Algorithms and Data Structures
5th Lecture: Divide and Conquer

Yutaka Watanobe, Jie Huang, Yan Pei, Wenxi Chen,
S. Semba, Deepika Saxena, Yinghu Zhou, Akila Siriweera

University of Aizu

Last Updated: 2024/12/16

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Outline

m Recursion
m Divide and Conquer Approach
m Merge Sort

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms



Recursion

Recursion

m A recursive function is a function which calls itself recursively.

m The recursive function should be terminated by a specified
condition.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures



Recursion

Recursive Function: An Example

toBinary (x)
if x>0

toBinary(x/2) toBinary(1) — 1
print x%2 toBinary(2) — 0
toBinary(5) — 1
toBinary(10) — O
call toBinary(input) toBinary(21) — 1
toBinary(43) — 1
toBinary(86) — O

Input Output
86(10) 1010110

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

University of Aizu

Algorithms and Data Structures



Divide and Conquer

Divide and Conquer Approach

m Many useful algorithms are recursive in structure: to solve a
given problem, they call themselves recursively one or more
times to deal with closely related subproblems.

m These algorithms typically follow a divide and conquer approach:

[Divide] they break the problem into several subproblems that are
similar to the original problem but smaller in size,

[Conquer] solve the subproblems recursively, and then

[Combine] combine these solutions to create a solution to the
original problem.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Divide and Conquer

Divide and Conquer Algorithm: An Example

m Recursive divide and conquer solution for finding the maximum.
findMax (A, left, right)
m = (left + right)/2
if left == right-1
return A[left]
else

u = findMax(A, left, m)
v = findMax(A, m, right)
if u>v

return u
else

return v

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Divide and Conquer

Finding the Maximum

npon - pa

= X
7N LN

I\ 7N\ /N

DD DO0HB

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures



Divide and Conquer

AEWATS

findMax (A, left, right)
m = (left + right)/2
if left == right-1
return A[left]
else

findMax (A, left, m)
v = findMax(A, m, right)
ifu>v

return u
else

u

return v

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

const
const
const

T(n/2)
T(n/2)
const

const

const

University of Aizu

Algorithms and Data Structures



Divide and Conquer

Recurrence

m When an algorithm contains a recursive call to itself, its running
time can often be described by a recurrence equation or
recurrence, which describes the overall running time on a
problem of size n in terms of the running time on smaller inputs.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures



Divide and Conquer

Analysis of Finding the Maximum

m We set up recurrence for Finding the Maximum.
[Divide] The divide step computes the middle of subarray, which
takes constant time. Thus, O(1).
[Conquer] We recursively solve two subproblems, each of size
n/2, which contributes 2T (n/2) to the running time.
[Combine] The comparison between two maximum values in two
n-element subarrays takes time O(1).

m The recurrence for the worst-case running time T(n) of Finding
the Maximum is

c n=1
T(n) :{ 2T(n/2) + ¢ En> 1%

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Divide and Conquer

Solving Recurrence

m The algorithm takes linear time.

T(n) = 2T(n/2)+c
2(2T(n/4)+c)+c
= 2(2(2T(n/8)+c)+c)+c

= 2(2(..(2T(1)+c)..)+cCc)+cC
2(2(...(2c+c)...)+c)+cC
= (2n-1)c

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Merge Sort

m The Merge Sort algorithm closely follows the divide and conquer
paradigm. Intuitively, it operates as follows.

[Divide] Divide the n-element sequence to be sorted into two
subsequences of n/2 elements each.

[Conquer] Sort the two subsequences recursively using Merge
Sort.

[Combine] Merge the two sorted subsequences to produce the
sorted answer.

m The key operation of the Merge Sort algorithm is the merging of
two sorted sequences in the [Combine] step.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Merge Sort: Merge

merge(A, 1, m, r)

nl=m-1 i=0
n2 =r -m j=20
create an array L[0..n1] for k =1 to r-1
create an array R[0..n2] if L[il < R[j]
for i = 0 to ni1-1 Alk] = L[i]
L[i] = A[1+i] i=i+1
for j = 0 to n2-1 else
R[j] = Alm+j] Alk] = R[j]
L[n1] = SENTINEL j=j+1

R[n2] = SENTINEL

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Variables for Merge

iversity of Aizu

Algorithms Data Structures



Merge Sort

A

1000 0000

Algorithms Data Structures



Merge Sort

Siriweera

Algorithms Data Structures



Merge Sort

N
a
— N
N
oo

—_

Siriweera

Algorithms Data Structures



Merge Sort

Algorithms Data Structures



Merge Sort




Merge Sort

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures



Merge Sort

—




Merge Sort

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures



Merge Sort

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms ata Structures



Merge Sort

Merge Sort

mergeSort (A, left, right)
if left + 1 < right
mid = (left + right)/2
mergeSort (A, left, mid)
mergeSort (A, mid, right)
merge (A, left, mid, right)

m To sort the entire sequence A = (A[0], A[1], ..., A[n — 1]), we
make the initial call mergeSort (A, 0, n).

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Variables for the Merge Sort Algorithm

The target of sorting is managed by a half-open interval [left, right).

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Merge Sort

Divide ‘9 6 7 2|5 D @ @G 2‘ ‘oeeoeeoee‘ Conquer A

24

1

2572 0000 si]e 2] 00000
/10\ 23

Ny
00 [: 00
5 \

m The operation of Merge Sort on the array
A=1{9,6,7,2,5,1,8,4,2}. The lengths of the sorted sequences
being merged increase as the algorithm progresses from bottom
to top.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

\/

Algorithms and Data Structures



Merge Sort

Merge Sort (1

Divide ‘9 6 7 2|5 DO O @ Conquer A

1
@ @le o

Algorithms Data Structures



Merge Sort (6-8)

Divide ‘9672'51842

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

Merge Sort

Conquer A

University of Aizu

Algorithms ata Structures



Merge Sort

Merge Sort (9-10)

Divide ‘9 6 7 2|5 D6 @ 2‘ Conquer A

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Merge Sort (11-15)

Divide Conquer A

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Merge Sort (16-20)

Divide Conquer A

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms



Merge Sort

Merge Sort (21-24)

Divide ‘9 6 7 2|5 18 4 2‘ ‘oeeoee@ee‘ Conquer A
24

1

1
2celr: 0000 sies: 00000
N\ 10 23

2y lb“
ele| @O [7]2] @0
\ /5 .70
\ X X

3y \;\4 7 84
o o

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Analysis of Merge Sort (1)

m We set up recurrence for Merge Sort.
[Divide] The divide step computes the middle of subarray, which
takes constant time. Thus, O(1).
[Conquer] We recursively solve two subproblems, each of size
n/2, which contributes 2T (n/2) to the running time.
[Combine] The Merge procedure on an n element subarray takes
time O(n)

m The recurrence for the worst-case running time T(n) of Merge

Sort is ( "
c n=
T(n) = { 2T(n/2)+cn (n>1)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Analysis of Merge Sort (2)

T(n) cn cn

T(n/2) T(n/2) cn/2 cn/2

T(n/4) T(n/4) T(n/4

=

T(n/4)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Analysis of Merge Sort (3)

cn
cn/2 cn/2 cn
logn / \ / \
T(n/4) T(n/4) T(n/4) T(n/4) cn
c c c c c c ¢ ¢ —_— cn
n Total: cn log n + cn

iversity of Aizu

Algorithms Data Structures



Merge Sort

Analysis of Merge Sort (4)

m Merge sort is a fast algorithm with O(nlog n) in the worst case.

m Merge sort is stable because it does not swap elements which
are located separately.

m Merge sort is an external sorting algorithm that requires another
array in addition to the array that manages the input data.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Merge Sort

Reference

Introduction to Algorithms (third edition), Thomas H.Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2012.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



