Algorithms and Data Structures
9th Lecture: Heap

Yutaka Watanobe, Jie Huang, Yan Pei, Wenxi Chen,
S. Semba, Deepika Saxena, Yinghu Zhou, Akila Siriweera

University of Aizu

Last Updated: 2025/01/12

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Outline

m Heap

m Heap Properties

m Operations on Heaps
m Priority Queues

m Heap Sort Algorithm

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures

Heap (1)

m The (binary) heap data structure is an array object that can be
viewed as a nearly complete binary tree.

Cn i &£ 7

(a) Complete Binary Tree (b) Nearly Complete Binary Tree

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures

Heap (2)

m Each node of the tree corresponds to an element of the array
that stores the value in the node.

m An array A that represents a heap is an object with two attributes:

m A.length, which is the number of elements in the array, and
m A.heap_size, the number of elements in the heap stored within
array A.

m Viewing a heap as a tree, we define the height of a node in a
heap to be the number of edges on the longest simple downward
path from the node to a leaf.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Heap: An Example

1 2 3 4 5 6 7 8 9 10
131/12|25|7 |8 |9 |4[3]6]5]|

Algorithms Data Structures

Operations on Heaps

The root of the tree is A[1], and given the index i of a node, the
indices of its parent parent(i), left child left(i), and right child right(/)
can be computed simply:
parent (i) i/2

return floor(i/2)

left (i)
return 2i

right (i)
return 2i + 1

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Heap Properties

Heap Properties

m There are two kinds of binary heaps:

= max-heaps and
® min-heaps.

m In both kinds, the values in the nodes satisfy a heap property.

parent

children

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Heap Properties

Max-heap

m In a max-heap, the max-heap property is that, for every node i
other than the root, A[/] < A[parent(i)], that is, the value of a
node is at most the value of its parent.

m The largest element in a max-heap is stored at the root, and the
subtree rooted at a node contains values no larger than that
contained at the node itself.

University of Aizu

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

Algorithms and Data Structures

Heap Properties

Min-heap

m In a min-heap, the min-heap property is that, for every node i
other than the root, A[parent(i)] < A[i].

m The smallest element in a min-heap is at the root.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures

Operations on Heaps

Maintaining the Heap Property

maxHeapify is an important subroutine for manipulating max-heap

maxHeapify (A, 1)

1 = left(i)

r = right(i)

if 1 <= A.heap_size and A[1] > A[i]
largest =1

else
largest = 1

if r <= A.heap_size and A[r] > A[largest]
largest = r

if largest != 1
exchange A[i] and A[largest]
maxHeapify (A, largest)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Operations on Heaps

MaxHeapify: An Example

Operations on Heaps

MaxHeapify: Down Heap (1)

iversity of Aizu

Algorithms Data Structures

Operations on Heaps

MaxHeapify: Down Heap (2)

iversity of Aizu

Algorithms Data Structures

Operations on Heaps

MaxHeapify: Down Heap (3

Siriweera

Algorithms Data Structures

Operations on Heaps

Building a Heap (1)

m We use the procedure maxHeapify in a bottom-up manner to
convert an array A[1..n], where n = A.length, into a max-heap.

m The elements in the subarray A[floor(n/2) + 1..n] are all leaves
of the tree, and so each is a 1-element heap to begin with.

m The procedure buildMaxHeap goes through the remaining nodes
of the tree and runs maxHeapify on each one.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Operations on Heaps

Building a Heap (2)

buildMaxHeap (A)
A.heap_size = A.length
for i = floor(A.length/2) down to 1
maxHeapify(A, 1)

m The time required by maxHeapify is O(log n).
m We can build a max-heap by the procedure buildMaxHeap in
time O(n).
m Perform maxHeapify to n/2 sub-trees with height 1, n/4 sub-trees

with height 2, ..., 1 sub-tree with height log n, respectively.
m We obtain n x Y027 £ = O(n)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Operations on Heaps

Building a Heap: An Example

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Operations on Heaps

Building a Heap: maxHeapify on a Subtree (1)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures

Operations on Heaps

Building a Heap: maxHeapify on a Subtree (2)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures

Operations on Heaps

Building a Heap: maxHeapify on a Subtree (3)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures

Operations on Heaps

Building a Heap: maxHeapify on a Subtree (4)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures

Operations on Heaps Priority Queue

Building a Heap: maxHeapify on a Subtree (5)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Operations on Heaps

Building a Heap: maxHeapify on a Subtree (6)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures

Priority Queue

Priority Queues

m A priority queue is a data structure for maintaining a set S of
elements, each with an associated value called a key.

m A max-priority queue supports the following operations.

insert(S, x) inserts the element x into the set S.

maximum(S) returns the element of S with the largest key.
extractMax(S) removes and returns the element of S with the
largest key.

increaseKey(S, p, k) increases the value of element p’s key to the
new value k, which is assumed to be the least as large as p’s
current key value.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Priority Queue

HeapMaximum

The procedure heapMaximum implements the maximum operation in
O(1) time.

heapMaximum(A)
return A[1]

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Priority Queue

HeapExtractMax

The procedure heapExtractMax implements the extractMax operation
in O(log n).

heapExtractMax (4)
if A.heap_size < 1
output error "heap underflow"
max = A[1]
A[1] = A[A.heap_size]
A.heap_size--
maxHeapify (A, 1)
return max

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

University of Aizu

Algorithms and Data Structures

Priority Queue

HeapExtractMax: An Example

heapExtractMax

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms

Priority Queue

HeapExtractMax (1)

heapExtractMax

Priority Queue

HeapExtractMax (2

Siriweera

Algorithms Data Structures

Priority Queue

HeapExtractMax (3)

maxHeapify

Priority Queue

HeapExtractMax (4)

Siriweera

Algorithms Data Structures

Priority Queue

MaxHeaplnsert

The procedure maxHeaplnsert implements the insert operation in
O(log n) time.

maxHeapInsert (A, key)
A.heap_size = A.heap_size + 1
A[A.heap_size] = -INF
heapIncreaseKey(A, A.heap_size, key)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Priority Queue

HeaplncreaseKey

The procedure heaplncreaseKey implements the increaseKey
operation in O(log n) time.

heapIncreaseKey(A, i, key)
if key < A[i]
output error "new key is smaller than current key"
Ali]l = key
while i > 1 and Alparent(i)] < A[i]
exchange A[i] and A[parent(i)]
i = parent(i)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Priority Queue

HeaplncreaseKey: An Example

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Priority Queue

HeaplncreaseKey (1)

iversity of Aizu

Algorithms Data Structures

Priority Queue

HeaplncreaseKey (2)

iversity of Aizu

Algorithms Data Structures

Priority Queue

HeaplncreaseKey (3)

iversity of Aizu

Algorithms Data Structures

Priority Queue

HeaplncreaseKey (4)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (1)

Here is Heap Sort Algorithm working on the input array A[1..n], where

n = A.length.
heapsort (4)
buildMaxHeap (A)

for i = A.length down to 2
exchange A[1] and A[i]
A.heap_size--
maxHeapify (A, 1)

University of Aizu

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

Algorithms and Data Structures

Heap Sort

Heap Sort (1)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (2)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (3)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (4)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (5)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (6)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (7)

Siriweera University of Aizu

Algorithms and Data Structures

Heap Sort

Heap Sort (8)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (9)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (10)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (11)

iversity of Aizu

Algorithms Data Structures

Heap Sort

Heap Sort (1

iversity of Aizu

Algorithms Data Structures

Heap Sort

Heap Sort (13

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (14)

iversity of Aizu

Algorithms Data Structures

Heap Sort

Heap Sort (15

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (16

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (17)

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (18

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (19

Siriweera

Algorithms Data Structures

Heap Sort

Heap Sort (20)

Siriweera

Algorithms Data Structures

Heap Sort

Performance and Stability of Heap Sort

m The heapsort procedure takes time O(nlog n), since the call to
buildMaxHeap takes time O(n) and each of the n — 1 calls to
maxHeapify takes time O(log n).

m Heap sort is not a stable sort because it swaps distant elements
of the array. Moreover, by its nature, those elements are likely to
be far from each other, which may affect execution speed
depending on the architecture.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Heap Sort

Reference

Introduction to Algorithms (third edition), Thomas H.Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2012.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

