
1/34

Backtracking 8 Queens Problem

Algorithms and Data Structures
13th Lecture: Heuristic Search

Yutaka Watanobe, Jie Huang, Yan Pei, Wenxi Chen,
S. Semba, Deepika Saxena, Yinghu Zhou, Akila Siriweera

University of Aizu

Last Updated: 2025/01/26

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

2/34

Backtracking 8 Queens Problem

Outline

Backtracking
Depth First Search
Breadth First Search
Iterative Deepening
IDA*
A*

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

3/34

Backtracking 8 Queens Problem

Searching (1)

Some problems involved searching through a vast number of
potential solutions to find an answer.
An algorithm starts from the initial point and searches forward on
certain paths to find the goal (solution).
For some of the problems, we know there is a success search
path that definitely leads to the goal.
For such kind of problems, we can design algorithms which
search the solutions on the success paths.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

4/34

Backtracking 8 Queens Problem

Searching (2)

On the other hand, there are many problems for which we do not
know which paths lead to the solutions.
One way to solve these problems is to exhaustively search every
possible paths.
However, there may be too many possible paths to search.
Exhaustive search is related to a great number of operations. So,
we need some techniques to bound the number of possible
paths to increase the search efficiency.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

5/34

Backtracking 8 Queens Problem

Backtracking (1)

Backtracking is a systematic way to go through all the possible
configurations of a search space (all the possible paths).
In backtracking search, when we know we can not go forward
anymore on some possible path, we go backward to find another
path.
Depth-first-search is an example of backtracking algorithms.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

6/34

Backtracking 8 Queens Problem

Backtracking (2)

Backtracking is quite widely applicable as general
problem-solving techniques.
For example, they form the basis for many programs that play
games such as Chess.
In this case, a partial solution is some legal positioning of all the
pieces on the board, and the descendant of a node in the
exhaustive search tree is a position that can be the result of
some legal move.
A backtracking search is typically done with quite sophisticated
pruning rules so that only “interesting” positions are examined.
Exhaustive search techniques are also used for other
applications in artificial intelligence.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

7/34

Backtracking 8 Queens Problem

8 Queens Problem (1)

Backtracking technique can be used to solve the classic eight
queens problem:

put eight queens on a chess-board such that none of them
threatens any of others (a queen threatens the squares in the
same row, in the same column, or on the same diagonals).

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

8/34

Backtracking 8 Queens Problem

8 Queens Problem (2)

An obvious way to solve this problem consists of trying all the
ways of placing eight queens on a chess-board, checking each
time to see whether a solution has been obtained.
This approach is of no practical use, since the number of
possible positions we have to check would be:(

64
8

)
= 4, 426, 165, 368

Can we do it better?

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

9/34

Backtracking 8 Queens Problem

8 Queens Problem (3)

First, we know that two queens can not be in the same row. So,
eight queens should be put in eight rows, one queen in one row.
Since each queen has 8 positions to put in the row, there are
88 = 16, 777, 216 positions. Similarly, two queens can not be in
the same column.
Thus, if the queen in the first row has been put in the i th column,
the other queens can not be in the i th column.
From this, we can reduce the possible positions to 8! = 40, 320.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

10/34

Backtracking 8 Queens Problem

Backtracking for 8 Queens Problem (1)

Backtracking allows us to do much better than the above. Using
a recursive call, we can realize a backtracking algorithm for eight
queens problem as follows:

We put the queen of the first row at any position of the row.
Then we put the queen of the second row to a position of the row
that is not threatened by the queen of the first row.
...

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

11/34

Backtracking 8 Queens Problem

Backtracking for 8 Queens Problem (2)

Assume, we have put i queens in the first i rows such that none
of them threatens any of others. We put the queen of the (i + 1)th
row to a position of the row that is not threatened by any of the
previous i queens.
If we can not find such a position for the queen of the (i +1)th
row, we go back to the i th row to find another non-threatened
position for the queen of the i th row (if no such position exists we
go back further to (i -1)th row) and then try again.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

12/34

Backtracking 8 Queens Problem

Implementation (1)

Assume the rows, columns, and diagonals of chess-board is
defined as in the next Figure:

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

i

j

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

i

j

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

row: x = i col: x = j

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

13/34

Backtracking 8 Queens Problem

Implementation (2)

Assume the rows, columns, and diagonals of chess-board is
defined as in the next Figure:

i

j

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

j

8 9 10 11 12 13 14

0

1

2

3

4

5

6

714 13 12 11 10 9 8

i

dpos: x = i + j dneg: x = i - j + (N - 1)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

14/34

Backtracking 8 Queens Problem

Implementation (3)

We use a 1 × 8 integer array row[8] to express the positions of
the queens at each row. That is, row[0], row[1], ..., row[7] are
used to keep the positions (column) of queens in the row 0, 1, ...,
7, respectively.
Next, we use a 1 × 8 integer array col[8] to show if each position
of a given row is threatened by a queen in the same column.
For a given row i , col[j] == free means there is no queen in the
j th column, otherwise a queen has been put in the same column
and we can not put the queen of the given row at the j th column.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

15/34

Backtracking 8 Queens Problem

Implementation (4)

We also have to consider the threatens from the queens on the
same diagonals.
As shown in the Figure there are 15 positive diagonals (at 45
degrees) and 15 negative diagonals (at 135 degrees).
We use two other arrays dpos[15] and dneg[15] to denote if a
position is threatened by a queen on the same positive diagonal
and negative diagonal, respectively.
dpos[x] == free means that there is no queen on the diagonal
with number x , otherwise there is a queen on diagonal x .
Similarly define dneg[x].

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

16/34

Backtracking 8 Queens Problem

Implementation (5)

When we have a queen at the position p[i][j] (the i th row and the
j th column), we know that the positions on the positive diagonal
i + j and the positions on the negative diagonal i − j + (N − 1),
where N is the size of chess-board (8 in 8-queens problem), are
threatened by this queen.
So, when we have put a queen at the position p[i][j], we set
dpos[i + j] and dneg[i − j + n − 1] to not-free.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

17/34

Backtracking 8 Queens Problem

Implementation (6)

putQueen(i)

if i == N

printBoard()

return

for j = 0 to N-1

if col[j] == NOT_FREE ||

dpos[i+j] == NOT_FREE || dneg[i-j+N-1] == NOT_FREE

continue

// put a queen at (i, j)

row[i] = j

col[j] = dpos[i+j] = dneg[i-j+N-1] = NOT_FREE

// try the next row

putQueen(i+1)

// remove the queen at (i, j) for backtracking

col[j] = dpos[i+j] = dneg[i-j+N-1] = FREE

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

18/34

Backtracking 8 Queens Problem

8 Puzzle Problem

The goal of the 8 puzzle problem is to complete pieces on 3 × 3
cells where one of the cells is empty space.
You can move a piece to the empty space at one step.
Your goal is to solve an 8 puzzle problem in the shortest move
(fewest steps).

1 3 0 1 2 3

4 2 5 --> 4 5 6

7 8 6 7 8 0

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

19/34

Backtracking 8 Queens Problem

State Transition (1)
Such kinds of puzzle can be solved by repetitive state transitions
in the search space.
Generally, a search algorithm generates a sequence (or set) of
the states by the transitions.

2 8 3

1 5

4 7 6

2 8 3

1 5

4 7 6

2 8 3

1 5 4

7 6

2

8 3

1 5

4 7 6

2 8 3

1 5

4 7 6

2 8 3

1 5

4

7

6

2

8

3

1 5

4 7 6

2 8 3

1 5

4 7 6

2

8 3

1 5

4 7 6

2 8 3

1 5

4 7 6

2 8 3

1 5

4 7 6

2 8 3

1 5 4

7 6

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

20/34

Backtracking 8 Queens Problem

State Transition (2)

Important thing is that we should not create the same state
during the state transitions. So, we generate a tree structure as
the search space where nodes and edges represents the states
and the transitions respectively.
For the 8 puzzle problem, a state (node) corresponds to an
alignment sequence (permutation) of the pieces (including the
empty space) and a transition corresponds to the movement of a
piece.
Generally, you can solve the problem by depth-first search and
breadth-first search.
To manage the states, you can use data structures related to
hash or binary search trees.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

21/34

Backtracking 8 Queens Problem

Depth First Search (1)

The depth-first search is based on the DFS algorithm on graphs.
The depth-first search starts with the initial state of the given
puzzle and repeats the state transitions until the algorithm find
the goal state by visiting candidate notes recursively.
The depth-first search uses the following pruning techniques:

Abandon the search and backtrack when you can not create the
new state in the search space.
Abandon the search and backtrack when you create the same
state which is in the sequence of the state transistions.
Abandon the search and backtrack when you can determine that
you do not need to create new states any more.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

22/34

Backtracking 8 Queens Problem

Depth First Search (2)

The depth-first search has the following features:
It’s not always true that the depth-first search finds the shortest
path.
It can be an exhaustive search when the pruning does not work
well.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

23/34

Backtracking 8 Queens Problem

Depth Limit Search (1)

The depth-limit search applies the depth limit during the
depth-first search.
The depth-limit search abandons its search when the depth of
the search reaches the specified limit.

limit

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

24/34

Backtracking 8 Queens Problem

Depth Limit Search (2)

The depth-limit search has the following features:
We do not need to memorize the search states.
It can be a basis for the Iterative Deepening algorithm to find the
shortest path.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

25/34

Backtracking 8 Queens Problem

Breadth First Search (1)

The breadth-first search is based on the BFS algorithm on
graphs.
First of all, the BFS generates an initial (start) state and puts it
into a queue. Then, the BFS algorithm gets a state from the
queue and generate the next states based on that state, and so
on.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

26/34

Backtracking 8 Queens Problem

Breadth First Search (2)

The generated states should be memorized by hash or other
data structures (binary search trees, etc.).
The breadth-first search has the following features:

It can find the shortest path from the initial state.
It can consume excessive amounts of memory to maintain the
state transitions.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

27/34

Backtracking 8 Queens Problem

15 Puzzle Problem

The goal of the 15 puzzle problem is to complete pieces on 4 × 4
cells where one of the cells is empty space.
You can move a piece to the empty space at one step.
Your goal is to solve an 15 puzzle problem in the shortest move
(fewest steps).
Can you solve it by BFS or DFS?

1 2 3 4 1 2 3 4

6 7 8 0 --> 5 6 7 8

5 10 11 12 9 10 11 12

9 13 14 15 13 14 15 0

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

28/34

Backtracking 8 Queens Problem

Iterative Deepening
The iterative deepening algorithm repeats the depth-limit search
by incrementing the limit until the algorithm find the goal.
Generally, we do not need to memorize the state transitions (but
avoid back tracking to the previous state).

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

29/34

Backtracking 8 Queens Problem

IDA* (1)

The iterative deepening can be extended as the IDA* algorithm
by pruning based on estimate values so called heuristic.
The heuristic estimated is the lower limit of steps to the goal.
For the 15 puzzle problem, we can prune the search by using the
shortest cost h from the current state to the goal state as the
heuristic.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

30/34

Backtracking 8 Queens Problem

IDA* (2)

So, if we can find a heuristic h such that “we need at least h
steps from the current state to the goal state”, we can assert that
if g + h (where g is the current depth) exceeds the limit d (of
depth-limit search) we do not need to search any more.

d

h

g

g + h > d

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

31/34

Backtracking 8 Queens Problem

IDA* (3)

The heuristic value h can be an estimation. It doesn’t need to be
exact value.
If we can estimate higher value as heuristic, the search algorithm
will be faster.
On the other hand, if you estimate too much, you will miss the
solution.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

32/34

Backtracking 8 Queens Problem

Possible Heuristic for 8 Puzzle Problem (1)

H1: The number of pieces which are on incorrect position.

2 3 4

1

5 6 8

7

1 2 3

5 6

7 8

4

222222222 22222222 333333333 33333333 444444444 44444444

777777777 77777777 111111111 11111111

666666666 66666666 555555555 55555555

current state goal state

at least 7 steps

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

33/34

Backtracking 8 Queens Problem

Possible Heuristic for 8 Puzzle Problem (2)

H2: Sum of manhattan distance between the initial position to
the goal position for each piece.
The manhattan distance is the distance between two points in a
grid based on a strictly horizontal and/or vertical path.

2 3 4

1

5 6 8

7

1 2 3

5 6

7 8

4

current state goal state

at least 13 steps

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

34/34

Backtracking 8 Queens Problem

A*

The estimate values (heuristic) can be used for Dijkstra’s
algorithm (or BFS) based on a priority queue.
This A* algorithm manages the state transitions by a priority
queue.
The algorithm select the current node (extracting the next
element from the priority queue) in such a way that g + h is
minimized where g is the cost from the initial state to the current
state and h is the estimated value to the goal state.
In this way, we can speed up the BFS based search algorithm.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

	Backtracking
	
	
	8 Queens Problem

