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Heap (1)

m The (binary) heap data structure is an array object that can be
viewed as a nearly complete binary tree.
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(a) Complete Binary Tree (b) Nearly Complete Binary Tree
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Heap (2)

m Each node of the tree corresponds to an element of the array
that stores the value in the node.

m An array A that represents a heap is an object with two attributes:

m A.length, which is the number of elements in the array, and
m A.heap_size, the number of elements in the heap stored within
array A.

m Viewing a heap as a tree, we define the height of a node in a
heap to be the number of edges on the longest simple downward
path from the node to a leaf.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Heap: An Example

1 2 3 4 5 6 7 8 9 10
131/12|25|7 |8 |9 |4[3]6]5]|
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Operations on Heaps

The root of the tree is A[1], and given the index i of a node, the
indices of its parent parent(i), left child left(i), and right child right(/)
can be computed simply:
parent (i) i/2

return floor(i/2)

left (i)
return 2i

right (i)
return 2i + 1
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Heap Properties

Heap Properties

m There are two kinds of binary heaps:

= max-heaps and
® min-heaps.

m In both kinds, the values in the nodes satisfy a heap property.

parent

children

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Heap Properties

Max-heap

m In a max-heap, the max-heap property is that, for every node i
other than the root, A[/] < A[parent(i)], that is, the value of a
node is at most the value of its parent.

m The largest element in a max-heap is stored at the root, and the
subtree rooted at a node contains values no larger than that
contained at the node itself.
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Heap Properties

Min-heap

m In a min-heap, the min-heap property is that, for every node i
other than the root, A[parent(i)] < A[i].

m The smallest element in a min-heap is at the root.
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Operations on Heaps

Maintaining the Heap Property

maxHeapify is an important subroutine for manipulating max-heap

maxHeapify (A, 1)

1 = left(i)

r = right(i)

if 1 <= A.heap_size and A[1] > A[i]
largest =1

else
largest = 1

if r <= A.heap_size and A[r] > A[largest]
largest = r

if largest != 1
exchange A[i] and A[largest]
maxHeapify (A, largest)
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Operations on Heaps

MaxHeapify: An Example




Operations on Heaps

MaxHeapify: Down Heap (1)
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Operations on Heaps

MaxHeapify: Down Heap (2)
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Operations on Heaps

MaxHeapify: Down Heap (3
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Operations on Heaps

Building a Heap (1)

m We use the procedure maxHeapify in a bottom-up manner to
convert an array A[1..n], where n = A.length, into a max-heap.

m The elements in the subarray A[floor(n/2) + 1..n] are all leaves
of the tree, and so each is a 1-element heap to begin with.

m The procedure buildMaxHeap goes through the remaining nodes
of the tree and runs maxHeapify on each one.
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Operations on Heaps

Building a Heap (2)

buildMaxHeap (A)
A.heap_size = A.length
for i = floor(A.length/2) down to 1
maxHeapify(A, 1)

m The time required by maxHeapify is O(log n).
m We can build a max-heap by the procedure buildMaxHeap in
time O(n).
m Perform maxHeapify to n/2 sub-trees with height 1, n/4 sub-trees

with height 2, ..., 1 sub-tree with height log n, respectively.
m We obtain n x Y027 £ = O(n)
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Operations on Heaps

Building a Heap: An Example
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Operations on Heaps

Building a Heap: maxHeapify on a Subtree (1)
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Operations on Heaps

Building a Heap: maxHeapify on a Subtree (2)
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Operations on Heaps

Building a Heap: maxHeapify on a Subtree (3)
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Operations on Heaps

Building a Heap: maxHeapify on a Subtree (4)
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Operations on Heaps Priority Queue

Building a Heap: maxHeapify on a Subtree (5)
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Operations on Heaps

Building a Heap: maxHeapify on a Subtree (6)
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Priority Queue

Priority Queues

m A priority queue is a data structure for maintaining a set S of
elements, each with an associated value called a key.

m A max-priority queue supports the following operations.

insert(S, x) inserts the element x into the set S.

maximum(S) returns the element of S with the largest key.
extractMax(S) removes and returns the element of S with the
largest key.

increaseKey(S, p, k) increases the value of element p’s key to the
new value k, which is assumed to be the least as large as p’s
current key value.
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Priority Queue

HeapMaximum

The procedure heapMaximum implements the maximum operation in
O(1) time.

heapMaximum(A)
return A[1]
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Priority Queue

HeapExtractMax

The procedure heapExtractMax implements the extractMax operation
in O(log n).

heapExtractMax (4)
if A.heap_size < 1
output error "heap underflow"
max = A[1]
A[1] = A[A.heap_size]
A.heap_size--
maxHeapify (A, 1)
return max
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Priority Queue

HeapExtractMax: An Example

heapExtractMax
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Priority Queue

HeapExtractMax (1)

heapExtractMax




Priority Queue

HeapExtractMax (2
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Priority Queue

HeapExtractMax (3)

maxHeapify




Priority Queue

HeapExtractMax (4)
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Priority Queue

MaxHeaplnsert

The procedure maxHeaplnsert implements the insert operation in
O(log n) time.

maxHeapInsert (A, key)
A.heap_size = A.heap_size + 1
A[A.heap_size] = -INF
heapIncreaseKey(A, A.heap_size, key)
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Priority Queue

HeaplncreaseKey

The procedure heaplncreaseKey implements the increaseKey
operation in O(log n) time.

heapIncreaseKey(A, i, key)
if key < A[i]
output error "new key is smaller than current key"
Ali]l = key
while i > 1 and Alparent(i)] < A[i]
exchange A[i] and A[parent(i)]
i = parent(i)
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Priority Queue

HeaplncreaseKey: An Example
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Priority Queue

HeaplncreaseKey (1)
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Priority Queue

HeaplncreaseKey (2)
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Priority Queue

HeaplncreaseKey (3)
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Priority Queue

HeaplncreaseKey (4)
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Heap Sort

Heap Sort (1)

Here is Heap Sort Algorithm working on the input array A[1..n], where

n = A.length.
heapsort (4)
buildMaxHeap (A)

for i = A.length down to 2
exchange A[1] and A[i]
A.heap_size--
maxHeapify (A, 1)
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Heap Sort

Heap Sort (1)
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Heap Sort

Heap Sort (2)
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Heap Sort

Heap Sort (3)
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Heap Sort

Heap Sort (4)
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Heap Sort

Heap Sort (5)
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Heap Sort

Heap Sort (6)
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Heap Sort

Heap Sort (7)
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Heap Sort

Heap Sort (8)
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Heap Sort

Heap Sort (9)

Siriweera

Algorithms Data Structures



Heap Sort

Heap Sort (10)
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Heap Sort

Heap Sort (11)
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Heap Sort

Heap Sort (1
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Heap Sort

Heap Sort (13
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Heap Sort

Heap Sort (14)
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Heap Sort

Heap Sort (15
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Heap Sort

Heap Sort (16
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Heap Sort

Heap Sort (17)
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Heap Sort

Heap Sort (18
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Heap Sort

Heap Sort (19
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Heap Sort

Heap Sort (20)
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Heap Sort

Performance and Stability of Heap Sort

m The heapsort procedure takes time O(nlog n), since the call to
buildMaxHeap takes time O(n) and each of the n — 1 calls to
maxHeapify takes time O(log n).

m Heap sort is not a stable sort because it swaps distant elements
of the array. Moreover, by its nature, those elements are likely to
be far from each other, which may affect execution speed
depending on the architecture.
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Heap Sort
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