distributions proposed in
[BST02], and finally discuss the problems of this model in the CAD area. Other
sections of this document propose solutions to these problems, and illustrate
the proposed approach with some case studies.

1.3.1 General constructive hypervolume model

In this paper, we propose to use a distance-based version of the constructive hy-
pervolume model [PASS01] as a mathematical model of heterogeneous objects.
In this model, a general hypervolume object is defined as a multidimensional
point set G with multiple attributes given at any of its points. The attributes
S; represent abstract values or physical characteristics such as temperature,
color, material distribution, etc. In [PASS01], a specific representation of the
hypervolume is proposed as:

0= (G, A1,...,A;) : (F(X),51(X),...,S(X)) (1)
where :
e X = (z1,...,2,) is a point in n-dimensional Euclidean space E™,

e FF: E™ — R is a real-valued defining function of point coordinates to
represent point sets G, based on the FRep model [PASS95]

e S;:SP, — R, SP, C E™" is a real-valued scalar function corresponding to
an attribute, A; that is not necessarily continuous.

The function F(X) is a real valued function. For each given point, the
function is evaluated and depending on the sign of the returned value, one can
classify the given point as inside, outside or on the boundary of the object.
This function is represented in the modeling system by a tree structure with
primitives in the leaves and operations in the nodes. We generally use the term
constructive tree for this tree structure. The only requirement of the FRep
model is that the defining function F has to be at least C° continuous.

Similarly, depending on the applications [SPAS01, AKKT02], the attribute
functions can be defined using physical models or the constructive approach.
The spatial subset where an attribute is defined, is called a space partition des-
ignated as SP; in the above formulation. There are no definite values for an
attribute outside its space partition. The relation between a material feature,
defined above, and a space partition, can be stated as follows: for each mate-
rial feature, there is at least one space partition, which contains this material
feature. Note that a material feature can be contained in more than one space
partition, for example, in the case when the material feature is made of the
known composition of several materials.

1.3.2 Distance-based constructive hypervolume model

In some application areas, like computer graphics for instance, the generality of
the FRep and of the constructive hypervolume model may be appreciable, but



in some other cases, in particular for CAD and modeling heterogeneous objects
with internal material distributions, this model can not be used as it is.

We propose a restriction of this model for handling the particular type of the
material distribution based on approximate distance functions [BST02]. Since
we need to provide a real signed distance function for the object’s geometry,
or at least a controlled distance approximation, the primitives are restricted to
those, which surface can be defined as a zero level set of the signed distance
function (so-called normal primitives). Several primitives are already available
including sphere, cylinder, plane, torus, general quadric, block, and ellipsoid
[Har96]. This quite strong requirement is needed to accurately compute a signed
distance function for constructive solids, and thus correct material distributions
for them. Note that a normalization procedure [Rva82], [BS01] can be applied
to any defining function of a primitive to approximate the distance near its
boundary, but the distance property is not guaranteed far from the boundary,
which can be an additional source of the distance error.

In the remaining of this document, we suppose that primitives are defined
by signed real valued functions. In order to support the constructive approach
to model an object, set-theoretic operations have to be provided.

Let two point sets be defined by f1(X) > 0 and f2(X) > 0, where f;
and fo are signed real distance functions. Then, the union of these point sets
can be defined as f3 = max(f1, f2) and the intersection as f3 = min(f1, f2)
[Sab68], [Ric73]. As the functions are signed real distance functions, min/max
operations result in the exact distance function for the entire complex object.
However, min/maz operations have points of C! discontinuity by definition.
This discontinuity can cause unexpected results at the geometrical level of fur-
ther operations on the object such as blending, metamorphosis, and others, but
also it can have an undesirable influence on the material distribution (stress
concentrations, undesirable singularities, see [BST02]).

There are several works on replacing min/maz functions in constructive
modeling by C! continuous exact or approximated descriptions of set-theoretic
operations. R-functions [Rva63], [Rva74] provide a distance-like properties of
the defining function but not the exact distance function value. Moreover, ex-
ponential function value growth can be observed, for example, when applying
R-functions to define union of a number of overlapping solids (”positive explo-
sion” effect). In the case of the above mentioned normalized primitives [Rva82],
[BS01], the results of R-functions are normalized as well thus keeping the dis-
tance approximation near the boundary. The superelliptic min/max approx-
imation [Ric73] does not describe exact set-theoretic operations and suits for
blending only. The elliptic min/max approximation [BDST03], even if applied
to normal primitives, can well approximate the distance near the boundary, but
the error of the distance function grows infinitely far from the boundary.

We propose here to extend the approach of [BDST03] for providing approx-
imation of real distance functions by using a circular min/max approximation
and by introducing an additional bounding band to guarantee a fixed upper
limit of the distance function error at any given point.

As such approximations of min and max functions are acceptable for distance-
based modeling, we call the resulting defining functions of shapes by the term
signed approximate real distance functions (SARDF'), approximate min function
can be called “SARDF intersection” and designated as fi Ag fa2, approximate
mazx function - “SARDF union” designated as f; Vg fo. Note that SARDF



operations can be applied to both normal and normalized primitives. However,
in the latter case the distance property of the resulting function is provided for
points located only close to the boundary.

We apply such distance based constructive modeling in the constructive
hypervolume model framework [PASS01], with a special attention focused on
material distribution. With the help of signed distance approximation, we are
able to intuitively model heterogeneous material distributions parameterized by
the distance to the material features as suggested in [BST02].



2 SARDF operations

2.1 Overview

Any contour line of the min and maxz functions has sharp corner, corresponding
to the union of two vertical and horizontal rays. This feature of the contour
lines reflects the C'! discontinuity of the min and maz functions that occurs at
any point when two arguments are equal. Figure 1 shows for instance the sharp
corners appearing when drawing different contour lines for the min function.
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Figure 1: Each contour line of the min function contains a sharp corner.

Following the general approach of [BDST03], we propose to replace the sharp
corner in any contour line with a circular arc, as shown in Fig. 2. Two straight
lines, symmetric with respect to the line y = x, are used to delimit the frontier
for the circular arc approximation.

Figure 2: Contour line of the function min has a sharp corner (left) to be
replaced by a circular arc (right).

The use of the circular approximations for the min and maz functions can
provide the C'! approximation of the resulting distance function for constructive
shapes built using normal primitives (defined by distance functions). Unfortu-
nately, this approach has the following problem: the radius of the circular arc
used to replace the sharp corners in the contour lines keeps growing with the
distance from the initial surfaces. Fig. 3 illustrates this problem for the case of



the min function approximation. Because of this behavior of the arc radius, the
error of the distance function approximation grows infinitely with the distance,
which is unacceptable for distance-based modeling and application algorithms.

\

Figure 3: The radius of the circular arc is growing with the distance from the
origin, thus increasing the error in the distance function made by the approxi-
mation.

We propose to prevent the radius of the circular arc from growing infinitely
by introducing a fixed threshold R. A new bounding band can be introduced
by two parallel straight lines that enclose the arcs with the fixed radius. These
band lines are defined by a shift of the line y = x at R distance in positive
and negative x directions: y = * — R and y = = + R. They provide for a
fixed upper limit of the distance function error at any given point. As such ap-
proximations are acceptable for distance based modeling, the resulting defining
functions of shapes are called by the term signed approximate real distance func-
tions (SARDF). The union will be called SARDF union and the intersection,
SARDF intersection.

All operations are discussed for two half spaces fi =z, f{ > 0 and f; =y,
f2 > 0. Later we intend to apply these operations to arbitrary distance functions
J1 and fo.

The Euclidean plane is divided into four quadrants; the first quadrant cor-
responds to z > 0 and y > 0, the second quadrant to z < 0 and y > 0, the third
quadrant to z < 0 and y < 0, and finally the fourth quadrant to x > 0 and
y < 0. In the second and fourth quadrants, the SARDF union and intersection
are equal exactly to min and maxz; thus we will restrict the discussion to the
first and third quadrants.

In those quadrants, the construction steps for the SARDF union and in-
tersection are very similar, and redundant, therefore we give only details for
the case of the SARDF intersection. The complete details for the construction
steps of all the SARDF operations, as well as some of their properties, and
implementation details, can be found in [FPS03].



2.2 Construction and expression of the SARDF intersec-
tion

2.2.1 Quadrant I

The intersections of the two parallel bounding band lines, y = z + R and y =
x — R, with the lines parallel to the axes, z = R and y = R, result in two points:
A1(2 R, R) and A3(R,2 R), as shown in Fig. 4. These points are connected by
the circular arc (z — 2 R)? + (y — 2 R)? = R%. This makes a natural boundary,
that splits the first quadrant into two zones I and II, where two approaches for
approximation are applied (see Fig. 4).

Zone Il
=x+R
A !
2R
I A2 Zone Il
ne ,C.
y y=u-R
Al Zone 11
R
y=x+R Zone B
Zoel A
Zone 1 R 2R

y=x-R .-

Figure 4: The first quadrant is divided into two zones. The circular approxi-
mation is applied in zone I, whereas we introduce a fixed radius approximation
with the bounding band in zone II.

Zone I Zone I corresponds to the set of points P(z,y) for which < R or
y<Ror(r<2Randy<2Rand (r —2R)?+ (y — 2 R)? > R?), see Fig. 4.

In this zone, a circular approximation of the function F(z,y) = min(x,y) is
used. We want to replace any contour lines F' = d with a circular arc and two
rays tangentially attached to it as shown in Fig. 5.

Figure 5: Contour line of the function min has a sharp corner (left) to be
replaced by a circular arc (right).

The radius of the circular approximation is growing with the distance to the



surface and is bounded by two straight lines L1 and Ly, symmetric with respect
to y = x and defined as follows:

e L;: O— Ay, where O is the origin (0,0),
L] LQI O — Ag.

L1 and Lo makes an angle o with respectively the x-axis and the y-axis; this
angle is defined by cotan(a) = 2. These two lines break the zone I of the first
quadrant into three new zones: A (below L), B (between L; and L) and C
(above Ls), as shown in Fig. 4.

We are interested in the contour lines F' = d of the smooth approximation
F' of the min function. Given an arbitrary point P(z,y), we need to calculate
a function value d for it.

In zone A, F is equal to min(x,y), therefore the contour is a horizontal line
going through the point P and defined as F = y. In zone C, F is also equal
to min(z,y), so the contour is a vertical line going through the point P and
defined as F = .

Finally, in zone B, we want to have a circular arc passing through the point
P(z,y). This arc should go through the point P and change into the horizontal
ray in zone A and into the vertical ray in zone C. Both of these rays are at the
distance d from the corresponding x and y axes. Such a distance is used for the
definition of the value of the function. In order to calculate this distance d, we
start from the equation of the circle passing through P:

(x—20)*+ (y —yo)* =17 (2)

In this equation, xg, yo and r are unknown but can be expressed in terms of
the value d being searched, and «, the angle between the straight lines and the
axes. Fig. 6 shows the unknowns and their geometric relations.

(X0, Y0)

Alpta

Theta

Alpha

Figure 6: Unknowns of the Eq. 2 and their geometric relations.

In zone A (Fig. 4), from the lower triangle (Fig. 6) the following relation
holds: z¢ = d tan(a). By analogy, in zone C (Fig. 4) from the upper triangle
(Fig. 6) it comes: yo = d tan(«a), and r = xg — d. By replacing these variables
in Eq. 2, we obtain the quadratic equation for the variable d:

d? [cotan®(a) + 2 cotan(a) — 1] — 2 d (z + y) cotan(a) + 2> +y* =0 (3)

10



The solution of the quadratic Eq. 3 for the unknown d is:

d— %;4“)“ if a # 0 and in zone B
7% if @ = 0 and in zone B

where a = cotan?(a) + 2 cotan(a) — 1, b = —2 (z +y) cotan(a) and ¢ = 22 + y?
are the coefficients of the quadratic Eq. 3.

The final expression of the circular approximation F = d for the min func-
tion, in the zone I becomes:

b (b2 —dac)0 5 . .
R i(27aac) if P in zone B

F(P)=d=< vy if P in zone A
T if P in zone C

where a = cotan?(a)+2 cotan(a)—1="7,b= =2 (z+y) cotan(a) = —4 (z+y)
and ¢ = 22 + y2.

Zone II In the zone II, the fixed radius with the bounding band is applied
to get a smooth approximation F of the min function. Outside the bounding
band lines y = z + R and y = ¢ — R, the approximation of min is min itself,
therefore we take F = min(z,y). Between the lines, we start from the equation
of the circle: (x — x0)% + (y — yo)? = R?, where ¢, yo are parameters that can
be expressed using the radius R and the distance d, which is the searched value
of F.

Fig. 7 displays these different parameters and their geometric relations. It
is obvious that zp = yo = d + R. Replacing =y and yy in the equation of
the circle, the following quadratic expression of the unknown d is obtained:
2d°+d(—2x—-2y+4R)+ (2> +y*—22 R—2y R+ R*) = 0. The solution
for the unknown d, gives the searched value for the smooth approximation of
the mm functlon d= M, where a =2, b= —-2x—-2y+4 R and
c=24+y*—2x R—2 y R+ R2 are the coeﬁi(nents of the quadratic equation.

The expression for F in the zone II becomes:

~ %Yf“c)“ inside the bounding band
F(P)=d=< vy belowy =z — R
x above y =x+ R

where a =2, b=-2r—-2y+4Randc=2>+y> -22 R—2y R+ R%

Final expression for the SARDF intersection in the quadrant I We
give the final expression for the SARDF intersection F' approximating the min
function in the first quadrant. Given a point P(x,y) in the first quadrant, the
value d of F at P is given by:

“hik0iZtae)™ i pin gone I, B
Y if P in zone I, A
F(P) =d= Jib2i(b§—4a2@)°-5 ?f ’ ?n sone, © .. .
— if P in zone II, and inside the bounding band
Y if P in zone II and below y =2 — R
T if P in zone II and above y = x + R

11
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Figure 7: Geometric relations between the parameters of the circular approxi-
mation with the bounding band in zone II.

where a; = cotan®(a) + 2 cotan(a) — 1 = 7, by = =2 (z +y) cotan(a) =
4 (x+y),ca=a2+y% a2 =2, bp=-2x—-2y+4 Rand ¢z = 2% + 9% —
2z R—-2y R+ R2

2.2.2 Quadrant III

We consider now the same approach to approximation of the min function
with the bounding band in the third quadrant. The intersections of the two
parallel bounding band lines, y = x + R and y = x — R, with the lines parallel
to the axes = —R and y = —R, result in two points: A3z(—2 R,—R) and
A4(—R,—2 R), as shown in Fig. 8. These points are connected by the circular
arc (z + R)? + (y + R)? = R2. This makes a natural boundary, that splits
the third quadrant into two zones III and IV, for applying the two different
approaches to approximation (see Fig. 8).

Zone IIT Zone III corresponds to the set of points P(x,y) for which x > —R
ory>—Ror (z>-2Randy> -2 Rand (z+ R)?+ (y + R)? < R?), see
Fig. 8. In this zone, the same circular approximation as in zone I is applied.
The continuation of the two straight lines L1 and Lo into the zone III, breaks
it into three more zones: D above L1, F between L and Lo, and F below Lo
as indicated in Fig. 8.

Given an arbitrary point P(z,y) in the third quadrant, we want to evaluate
F', the smooth approximation of the min function at this point.

In zone D, F is equal to min(z,y), therefore the contour is a vertical line
going through the point P and defined as F = z. In zone F, F is also equal
to min(z,y), so the contour is a horizontal line going through the point P and
defined as F = y.

In zone E, we want to have a circular arc passing through the point P(x,y).
This arc should go through the point P and change into the horizontal ray in

zone F and into the vertical ray in zone D. Both of these rays are at the distance

12



Zone TV

y=u+R & —2R

Zone IV

¥y<0

Figure 8: The third quadrant is divided into two zones. The circular approxi-
mation is applied in zone III, whereas we introduce a fixed radius approximation
with the bounding band in zone IV.

d from the corresponding x and y axes. Such a distance is used for the definition
of the value of the function.

Again, in order to calculate this distance d, we start from the equation of
the circle passing through P:

(x—x0)*+ (y —yo)*> =717 (4)

In this equation, xg, yg and r are unknown but can be expressed in terms of d
and angle «. Fig. 9 shows the unknowns and their geometric relations.

From the triangle in zone D, yo = —d tan(«). By analogy, from the triangle
in zone F, 2y = —d tan(a), and d = r + |zo|. By replacing these variables in
Eq. 4, we obtain the quadratic equation for the variable d:

d? [tan®(a) + 2 tan(a) — 1]+ 2 d (z +y) tan(a) + 2> +y* =0 (5)

The solution of the quadratic Eq. 5 for the unknown d is:

2a

d— b —da)®? if a # 0 and P in zone E
A if a =0 and P in zone E

where a = tan?(a) + 2 tan(a) — 1, b = 2 (x + y) tan(a) and ¢ = 2% + y? are the

coefficients of the quadratic Eq. 5. This solution d gives the value for F', at P.

The final expression of the smooth approximation F' = d for the min func-
tion, in the zone III becomes:

~ *M if P in zone E

F(P)=d=1 vy if P in zone F

x if P in zone D

where a = tan®(a) + 2 tan(a) — 1 = 1, b =2 (z 4+ y) tan(a) = (z +y) and
c:x2+y2.

13



<0
* Theta

V ¥<0

Figure 9: Unknowns of the Eq. 4 and their geometric relations.

Zone IV In zone IV, we switch to a fixed radius approximation with the
bounding band. Outside the bounding band, we take F= min(z,y). Inside the
bounding band, we start from the equation of the circle: (x —z0)%+ (y —y0)? =
R?, where xg, 1o are parameters that can be expressed using the radius R and
the distance d, which is the searched value of F.

Fig. 10 shows these different parameters and their geometric relations. It
is obvious that |z9| = |yo| = d + R. Replacing ¢ and gy in the equation of
the circle, the following quadratic expression of the unknown d is obtained:
2 +d 2 x+2y—4 R +@*+y*—2x R—2y R+ R?*) = 0. The
solution for the unknown d gives the value d = *M’ where a = 2,
b=2x+2y—4Randc=22+9y>—-2x R—2y R+ R? are the coefficients of
the quadratic equation.

1<0

-
"

y=1+R

¥<0

Figure 10: Geometric relations between the parameters of the circular approxi-
mation with the bounding band in zone IV.
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The expression for F' in zone IV becomes:

~ _W inside the bounding band
F(P)=d=1< y belowy =z - R

x above y =2+ R

wherea =2, b=22+2y—4Randc=22+vy>-22 R—2y R+ R

Final expression for the SARDF intersection in the quadrant III We
give the final expression for the SARDF intersection F' approximating the min
function in the third quadrant. Given a point P(z,y) in the third quadrant, the
value d of F at P is defined as:

—ZhEGIAGe)™ e p iy gone TTT, B

2a
Y ' if P in zone III, F
~ T if P in zone III, D
F(P) =d= —bot(b2—dascy)?® . . .. .
- — if P in zone IV, and inside the bounding band
Y if P in zone IV and below y =2 — R
T if P in zone IV and above y = x + R

where a1 = tan?(a) + 2 tan(a) — 1 = %, by = 2 (z + y) tan(a) = (z + y),
o =22+y% a0 =2,y =22+2y—4 Randcy =22 +y’—22 R—2y R+ R%.

2.2.3 SARDF intersection of arbitrary objects

In the general case, x and y in the proposed approach can be replaced by the
distance functions f; and fs of two arbitrary FRep objects. Then the inter-
section between these two objects can be described by the SARDF intersection
function as follows:

Case 1: f; > 0 and fo > 0 In the current paragraph, F; is used for the
following boolean expression: F1 = (fi < Ror fo < Ror (f1 <2 Rand f3 <
2 Rand (fi —2 R)?+ (f2 — 2 R)? > R?)).
RO Ane)™ i By and §< 2 <2
f2 if E1 and % é %

_ i i3
fi /\szzF(flny): flbj:b2 \ . if £y and fi >2
“hettidec) - it and fi —-R< fo< fi + R

fa if 1By and fo < fi — R
f if'\Ey and fo > f1+ R

where a; = cotan®(a) + 2 cotan(a) — 1 = 7, by = =2 (f1 + f2) cotan(a) =
~d(fitf)ya=f2+f a=2b=-2f-2f+4Rand c; =
fi24+ f22—2fi R—2 f, R+ R2.

Case 2: fi<0and f, >0

fins 2=F(fi.fo) = f1
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Case 3: f; <0and f> <0 Wedenote by Fs the following boolean expression:
Ey = (fi > —Ror fo > —Ror (fiy > -2 Rand fo > -2 Rand (f; + R)? +
(f2 + R)* < R?)).

—%W ingand%<%<2
o if By and £ <]
_ if By and £2 > 2
finsfa = F(f1, f2) = h PR ant =

_ 2 _daoe )05 .
—% iflEByand fi —R< fo<fi+R

f2 if !EQ and f2 < fl —R
fl if 'EQ and fg > f1 + R

where a1 = tan?(a) + 2 tan(a) — 1 = %, by = 2 (z + y) tan(a) = (z + y),
=24y a0 =2,y =22+2y—4 Randcy = 2> +y’—22 R—2y R+ R

Case 4: f{ >0 and f, <0

fiNs fa= F(flva) = fa

2.3 SARDF union of arbitrary objects

For reasons of symmetry, the construction of the SARDF union in the quadrants
I and III, is almost the same as for the SARDF intersection. Therefore, details
are skipped and only the final expressions of the union of two arbitrary FRep
objects are given.

Case 1: f; > 0 and fo > 0 In the current paragraph, F3 is used for the
following boolean expression: E3 = (fi < Ror fo < Ror (fi <2 R and f> <
2 Rand (fi — R)?>+ (f2 — R)*> < R?)).

_ 2 0.5 | s
“hiklb —dare) 7 ip pooand % <29

2(11 fl
fl if E3 and % < %
_) £ if B3 and 42 > 2
fl \/S f2 B 7b2:|:(b§74a2¢:2)0'5 e !
“halidae) gy and fi — R < fo < fi+ R
fi if !Bz and fo < fi — R
f2 if |F3 and f2 > fl + R

where a1 = tan?(a) + 2 tan(a) — 1 = 1, by = =2 (f1 + fo) tan(a) = —(f1 + fo),
C1 :f12+f22, as :2, b2:—2 f1—2f2—4Rand02:f12+f22+2 f1 R+
2 fo R+ R2.
Case 2: fi <0and f, >0

fiVs fa= fo

Case 3: f; <0and fo <0 Wedenote by E, the following boolean expression:
Ey,=(fi>—-Ror fy >—Ror (fi > -2 Rand fo > =2 Rand (f; +2 R)*> +
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(f2+2R)* > R?)).

__bli(bfzzfalicl)m if 1 < % < 2and Ey4
fs if £y and % <1
Fivsfa=d D  if Byand £ >2
— ettt f1g, and fy - R < fy < fi + R
fg if |E4 and f2 < f1 - R
fl lf'E4 andf2>f1+R

where a; = cotan?(a) + 2 cotan(a) — 1 = 7, by = 2 (f1 + f2) cotan(a) =
A(fitfo),er=f2+f? aa=2bo=2fi+2fs—4Rand c; = i’ + fo’ +
2fiR+2f, R+ R?.

Case 4: f; >0 and f, <0

fivs fa=fi

3 Estimation of the distance error for SARDF
operations

3.1 Upper limit of the distance error for a single SARDF
operation

The upper limit of the distance error for a single SARDF operation is reached
in the band area, where the traditional operation (min/maz) is replaced by an
arc of circle of fixed radius R. For reason of symmetry, the upper limit error
for the SARDF intersection and union is the same in absolute value in all the
quadrants, so only one case needs to be studied. Let us consider the SARDF
intersection in the first quadrant. Fig. 11 reminds the configuration of the first
quadrant, with the smooth approximation and the different zones.

The error made at one given point (z,y), when using the SARDF intersection
instead of the min itself in the circular shape area (it can be both in the Zone
LB or in the zone II) is shown in Fig. 12a. Let (x,y) be one point for which
the distance approximation to the intersection of the two half-planes > 0 and
y > 0 is computed. Outside the angle zone used for the circular approximation
(zone I,B in Fig. 11) and outside the bounding band (zone II, in Fig. 11), the
error is 0. An error is introduced only in the zones of the smooth approximation:
zone I,B and zone II (Fig. 11). One upper limit error can be computed in the
zone II, inside the band. Fig. 12b shows this area, with the distance error at
different points in dashed line. The upper limit for the distance error is reached
at the point P defined by = = y.

For that particular point, the error is exactly ¢ = y = x; P(z,y) being a
point of the circular arc shape of radius R, its coordinates follow the equation:
(r — R)?2+ (y — R)? = R2. Since = = y, it follows that: 2 22 — 4 Rz + R? = 0,
for which the two solutions can be easily obtained. One of this solution can
be discarded, since it does not respect the condition x < R, therefore only

(V2-

T = TUR remains. This value is an upper bound for the distance error

made when using SARDF.
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ZoneIL

y=x+R

R
Zone IL

Zone 11

y=x+R .+

e

Zone I R R

Figure 11: The first quadrant is divided into two zones. The circular approxi-
mation is applied in zone I, whereas we introduce a fixed radius approximation
with the bounding band in zone II.

y=0 A

ercor =abs{ d' —d )

{0.R)

&
approwimate distance

0.0 R, 0)

x>0 — — - distance error

(a) (b)

Figure 12: (a) Exact distance, computed approximate distance and error at a
given point (z,y). (b) Distance error (in dashed lines) at different points in the
band zone (zone II), and max error reached for x = y.
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In the case of the SARDF union operator, the absolute value of the error
should be subtracted to the computed approximate distance, in order to have the
correct distance value; whereas in the case of the SARDF intersection operator,
the absolute value of the error needs to be added to the computed approximate
distance in order to get the correct distance value.

3.2 Algorithm for the exact distance error evaluation

The distance error can be evaluated exactly at any point with the following
steps:

1. Evaluate the approximate distance using SARDF operations in the con-
structive tree nodes;

2. Replace in the constructive tree all the occurrences of the SARDF inter-
section and union, by min and max functions;

3. Evaluate the exact distance function by traversing the tree with the re-
placed nodes;

4. The distance error is the difference between the two above computed val-
ues.

Note that the distance error can be zero depending on the given point position
and the operations applied in the construction.

4 Comparison of time efficiency between SARDF
and the min/max operations

Because the SARDF intersection and union are more complicated than the min
and max functions, they require more time for their execution. Therefore, we
looked at their time efficiency and checked that the overhead in time, compared
to the min/max functions but also to the R-Function intersection and union,
remains reasonable and does not forbid a practical use of these functions.

Time (in sec.)
Subdivisions SARDF min | R-Function | SARDF | maz | R-Function
intersection intersection union union
1001 % 1001 0.05 0.01 0.02 0.05 0.01 0.02
10001 * 10001 5.29 1.42 2.52 4.97 1.38 2.56
20001 * 20001 21.18 5.65 10.09 19.59 5.53 10.07
30001 « 30001 47.47 12.66 22.75 44.07 12.46 22.72

Table 1: Time efficiency for 1001*1001, 10001*10001, 20001*20001 and
30001*30001 evaluations of SARDF intersection, SARDF union, min, maz,
R-Function for the intersection and R-Function for the union.

In order to measure the time efficiency, a square was considered in the z —y
plane, starting from (—10,—10) and going to (10, 10); this square is regularly
subdivided along the = and y axis; let n, and n, be the number of subdivisions
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along the = and y axis respectively. Then, for each of the functions, the time
taken for evaluating these n, X n, points in the square is considered. The results
of these evaluations for different subdivisions and all the functions (SARDF
intersection and union, min and mazx, R-Function intersection and union) is
given in Table 1.

The overhead in time between the SARDF intersection, min and the R-
Function intersection in one hand, and between the SARDF union, maz and
the R-Function intersection in the other hand are shown in Fig. 13a and b
respectively. In our test, we found a factor of approximately 4 between the
SARDF operations and the traditional min/maz, and a factor of approximately
2 between the SARDF operations and the R-Function.

All the functions considered in the tests were implemented in ANSI C and
compiled with the optimization flags turned on, the time results were obtained
on a Pentium 4 processor, with 256 MBytes of RAM.

T i === —

[ sardf {Inlersection)

W min

[] R-Functionfinterscc-
tion)

T
1000110001 20001*20001 300071730001 1000119001 000120001

30001*30001

Number of function evaluations Number of function evaluations

[ sardf {unicn}
W max

[] R-Function {union}
(a) (b)

Figure 13: Time comparison between: (a) SARDF intersection, min, and R~
Intersection; (b) SARDF union, max, and R-Union for different number of
function evaluations.
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5 Comparison of different union operations: SARDF
union, mazr, and R-union

In the following discussion, the same object, an union of ellipsoids, is modeled
with three different union operations, in order to highlight their differences.
We are interested in the distance properties and in the C! continuity. The
considered union operations are: the SARDF union, described above, the max
operations [Ric73], and the R-union [Rva63, Rva74, Rva82]. The expression for
the SARDF union operation is given in section 7?7 and we remind for commodity
the expression of the R-union of two objects defined by their FRep fi and f:
iV fa = fi+ f2++/fi+ f3. The procedure used for computing the exact
signed distance from a point in R? to the surface of the ellipsoid can be found
in [Har94].

The considered geometric model is the union of two ellipsoids, the first one
centered in (5,0, 0), with radii (5, 2,2), and the second one centered in (5,0, —5),
with radii (2,2,5). For rendering, cross-sections by the plane y = 0 are done,
see Fig. 14 and 15.

Figures 14a, b, and ¢, show the interior contour lines of the distance function
(positive values of the function) for the whole geometric object. Figure 14a
corresponds to the model made with SARDF union, Fig. 14b with the one
made with max union, and Fig. 14c with the one made with R-Function. One
can notice in Fig. 14c how the use of R-functions results in wrong distance
values. In contrary, Figs. 14a and b show very similar contour lines, except at
the points joining the contour lines of the two functions, which are smoothed.
This artifact is even more visible in Fig. 14d and e, where a zoom is performed
on one of the critical area. Figure 14f is a zoom to the model obtained with R-
Function and shows that the contour lines are even smoother, but the computed
distance to the surface is incorrect.

Some ”"sharp features” of contour lines can be seen on the main axis of the
ellipsoid in Fig. 14a and b. They correspond to points of C' discontinuity for
the function returning the distance to an ellipsoid. Indeed, it is known that
exact distance functions can be C! discontinuous on some surfaces, curves or
points in 3D space. It is a property of exact distance function without any
consideration of how it is obtained. In fact, as soon as two points of the shape
have an equal distance to the given point in space, the distance function is C*
discontinuous at this point. The medial axis corresponds to this set of points
of the distance function C! discontinuity for the given shape. Applying min
and max operations is one of the ways of constructing distance functions, but
these operations result in C'! discontinuity of the defining function at internal
and external points of the object. The proposed SARDF operations provide a
way to avoid this discontinuity, in constructive modeling, but if a primitive has
its own discontinuity on its medial axis, we cannot do anything yet about it.
This is a source of future work.

Figure 15 shows the contour lines outside the ellipsoid (negative values of the
function) with the different union operations used in the constructive modeling
process. Again the use of R-Functions results in a wrong computed distance,
especially when going far from the surface of the ellipsoid ( see Fig. 15¢). When
maz is used for the union, see Fig. 15b, the distance returned is correct, but
sharp points appear, corresponding to C'! discontinuities in the function defining
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TUV

(&) SARDF (b) Mz (c) R-Function
(d) SARDF (e) Max {f) R-Function

Figure 14: Union of two ellipsoids with different union operations. The level
of gray corresponds to range of distances from points inside the ellipsoid to its
surface. (a) SARDF union is used, (b) maz is used, (¢) R-union is used. At the
bottom, a zoom is performed to show the behavior of the contour lines in the
zone of union: (d) SARDF union is used, (e) maz is used, (f) R-union is used.

the solid.

6 Case studies

We propose case studies of constructive heterogeneous modeling with signed ap-
proximate distance functions, using SARDF operations and normal primitives.

The SARDF operations are used instead of the R-functions or the min, max
operations in the different constructive trees, i.e. for the geometry and the at-
tributes. By a normal primitive, we mean a primitive with a defining function
p, which at a given point x € R3, returns the Euclidean distance from z to
the surface p~1(0). A list of the existing primitives, with the distance function
property, can be found in [Har96]. The use of signed distance approximation
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{a) SARDF (b) Max

{c) B-Function

Figure 15: Union of two ellipsoids with different union operations. The level of
gray corresponds to range of distances from points outside the ellipsoid to its
surface. (a) SARDF union is used, (b) max is used, (¢) R-Function union is
used .

in the modeling process preserves a C'' continuous distance approximation, and
makes possible to intuitively model heterogeneous material distributions pa-
rameterized by the distance to the material features as proposed in [BST02].
Note that the distance function of normal primitives is not C1 continuous at
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the primitives medial axis.

6.1 Two-dimensional CAD part

A simple heterogeneous model is proposed first to illustrate the use of SARDF
in constructive heterogeneous object modeling with distance functions. The
geometry of the simple CAD part (Fig. 16a) is defined as f(X) > 0, where f
is evaluated by traversing the FRep tree [PASS95] with a box "Box_G”, and
a cylinder ”Cylinder_G” in the leaves (where the G stands for Geometry), and
the subtraction operation in the node (Fig. 16.b). The box and the cylinder
are defined as normal primitives [Har96]. And, the subtraction is defined with
SARDF , as follows: f1\s fa = f1 As (—f2).

Cylinder G

(a) (b)

Figure 16: Two-dimensional CAD part. (a) Geometry of the CAD part defined
by an FRep. (b) The associated geometric tree, used to define the point set.

This CAD part is constituted of two different materials, with the distribution
of each material evolving in space. We use the notation m;(X) and mq(X) for
the scalar volume fraction component of respectively the materials 1 and 2 in the
material composition. For visualization purposes, the material distributions are
mapped to the ”RGB” color space, i.e. a color is attributed to each material, and
the final color is the combination of the colors corresponding to each material,
weighted by the scalar volume fraction.

The space partitions SP; and SP,, corresponding to the subspaces, where
the two materials are defined, are shown respectively in Fig. 17a and 17b. As
for their geometry, the space partitions are defined by building new constructive
trees, with SARDF operations in the nodes and normal primitives in the leaves.

Note that the volume fraction component of each material, i.e. mj(X)
and my(X), is not constant within the defining space partitions. For exam-
ple, m1(X) is constant and equals to 1 only in the subset displayed in Fig. 17¢
(i.e. the first material feature of the object). In the rest of the space partition,
it is a function parameterized by the distance to this material feature shown in
Fig. 17c.

In the subset common to both SP; and SP, (Fig. 17e), the two materials
are blended together. The blending is done using the inverse distance weighting
[RSSTO01, She68]. Indeed, in the current example: the scalar volume fraction
of each component material are given by: mi(X) = w1 (X)M; and mo(X) =
wo (X)) My, where M7 and My stands for the value of the scalar volume fraction
on the boundary of the first and second material features shown respectively in
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(d) (e)

Figure 17: The additional space partitions used to define the materials. (a) The
space partition where the material m;(X) is defined. (b) The space partition
where the material mo(X) is defined. (c) The first material feature, correspond-
ing to the subset where the material 1 is constant mq(X) = Mj. (d) The second
material feature, corresponding to the subset where the material 2 is constant
ma(X) = Ms. (e) The zone where the materials are blended.

Fig.17c and Fig.17d. In this example, M; and M, are equal to 1. The weighting
functions w1 (X) and wa(X) are normalization of each inverse distance functions
and can be expressed as:

. _ ﬁ _ da(X)
1(X) it A+ da(X) o
wa(X) = m T o) ©

W—FW dl(X)+d2(X)

where d;(X) and do(X) are the distances from point X to the boundary of
respectively the material features shown Fig. 17c, and Fig. 17d. These two
distance maps are also illustrated in Fig. 18 and Fig. 19. Fig. 18a and Fig.
18b correspond respectively to the approximate distance map d; when the R-
functions and the SARDF operations are used to define the shape. In a similar
way, Fig. 19a and Fig. 19b correspond to the approximate distance dy when
using R-functions and SARDF . The approximate distance maps built using
R-functions indicate that even if R-functions have good smoothness properties
they are neither exact nor approximate distance functions, making it difficult
to control precisely material distribution.

For both weighting functions w; and wy (see Eq. 6 and 7), two equivalent
expressions are given, but the rightmost one should be preferred due to a better
numerical stability.

The weighting functions w (X) and we(X) are continuous functions satis-
fying the interpolation condition w;(0B;) = d;;, where i,j € 1,2, §; ; is the
Kronecker symbol!, and dB; are the boundaries of the material features seen

lequals to 1 if 4 = j and 0 otherwise
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(a) (b)

Figure 18: Approximate distance map d; from point X to the boundary of the
shape Fig. 17c. (a) Using R-functions. (b) Using SARDF operations.

(a) (b)

Figure 19: Approximate distance map do from point X to the boundary of the
shape Fig. 17d. (a) Using R-functions. (b) Using SARDF operations.
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in Fig.17c and 17d. The functions w; (X) and wy(X) form a partition of unity.

The mathematical properties of these functions are illustrated in Fig. 20
with a cross section of the model through the y — axis and the visualization of
the evolution of the weighting functions wq (X’ = (z, const)) and wy(X’) along
z-axis. Note that in the current example w; and m;, ¢ € 1,2, have the same
graph, since the values of the volume fraction on the boundaries, M; and M,
are equal to 1.

V=2

material coefficients

0,57
04

| / . \
03 7 \

0,27 / : \

0,17 i/ B 5

00,0 20 40 6,0 80 19
x

Figure 20: A cross section parallel to z-axis and the distribution of the materials
in the cross section.

In the current and following examples only two materials are mixed in the
overlapping zone. Of course, more materials can be blended and the expressions
for inverse distance weighting (Eq. 6 and 7) can be extended to the case where
p materials are blended. Additional details on the inverse distance weighting
used for the interpolation of materials defined over functionally defined sets can
be found in [RSSTO01]. More complex expressions for compositions of multiple
materials, i.e., vector valued materials, constrained and weighted interpolation
of materials, can be found in [BST02].

The resulting model of the CAD part and its material distribution is illus-
trated by Fig. 21a. The distribution of the material 1, given by its scalar volume
fraction m1(X) is mapped to the blue color, and the distribution of the material
2, given by m2(X) to the red color. Stripes are used to make the visualization
of the changes in material distribution easier.

Replacing the SARDF operations by R-functions in the constructive trees
(both for the geometry and for the space partitions) results in the model shown
in Fig. 21b. In general, R-functions have good smoothness (or differential)
properties but are neither exact nor even approximate distance functions, see
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Fig. 21b, Fig. 18a and Fig. 19a. This results in difficulties for a designer to
predict material distribution and to control it.

[« ][]

(a) (b)

Figure 21: Material distribution for the CAD part: (a) with SARDF used for
constructive operations; (b) with R-functions used for constructive operations.

6.2 Three-dimensional CAD part

We propose a second example with more complex 3D shapes for the space
partitions. The overall geometry of the object is a block. The model includes
two attributes; each of them corresponding to the scalar volume fraction of a
material. We keep the same notation as in the previous subsection, with mj(X)
and mo(X) as the scalar volume fraction of the materials 1 and 2.

The domains of definition of each attributes, i.e. their space partitions, are
shown Fig. 22a for the first material and Fig. 22b for the second material.
These space partitions are respectively named SP; and SPs.

= =

(a) (b)

Figure 22: The two space partitions for the heterogeneous model: (a) the first
space partitions S P, corresponding to the first attribute, (b) the second space
partition S Py, corresponding to the second attribute.

The object contains two material features: Fig. 23a shows the first material
feature corresponding to X € SP; : my(X) = M; = 1 cut by a planar half-space
for visualization purposes only. Figure 23b shows the second material feature
corresponding to X € SP, : mo(X) = My = 1; the geometry of this latter space
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partition is composed only of blocks and ellipsoids, combined with SARDF
unions and intersections. Figure 23b shows a zoom to one of the pins. Such a pin
is modeled only with ellipsoids as primitives and SARDF union and intersection
as operations. Indeed, it is the SARDF union of four ellipsoids, that are after
subtracted from a fifth ellipsoid.

(c)

Figure 23: (a) the first material feature, (b) the second material feature, with
a zoom on one of the pins, on the right, (c¢) union of the two material features.

For this model, the two space partitions are intersecting: the common space

29



can be seen Fig. 22 with the gradient of colors. In this common space, the two
materials are blended together. The blend is done by the same technique as
used in 6.1. The expression for each coefficient is the same as in section 6.1, Eq.
6 and Eq. 7.

The overall distribution of the materials is shown Fig. 24a. The geometry
corresponding to the second material feature is rendered, using a red color, then
for the visualization of the material distribution, two cross-sections are made:
one for x = 0 and one for z = 0. On each of the cross-section, the evolution of
the material distribution is projected. For visualization purposes, each material
is mapped to one color. The first material corresponds to the blue color and the
second material to the red.

Figure 24b shows a zoom to one of the pins. The space where the coefficient
of the material mo is equal to one, is drawn in 3D with red color. Two more
cross sections with distribution of materials are added. Red color is associated
with the second material, and blue color with the first material. The gradient
of color expresses the evolution of the distribution of the material composition,
indicating percentage of the first and second material.
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(b)

Figure 24: Distribution of two materials. Blue color corresponds to material
1, red color to material 2. The color variation indicates the fraction of each
material. (a)Two cross sections are made for z = 0 and y = 0 to show the
material distribution. (b) A zoom is made to one of the pins with additional
cross-sections.
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6.3 Tooth inlay

An image of a real tooth is shown in Fig. 25. Contours have been hand drawn
for the outside shape, the inlay, and the middle contour, mixed zone with tooth
and inlay material. The distance between the inlay and the middle contour is
taken bigger than in reality just for presentation purposes.

Figure 25: Image of a real tooth with the inlay and with hand drawn contours:
outside shape, middle contour and inlay.

The hand drawn contours are approximated by polylines first and then con-
verted to the function representation using the algorithm proposed in [Rva74]
and described in [PSS96] with the R-functions replaced by the corresponding
SARDF . The corresponding shapes are displayed in Fig. 26a for the outside
tooth shape, Fig. 26b for the inlay, and Fig. 26¢ for the middle contour.
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Figure 26: FRep model of the tooth with the inlay: (a) the outside tooth shape;
(b) the inlay; (c¢) the middle contour.

Two space partitions are defined on the geometric shape shown in Fig. 26a;
the first partition, S Py, is defined by the subtraction of the inlay from the outside
tooth shape; the second partition, SPs, is defined by the middle contour itself.

The model contains two material features: the first one corresponds to the
zone of pure material tooth (in light red Fig. 25). The second material feature
corresponds to the pure inlay material (see in black Fig. 25).

Two attributes are used in the model: the first one is defined on SP;, and
corresponds to the tooth material; the second one is defined on SPs, and corre-
sponds to the inlay material. The final heterogeneous object is defined by the
triplet: (outside tooth shape, tooth material, inlay material).
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Two space partitions SP; and S P, are overlapping in the area corresponding
to the subtraction of the inlay (Fig. 26b) from the middle space (Fig. 26¢). In
this common space, the two materials are blended. The volume fraction of each
component material is constructed in this overlapping space, by weighting the
volume fraction in each material feature. The weighting coefficients are defined
by the inverse distance weighting following equations Eq. 6 and Eq. 7.

The distribution of the materials is visualized by mapping them to the
"RGB” color space. Figure 27a is a rendered image of the tooth inlay ma-
terial (dark color) using a radius of 0.5 for the SARDF functions. For com-
parison purposes, the tooth inlay is also modeled with R-Functions (Fig. 27b)
in both of the constructive trees: for the geometry and the space partitions.
The latter figure stresses again the difficulties to model complex heterogeneous
objects with R-Functions, because of the incorrectness of the distance function
approximation.

(a) (b)

Figure 27: (a) Rendering of the tooth inlay with a radius of 0.5; (b) Same as
picture (a) but R-functions have been used in the constructive trees for the
geometry and the space partitions.

For ease of visualization, the material distribution is drawn in Fig. 27a,
using stripes. The result is shown on Fig. 28; a zoom is done to the circled
region and shown in Fig. 29a, where SARDF operations are used, and Fig. 29b
for R-Functions.

Both material distributions along the z-axis for a cross section in y = 2 are
drawn in Fig. 30. The topmost picture corresponds to the geometric space,
with the contours of the space partitions within. A black horizontal line, drawn
for y = 2, indicates where the cross-section is done. The middle and bottom
pictures are graphs illustrating the fractions of each material, the middle one
corresponds to the distribution of the first material (tooth material) along -
axis, and the bottom corresponds to the distribution of the second material
(tooth inlay).
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Figure 28: A lookup table is used to produce stripes to show the material
distribution. The circled zone is zoomed and shown below.

(a) (b)

Figure 29: Comparison of SARDF and R-functions for the zoom shown in Fig.
28. (a) SARDF are used; (c) R-functions are used.
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Figure 30: Material distributions for the tooth with the inlay: (top) geometric
shape and space partitions; (middle) evolution of the fraction of the tooth ma-
terial along x-axis (cross section for y = 2); (bottom) evolution of the fraction
of the inlay material along z-axis.
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7 Conclusion

In this paper, we studied the issues of heterogeneous object modeling, espe-
cially the control of the distribution of given materials inside an object. The
constructive hypervolume model [PASSO01] serves as a basis for our work. We
put constraints on this model for the special purpose of heterogeneous objects
modeling following the idea of [BST02] stating that the distribution of a mate-
rial can be precisely modeled and controlled using distances to some material
features (shape subsets where the property of the material is known).

The core of this work is the introduction and application of special func-
tions describing set-theoretic operations for constructive modeling. Under the
condition that the primitives in use are defined by exact distance functions, the
proposed set of functions provides for a good approximation of the real distance
value. Furthermore, the upper limit of the error in the distance computation
can be exactly determined. These functions serve for defining both the object
geometry and the space partitions where the materials are defined.

The proposed operations are first defined for two half planes as > 0 and
y > 0 in each quadrant of a two dimensional space. While in quadrant II and
IV, they are exactly equal to min, maz; in quadrants I and III, a circular
approximation of min, max is used with an additional bounding band limiting
the growth of the distance function error.

The result of any constructive modeling, involving signed approximate real
distance functions (SARDF) and primitives defined by distance functions, is at
least C'' continuous, except for the cases when both of the arguments of the
SARDF operation are equal to 0, or for the points belonging to the medial axis
of one of the primitives. The investigation of some analytical expressions for
primitives, that approximate distance function, but avoid the C! discontinuity
on the medial axis, is a source of future work.

Through the case studies, the viability of the proposed functions for con-
structive heterogeneous modeling is confirmed. The provided examples can be
easily extended with more complex material distribution for the material fea-
tures and more complex scheme for combination of the different attributes, since
no restrictions prevent it in our model.
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