
1/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Algorithms and Data Structures
8th Lecture: Binary Search Tree

Yutaka Watanobe, Jie Huang, Yan Pei, Wenxi Chen,
S. Semba, Deepika Saxena, Yinghu Zhou, Akila Siriweera

University of Aizu

Last Updated: 2025/01/05

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



2/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Outline

Binary Search Tree
Querying a Binary Search Tree
Insertion
Deletion

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



3/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Search Trees

Search trees are data structures that support dynamic set
operations, including

Search,
Minimum,
Successor,
Insert, and
Delete.

Thus, a search tree can be used both as a dictionary and as a
priority queue.
Basic operations on a binary search tree take time proportional
to the heigth of the tree.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



4/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Binary Search Tree

A binary search tree is organized in a binary tree. Such a tree
can be represented by a linked data structure in which each
node is an object.
In addition to a key field and satellite data, each node contains
fields left, right, and p that point to the nodes corresponding to
its left child, its right child, and its parent, respectively.
If a child or the parent is missing, the appropriate field contains
the value NIL.
The root node is the only node in the tree whose parent field is
NIL.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



5/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Binary Search Tree Property

The keys in a binary search tree are always stored in such a way as
to satisfy the following binary search tree property:

Let x be a node in a binary search tree. If y is a node in the left
subtree of x , then y .key ≤ x .key . If y is a node in the right subtree of
x , then x .key ≤ y .key .

x x

y y

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



6/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Binary Search Tree Property: Examples

5

30

8812

1 20

17

height = 3

30

12

8 20

1

height = 4

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



7/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Inorder Tree Walk (1)

The binary search tree property allows us to print out all the keys
in a binary search tree in sorted order by a simple recursive
algorithm, called an inorder tree walk.
The algorithm prints the key of the root of a subtree between the
values in its left subtree and those in its right subtree.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



8/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Inorder Tree Walk (2)

2

1 3

inorderTreeWalk(x)

if x != NIL:

inorderTreeWalk(x.left)

print x.key

inorderTreeWalk(x.right)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



9/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Querying a Binary Search Tree

A common operation performed on a binary search tree is
searching for a key stored in the tree.

Search operation

Besides the Search operation, binary search trees can support
such queries as

Minimum operation,
Maximum operation, and
Successor operation

Each operation can be supported in time O(h) on a binary
search tree of height h.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



10/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Searching (1)

We use the following procedure to search for a node with a given
key in a binary search tree.
Given a pointer to the root of the tree and a key k , treeSearch
returns a pointer to a node with key k if one exists; otherwise, it
returns NIL.

treeSearch(x, k)

if x == NIL or k == x.key:

return x

if k < x.key:

return treeSearch(x.left, k)

else

return treeSearch(x.right, k)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



11/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Searching (2)

The nodes encountered during the recursion form a path
downward from the root of the tree, and thus the running time of
treeSearch is O(h), where h is the height of the tree.
The same procedure to the treeSearch can be written iteratively
by ”unrolling” the recursion into a while loop.

iterativeTreeSearch(x, k)

while x != NIL and k != x.key:

if k < x.key:

x = x.left

else:

x = x.right

return x

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



12/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Searching: An example

27

30

8812

1 20

17

treeSearch(x, 17) → 30 → 12 → 20 → 17

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



13/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Minimum

The following procedure returns a pointer to the minimum element in
the subtree rooted at a given node x.

treeMinimum(x)

while x.left != NIL:

x = x.left

return x

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



14/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Maximum

The pseudocode for treeMaximum is symmetric.

treeMaximum(x)

while x.right != NIL:

x = x.right

return x

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



15/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Successor (1)

If all keys are distinct, the successor of a node x is the node with
the smallest key greater than x .key .
The running time of treeSuccessor on a tree of height h is O(h).

treeSuccessor(x)

if x.right != NIL:

return treeMinimum(x.right) /* case 1 */

y = x.p

while y != NIL and x == y.right:

x = y

y = y.p

return y /* case 2 */

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



16/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Successor (2)

case 1 case 2

x

x

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



17/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Insertion and Deletion

The operations of insertion and deletion cause the dynamic set
represented by a binary search tree to change.
The data structure must be modified to reflect this change, but in
such a way that the binary search tree property continues to
hold.
As we shall see, modifying the tree to insert a new element is
relatively straightforward, but handling deletion is somewhat
more intricate.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



18/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Insertion

To insert a new value v into a binary search tree T , we use the
procedure treeInsert.
The procedure is passed a node z for which z.key = v ,
z.left = NIL, and z.right = NIL.
The procedure modifies T and some of the fields of z in such a
way that z is inserted into an appropritate position in the tree.
The procedure treeInsert runs in O(h) time on a tree of height h.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



19/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

The treeInsert Procedure

/* insert node z to T */

treeInsert(T, z)

/* y is parent of x */

y = NIL

x = T.root

while x != NIL:

y = x

if z.key < x.key:

x = x.left

else:

x = x.right

z.p = y

if y == NIL: /* Tree is empty */

T.root = z

else if z.key < y.key:

y.left = z

else:

y.right = z

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



20/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Insertion: Example

30 30

88

30

8812

1

30

8812

1 20

30

8812

30

8812

1 20

17

NIL

insert 30 insert 88 insert 12

insert 1 insert 20 insert 17

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



21/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Deletion (1)

The procedure for deleting a given node z from a binary search
tree takes as an argument a pointer to z.
The procedure considers the three cases:

1 If z has no children, we modify its parent z.p to replace z with NIL
as its child.

2 If z has only a single child, we ”splice out” z by making a new link
between its child and its parent.

3 If z has two children, we splice out z ’s successor y , which has no
left child and replace z ’s key and satellite data with y ’s key and
satellite data.

splice (verb): to join the ends of two pieces (of rope, film etc.) so that they
form one continuous piece.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



22/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Deletion (2)

z= y

case 1 case 2 case 3

z= y z= y

z

y

x
x x

x

new key

x x

x

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



23/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

The treeDelete Procedure (1)

/* delete node z from T */

treeDelete(T, z)

01. if z.left == NIL or z.right == NIL:

02. y = z

03. else /* z have two children */

04. y = treeSuccessor(z)

05.

06. if y.left != NIL

07. x = y.left

08. else

09. x = y.right

10.

11. if x != NIL

12. x.p = y.p

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



24/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

The treeDelete Procedure (2)

13. if y.p == NIL

14. T.root = x

15. else if y == y.p.left

16. y.p.left = x

17. else

18. y.p.right = x

19.

20. if y != z

21. z.key = y.key

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



25/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

The Tree-Delete Procedure (3)

In lines 1-4, the algorithm determines a node y to splice out. The
node y is either z (if z has at most 1 child) or the successor of z
(if z has two children).
In lines 6-9, x is set to the non-NIL child of y , or to NIL if y has no
children.
In lines 11-18, node y is spliced out by modifying pointers in y .p
and x . Splicing out y is somewhat complicated by the need for
proper handling of the boundary conditions, which occur when
x = NIL or when y is the root.
In lines 20-21, if the successor of z was the node spliced out, y ’s
key and satellite data are moved to z, overwriting the previous
key and statellite data.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



26/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Deletion: Example 1

1

2

3

4

5

6

7

8

9

10

11 1

3

6

7

8

9

10

11
delete 2

4

5

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



27/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Deletion: Example 2

1

2

3

4

5

6

7

8

9

10

11 1
delete 6

1

2

3

4

5

7

10

118

9

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



28/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Complexity

Let h be the height of the binary search tree. The computational
complexity of a search operation on a binary search tree is O(h).
An insertion operation on a binary search tree can be performed
in O(1), but actually requires a search, so the computational
complexity is O(h).
A delete operation on a binary search tree can be performed in
O(1), but actually requires a search, so the computational
complexity is O(h).

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



29/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Limitations

Let h be the height of the binary search tree and n be the
number of nodes in the tree.
The worst-case computational complexity of a search operation
on a binary search tree by a naive implementation is O(n).

If we insert elements in order 1, 2, 3, ..., n, it is easy to imagine that
the tree will become a list.

Fortunately, there is a technique that keeps the height of the tree
at O(log n) even if we repeatedly insert and delete elements.

Red-black tree
Treap
etc.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



30/30

Binary Search Tree Querying a Binary Search Tree Insertion Deletion

Reference

1 Introduction to Algorithms (third edition), Thomas H.Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2012.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures


