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Recursion

Recursion

m A recursive function is a function which calls itself recursively.

m The recursive function should be terminated by a specified
condition.
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Recursion

Recursive Function: An Example

toBinary (x)
if x>0

toBinary(x/2) toBinary(1) — 1
print x%2 toBinary(2) — 0
toBinary(5) — 1
toBinary(10) — O
call toBinary(input) toBinary(21) — 1
toBinary(43) — 1
toBinary(86) — O

Input Output
86(10) 1010110
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Divide and Conquer

Divide and Conquer Approach

m Many useful algorithms are recursive in structure: to solve a
given problem, they call themselves recursively one or more
times to deal with closely related subproblems.

m These algorithms typically follow a divide and conquer approach:

[Divide] they break the problem into several subproblems that are
similar to the original problem but smaller in size,

[Conquer] solve the subproblems recursively, and then

[Combine] combine these solutions to create a solution to the
original problem.
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Divide and Conquer

Divide and Conquer Algorithm: An Example

m Recursive divide and conquer solution for finding the maximum.
findMax (A, left, right)
m = (left + right)/2
if left == right-1
return A[left]
else

u = findMax(A, left, m)
v = findMax(A, m, right)
if u>v

return u
else

return v
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Divide and Conquer

Finding the Maximum
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findMax (A, left, right)
m = (left + right)/2
if left == right-1
return A[left]
else

findMax (A, left, m)
v = findMax(A, m, right)
ifu>v

return u
else

u

return v
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Recurrence

m When an algorithm contains a recursive call to itself, its running
time can often be described by a recurrence equation or
recurrence, which describes the overall running time on a
problem of size n in terms of the running time on smaller inputs.
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Divide and Conquer

Analysis of Finding the Maximum

m We set up recurrence for Finding the Maximum.
[Divide] The divide step computes the middle of subarray, which
takes constant time. Thus, O(1).
[Conquer] We recursively solve two subproblems, each of size
n/2, which contributes 2T (n/2) to the running time.
[Combine] The comparison between two maximum values in two
n-element subarrays takes time O(1).

m The recurrence for the worst-case running time T(n) of Finding
the Maximum is

c n=1
T(n) :{ 2T(n/2) + ¢ En> 1%
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Solving Recurrence

m The algorithm takes linear time.

T(n) = 2T(n/2)+c
2(2T(n/4)+c)+c
= 2(2(2T(n/8)+c)+c)+c

= 2(2(..(2T(1)+c)..)+cCc)+cC
2(2(...(2c+c)...)+c)+cC
= (2n-1)c

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Merge Sort

m The Merge Sort algorithm closely follows the divide and conquer
paradigm. Intuitively, it operates as follows.

[Divide] Divide the n-element sequence to be sorted into two
subsequences of n/2 elements each.

[Conquer] Sort the two subsequences recursively using Merge
Sort.

[Combine] Merge the two sorted subsequences to produce the
sorted answer.

m The key operation of the Merge Sort algorithm is the merging of
two sorted sequences in the [Combine] step.
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Merge Sort: Merge

merge(A, 1, m, r)

nl=m-1 i=0
n2 =r -m j=20
create an array L[0..n1] for k =1 to r-1
create an array R[0..n2] if L[il < R[j]
for i = 0 to ni1-1 Alk] = L[i]
L[i] = A[1+i] i=i+1
for j = 0 to n2-1 else
R[j] = Alm+j] Alk] = R[j]
L[n1] = SENTINEL j=j+1

R[n2] = SENTINEL
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Variables for Merge
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A

1000 0000
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Merge Sort
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Merge Sort

mergeSort (A, left, right)
if left + 1 < right
mid = (left + right)/2
mergeSort (A, left, mid)
mergeSort (A, mid, right)
merge (A, left, mid, right)

m To sort the entire sequence A = (A[0], A[1], ..., A[n — 1]), we
make the initial call mergeSort (A, 0, n).
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Merge Sort

Variables for the Merge Sort Algorithm

The target of sorting is managed by a half-open interval [left, right).
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Merge Sort

Divide ‘9 6 7 2|5 D @ @G 2‘ ‘oeeoeeoee‘ Conquer A
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m The operation of Merge Sort on the array
A=1{9,6,7,2,5,1,8,4,2}. The lengths of the sorted sequences
being merged increase as the algorithm progresses from bottom
to top.
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Merge Sort (1

Divide ‘9 6 7 2|5 DO O @ Conquer A
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Merge Sort (6-8)

Divide ‘9672'51842
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Merge Sort (9-10)

Divide ‘9 6 7 2|5 D6 @ 2‘ Conquer A
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Merge Sort (11-15)

Divide Conquer A
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Merge Sort (16-20)

Divide Conquer A

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms



Merge Sort

Merge Sort (21-24)

Divide ‘9 6 7 2|5 18 4 2‘ ‘oeeoee@ee‘ Conquer A
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Analysis of Merge Sort (1)

m We set up recurrence for Merge Sort.
[Divide] The divide step computes the middle of subarray, which
takes constant time. Thus, O(1).
[Conquer] We recursively solve two subproblems, each of size
n/2, which contributes 2T (n/2) to the running time.
[Combine] The Merge procedure on an n element subarray takes
time O(n)

m The recurrence for the worst-case running time T(n) of Merge

Sort is ( "
c n=
T(n) = { 2T(n/2)+cn (n>1)
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Analysis of Merge Sort (2)

T(n) cn cn

T(n/2) T(n/2) cn/2 cn/2

T(n/4) T(n/4) T(n/4

=

T(n/4)
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Analysis of Merge Sort (3)

cn
cn/2 cn/2 cn
logn / \ / \
T(n/4) T(n/4) T(n/4) T(n/4) cn
c c c c c c ¢ ¢ —_— cn
n Total: cn log n + cn
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Analysis of Merge Sort (4)

m Merge sort is a fast algorithm with O(nlog n) in the worst case.

m Merge sort is stable because it does not swap elements which
are located separately.

m Merge sort is an external sorting algorithm that requires another
array in addition to the array that manages the input data.
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