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1 Introduction

One of the actual problems in solid modeling is dealing with objects which are not
yet (or not anymore) available as solid models. It is necessary to handle them in the
same terms as other solid models. Therefore, special methods are needed for reverse
engineering such solids. In this paper, we restrict our work to the shape recovery of
constructive solids with smooth surfaces for cultural heritage and finite element meshes
(FEM) applications.

One of the goals is to have models that can be later reused for modeling, modifica-
tions, or analysis. For instance, example-based modeling techniques are discussed for
the case of human body in [20].

Previous work Reverse engineering of solid models relies on fitting some mathemat-
ical models, traditionally parametric or algebraic surfaces [1], [5], to scan data. Fitting

a model consists in finding the best set of parameters such that the model becomes as
close as possible to the data points.

Benko et al. [1] propose to fit multiple curves and surfaces to 2D and 3D real data,
where the accuracy of the fit is enhanced by satisfying constraints between the param-
eters of the curves or surfaces. They introduce for that purpose an efficient constrained
fitting scheme and derive a distance approximation for each primitive in their library
for accurate and efficient fitting.

Fisher [5] proposes to use as much knowledge as possible to enhance quality of the
reverse engineering process. Relations between parameters or objects are introduced to
guarantee the production of sufficiently accurate models, which reproduce symetry and
regularity. In [18], the same team proposes an evolutionary method based on GENO-
CORP 111 [14] to resolve efficiently the hard problem of non-linear constrained fitting. In
[4] and [3], they justify the choice of Euclidean distance instead of algebraic distance
or Taubin distance for fitting problem. Using Euclidean distance in the fitting process
guarantees a better accuracy, correctness and robustness.

These interpretations of shape recovery well suit boundary representation with seg-
mented point clouds. The main problem with this approach comes from the difficulty
to extend the set of allowable shapes, because a corresponding segmentation would be
required, which can be difficult or even impossible in the case of complex blends or
sweeps. Furthermore, it may be difficult for the resulting model, generally available as
a Brep, to be reused in extended modeling or analysis.

We use a different interpretation of shape recovery and a different model, the func-
tion representation of objects [16]. In our approach, standard shapes and relations are
interpreted as primitives and operations of a constructive model. The input information
provided by the user is a template (sketch) model, where the construction tree contains
only specified operations and types of primitives while the parameter values of oper-
ations and primitives are not defined and are recovered by fitting. In general, FRep
models are non-linearly parameterized and fitting them to 3D data should be done by
non-linear least square minimization of a fit function, which indicates how close the
model is to the 3D points.



2 Parameterized function representation

2.1 Constructive function representation modeling

The function representation (FRep) was introduced in [16] as a uniform representation

of multidimensional geometric objects. An object (point set) in multidimensional space

is defined by a single continuous real-valued function of point coordirfgteswhich

is evaluated at the given point by a procedure traversing a tree structure with primitives

in the leaves and operations in the nodes of the tree. The pointg{wth> 0 belong

to the object, and the points with(x) < 0 are outside of the object. The geometric

domain of FRep in 3D space includes solids with non-manifold boundaries and lower

dimensional entities (surfaces, curves, points) defined by zero value of the function.
An FRep model can be built in a constructive way, with abstract parameters. The

modification of these parameters can result in various different shapes, which can also

be tuned to fit some modeling criteria. In the rest of the paper, the notAtiom) is

used for a parameterized FRep, where (x1, 15, 23) € R? is a pointin the 3D space

anda = (ay,...,a,) € R™ is a vector ofm parameters.

2.2 Origin of the template model

Template model can exist in specialized libraries for each application domain (me-
chanical design, human prosthesis design, and others) and may be reused, or need to
be created by the user. In the latter case, a modeling work needs to be done by a de-
signer. A parameterized model can be created using measurements or scans of a typical
object. The model is required to keep basic ratios of the measured sample object and to
proportionally change the dependent parameters according to introduced constraints.
In case of scanned data available for a typical object, fitting of the template parameters
can be also employed to establish basic ratios and constraints.

3 Fitting parameterized FRep: local approach

3.1 Fitting problem formulation

The problem is to recover a solid from a set of 3D poistss {x1,...,xN}, Scattered
on the surface of the object. Given S, the task is to find the best configuration for the
set of parametera* = (ay,...,a,,) So that the parameterized FRep modét, a*)
closely fits the data pointsf(x, a) is an FRep model, made in a constructive way,
which approximates the shape of the solid being reverse engineered. The vector of
parametera control the final shape of the solid and the best fitted parameters should
give the closest possible model according to the information provided by S.

For computing how close a given point is to the surface of the solid with the current
set of parameters, a fithess function is needed. The FRep nfé&led) itself can
serve for defining such an algebraic distance, because of the natural distance property
of FRep models. The fit function becomes the square of the defining function values at
all points (the surface of the solid being the set of points with zero function value):

N
error(a) = %Z (x4, a) Q)
i=1



which can be also rewritten under the following form:

error(a Zfz ft (a)f(a) 2

wheref(.) is the vector with —th component being; (.) Now, we are searching for the
vector of parameters* minimizing the fit function from equation 1, or 2. We consider
firstly local methods for the minimization of functions with nonlinear parameters.

3.2 Local non-linear minimization of least squares

The best set of parametet$ is found by minimization of the least-square error (equa-
tions 1, or 2), which is a non-linear function of the parameter$raditional methods

for solving such problems are Levenberg-Marquardt methods [15] or Quasi-Newton
type methods [2]. Algorithms for both methods follow a common scheme: they pro-
ceed iteratively from an initial set of parameters and try to converge to a minimum in
the parameter space. They are local methods only, because they strongly depend on the
initial parameters, used for starting the algorithm.

Such algorithms search in each iteration for a privileged direction to go in the pa-
rameter space and for a step to move in that direction. Levenberg-Marquardt (LM) and
Newton (N) algorithms differ in the selection of direction and in the ways of computing
the step, more details can be read in [15] for the Levenberg-Marquardt method, and in
[2] for the Quasi-Newton method.

3.3 Discussion of local methods

Unfortunately, methods such as LM and QN can in general guarantee only convergence
to a local minimum. For some parameter spaces with complex topology, like for ex-
ample, where multiple local minima exist, such methods are likely to be trapped into a
local optimum and to stop there. Good initial parameters are very important, because
they will determine to which minimum the algorithm may converge. Usually, if the pa-
rameters are not in the neighborhood of the global minimum, it is unlikely to converge
to it, and the method instead will reach a local minimum.

It is possible with some further analysis of the model to have some additional in-
formation for getting better estimation of the starting parameters, unfortunately all the
parameters can not be guessed that way.

4 Simulated annealing for fitting parameterized FRep
models

We propose here to use a sampling algorithm (simulated annealing, SA) as an alterna-
tive method for fitting a parameterized FRep model. Techniques based on simulated
annealing were proven to be efficient for solving global optimization problems with
complex parameter space topology [13], and [11].

General idea When trying to minimize an objective function usually only downhill

are accepted, but with this method some uphill may be accepted. This acceptance is
made with a probability(t), which is initially close to 1, and then decreases to 0, when
the temperature of the system reduces.



The temperature evolution also called temprerature schedule or cooling schedule
(because the temperature only decreases) is the difficult part of the algorithm. The
cooling should be not too quick neither to slow.

Athermodynamic analogy This method was inspired by the behaviour of some ther-
modynamical process. In a liquid at high temperature, the molecules move freely with
respect to one another. When the liquid is cooled down, the mobility of the molecules
decreases, and finally stops. If the cooling is not too quick, then the system will finish
in a state of minimum energy.

The probability of accepting an uphill step is made by analogy with the Boltzmann
law, which states that a system in thermal equilibrum has its energy distributed prob-
abilistically among all different energy states. Even for a low temperature there is a
chance for the system to be in a high energy, so that it can escape the local minimum
energy and find a better one.

Application to numerical computation Metropolis [13] applied such results to nu-
merical computation. The choice of a good cooling schedule is considered as the dif-
ficult part of the algorithm [8]; we use in our experiments an implementation based on
the algorithm described in [7], with a linear cooling schedule.

Discussion Methods based on simulated annealing may be a good alternative to clas-
sical local methods like LM or QN in global optimum search among many local optima,
but they are facing some major problem of efficiency: the objective function needs to
be sampled a huge number of times before reaching convergence [9].

Because of that, simulated annealing seems to be a less attractive option for non-
linear fitting of FRep. A suitable solution would be to combine it with a local method,
and to switch between the methods once the neighborhood of the global minimum was
reached; we explore this potential solution in the next section.

5 Hybrid fitting method

In this section, we propose an approach combining local methods like QN or LM with
sampling methods like simulated annealing. By doing so, we wish to have a method
able to avoid local minima, but still fast enough. We propose for that to distinguish two
phases in the fitting process as follows:

e Atthe beginning, a sampling method based on simulated annealing is used to get
a first fit of the model,

e Then, it switches to a local method to extract the parameters that fit closely the
model to the 3D point set.

The first step should give a configuration in the parameter space being in the vicinity
of the global minimum and thus should help avoiding local minima. The second step
should guarantee a faster convergence and should also converge to a better fitted model
than using a sampling algorithm alone.

At the beginning of the fitting process, the input consists of a preliminary selected
or specially built parameterized FRep model, a set of data 3D points, and an initial pa-
rameters estimation. The values of the initial parameters are not so crucial, because the



sampling SA algorithm can escape local minima. When the parameters have geometric
interpretation, it is also possible to guess initial values, even if not accurate at all. In
the case when parameters have less obvious meaning, like coefficients in blending op-
erations, it is more difficult to provide good initial estimation, therefore, some random
initial values in the parameter space may be chosen.

The switch to a direct method is performed when there are some indications that an
acceptable fit was reached: it can be when the least-square error is under some given
threshold or when the fitted model looks close enough to the point cloud with a visual
feedback to the user.

The goal of the two-phase method described above is to provide a fitting system
for parameterized FRep models that does not require a good initial configuration, can
escape local minima, and has an acceptable convergence rate. The next section presents
the current implementation and some experiments with the developed software system.

6 Experiments

6.1 Test part

The first test part was modeled for testing purposes using Hypéwrrlanguage and
a set of software tools for FRep geometric modeling. The surface of the object was
sampled to create the data set of 10714 3D points (Fig. 1).

Figure 1: Data set used for the reverse engineering of the mechanical part. It contains
10714 3D points, scattered on the surface of the part.

The FRep defining functiof’ shown below was used as a parameterized model for
the recovery process:

f(x,a) := (box(x,a)\cylinder Z(x, a))
\eylinderZ(x, a); 3)

This FRep model consists of three simple primitives: one box and two infinite cylinders
oriented along the Z axis, each primitive is defined by its parameterized model. For
example, in the case of the cylinder, the defining functionginder(z, a) := a[1]? —

(z[1] — a[2])? — (z[2] — a[3])?, wherea][1], a[2], anda[3] are parameters meaning the
radius and a point on the — y plane, through which the axis of the cylinder passes.
All the primitives are combined together using the R-Subtraction operatehich is

itself defined analytically as discussed in [19] and [16].

Iwww.hyperfun.org



setl| {—5,—4,-2,10,5,4,5,3,1,3, 2,1}
set2 {1,1,1,1,1,1,1,1,1,1,1,1}

Table 1: Two sets of initial values used for fitting: setl is close to the best set of values,
whereas set2 is completely wrong.

Twelve parameters were released in the model, which is the maximum number;
they correspond to the lower-left corner of the box, three dimensions of the box, and
the center and radius for each of the cylinders. The fitting algorithms need an initial
estimation for the parameters, in the tests we used two sets of initial values configura-
tions, they are given in the Table 1: one is close to the best fit (setl), while the second
one is a wrong set (set2).

Time Least
in sec square error
setl set2 setl | set2
ON 1.852 9.643 | 5.47 | 595.04
SA 1635.09| 1773.109| 5.49 | 5.49
SAQN | 72.042 | 144.177 | 5.47| 5.47

Table 2: Time (in seconds) taken by each method to converge to the best fit and least-
square error (sum of the deviations squared) of the best fit for each set of initial values.

The results of the tests are given in terms of the following: least square error of the
reconstructed model for the three methods QN, SA, and hybrid SAQN (Table 2), time
given in seconds taken to converge to the best fit for each of these methods (Table 2),
and the visual shape of the best fit (Fig. 2).

Figure 2: Shapes for the best fitted FRep in two cases: (right) best fitted, but wrong
model when starting with set2 and using the QN method; (left) best fitted model when
starting with the set2 and using the hybrid method.

Table 2 shows that the local method stops in a local minimum for the set2 of initial
parameters, resulting in a wrong shape (Fig. 2, right shape), whereas with simulated
annealing, it always converges to the global minimum. Unfortunately, the counterpart
is the slow rate of convergence for the sampling method (Table 2). SA turns out to be
200 times slower.

When using a combination of SA and QN, we can always recover correct param-
eters and shape (Fig. 2, left shape, and Table 2, last line). The steps of the shape



evolution during the hybrid method search are shown in Fig. 3. The overhead in speed
is in magnitude of 10 compared to the local method (LN), but local optimum and bad
shape recovery are avoided. Compared to SA, the hybrid method is between 10 and 20
times faster.

Figure 3: Evolution of the shape during the fitting process using the hybrid method.

6.2 Lacquer ware sake pot

The next example is the fitting of a model of a hand-crafted lacquer ware pot, which

is used for pouring sake (Japanese rice wine). The discrete data set of the sake pot
includes 27048 3D points, scattered on the surface of the object. The parameterized
model of the sake pot sketched and discussed in the work on cultural heritage [17] is
reused in our experiment. The parameterized model was created using hand measure-
ments of a typical sake pot. The major parameters are the coordinates of the origin
(position), the basic radius of the pot body, and the height of the pot handle. The model
is required to keep basic ratios of the measured sample object and to proportionally
change the dependent parameters like those of the blend area between the spout and
the body, and the shape of the lid holder (note non-linear chages of these shapes in Fig.
5).

initial vector of parameters 0 0 5 1
final vector of parameters| 2.705| 0 | 4.804 | 7.71

Table 3: Initial and final vectors of parameters obtained by fitting with a local Newton
method.

The first fitting test is made using a local Quasi-Newton algorithm. The results for
the final vector of parameters are given in the Table 3. The value of the fit function
(equation 1) is big enough to indicate that the method stopped at a local minimum. A
comparison of the discrete model and the fitted parameterized FRep indicates clearly



that the best fitted parameters corresponds to a local minimum of the fit function (see
Fig. 4).

Figure 4: Local minimum effect: result of the fitting with a local method starting with
wrong initial parameters. The discrete data points of the sake pot are also displayed for
comparison.

A global fitting method needs therefore to be used in order to go to the vicinity
of the global minimum of the fit function. The simulated annealing method is used
next. The initial vector of parameters at the start of the process is the same as the one
indicated in the Table 3 in the first line. The simulated annealing is stopped after the fit
function value goes below a threshold given by the user. In the test, a value of 1000 for
the fit function is used as a threshold value to determine the switch to a local method.
This value corresponds to an average errod.0f of the fit function (Eq. 1), which
we consider small enough in order to escape local minima and confirmed by visual
feedback. This threshold is reached after 344 seconds on a Pentium IV PC. Then, the
obtained parameters are reused as initial values for the local Quasi-Newton method.
The steps of the evolution of the shape during the hybrid fitting of the FRep model can
be seen at Fig. 5.

final vector of parameters 2.999 | 2.999 | 5.5 | 9.7044
fitting time 347 sec

fit function 438.52

mean error 0.03

Table 4: Final vector of parameters after using the hybrid approach: a global minimiza-
tion method (simulated annealing) followed by a local minimization method (Newton).

The final result for the best fitted parameters obtained after the two steps of the
hybrid method is summarized in Table 4 with total time for the fitting, the fit function
value and the mean error.



Figure 5: Evolution of the shapes of the sake pot during the fitting process

6.3 Application in Finite Element Meshes (FEM)

Approach to FEM generation Surface remeshing is very important for applications
associated with numerical simulation procedures, in particular with finite element anal-
ysis (FEA). These applications impose strict constraints on the quality of the surface
approximation and the shapes and sizes of mesh elements. Moreover finite element
meshes have to be adapted both to physical and geometric features of computational
tasks. Changes in the boundary or initial conditions of the simulated process may
cause remeshing even if the computational domain remains the same. In many cases
the initial description of computational domains in FEA is represented by their bound-
ary surface triangulations. These triangulations can be exported from various modeling
systems, produced by 3D scanning, or be a result of previous FE computations. Usu-
ally these initial triangulations consist of badly shaped triangles and are not adapted
to physical conditions and an appropriate remeshing is required. Mesh refinement and
optimization procedures need accurate information about the geometry of the compu-
tational domain. Therefore, the creation of an adequate description of a solid based
on the initial triangulation of its boundary surface is an important problem for the FE
mesh generation and optimization. Different approaches were considered to solve this
problem. In [6], finite element adaptation is based on the local approximation of the
underlying surface geometry by a quadric surface. The authors of [12] convert a CAD
model into a volume representation by sampling its distance field on a uniform grid
and then applying the extended marching cubes algorithm to this volume.

Taking into account that many mechanical parts can be represented as constructive
solids we propose to apply FRep recovery to support FE mesh generation for objects
whose initial geometry is represented by boundary surface triangulations. The initial
mesh is used for the selection or creation of a parameterized FRep model. Then, the
parameters of the FRep model are fitted to the vertices of the mesh. The final model can
be used for the surface and volume finite element adaptation by the methods described
in [10].

Fitting to a CAD mesh As an example of application of the FRep shape recovery
for the FEM generation, a parameterized FRep model corresponding to the CAD mesh
Fig. 6 (top, left) is created and fitted using the previously proposed techniques.



fit function 0.667
mean error| 0.011622

Table 5: Fitting function value for the best fit set of parameters and the corresponding
mean error.

The FRep model including 14 parameters is sketched corresponding to the shape
shown in Fig. 6, top, left; the initial values for the parameters are chosen randomly.

The convergence is obtained using the method proposed in the paper, and the results
in terms of the fitting function value and the mean error are presented in Table 5. The
FRep shape corresponding to the best set of parameters is shown in Fig. 6, top, right.

Starting with the acquired FRep model, it is then possible to apply the mesh adap-
tation methods from [10]. The results of such methods are shown in Fig. 6, bottom.
The left picture shows an optimized surface mesh, which was then used for the 3D
tetrahedral mesh generation (right) using the extended advancing front method [10].

Figure 6: A surface mesh, generated by a CAD system (top, left), the recovered shape
(top, right), the associated optimized mesh (bottom, left), and the 3D tetrahedral mesh
generated from it (bottom, right).

7 Conclusion

We introduced an application of parameterized FRep models for shape recovery of con-
structive solid models from 3D point clouds. The use of parameterized FRep models
presents some advantages over the traditional reverse engineering approach: no seg-
mentation of the data set is required, a quite extensive and extensible set of FRep prim-
itives and operations exist and can be utilized, all the primitives are defined by ready
to use algebraic functions or procedures, and an existing special high-level language is
available for the model representation.

10



The fitted template model can be analyzed, classified, or reused in other applica-
tions, for example, in further remodeling, animation, or rapid prototyping. Some of
these applications may be more difficult or impossible to implement with Brep models,
which are the results of traditional reverse engineering methods.

Nevertheless, the proposed approach revealed also some existing problems. A
generic parameterized model used for the fitting has to be available or to be created
by the user. The evaluation of the defining function for a complex shape can be also
time-consuming, which results in a time consuming optimization process.

There are still ways to improve the presented approach. The semi-automatic cre-
ation of generic models can be envisaged with application of genetic algorithms and
genetic programming. The problem of the parameterized model adequacy evaluation
has to be seriously considered when using these methods. The global fitting method
can also be enhanced by replacing simulated annealing with genetic algorithms.
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