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Growth of Functions

Asymptotic Notations

m When we look at input size large enough to make only the order
of growth of the running time relevant, we are studying the
asymptotic efficiency of algorithms.

m Usually, an algorithm that is asymptotically more efficient will be
the best choice for all but very small inputs.
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Growth of Functions

Big-Oh Notations

m O-notation (big-oh): asymptotic upper bound O(g(n)) = {f(n) :
there exists positive constants ¢ and ny such that
0 < f(n) < cg(n) forall n> np}.

cg(n)

fn)

n

Sn) = O(g(n))
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Growth of Functions

Notational Conventions

m Conventionally, we write f(n) = O(g(n)) to indicate that f(n) is a
member of the set O(g(n)), instead of writing f(n) € O(g(n)).

m Moreover, we use asymptotic notations within mathematical
formulas. For example, we write:

2% +3n+1 =2+ O(n) = O(n?)
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Growth of Functions

Simple Examples

m 3 +2n+5=0(n)
m 1000n+5 = O(n)

m (3/2)" =0(2")

m log, n? = O(log n)

m 8 +2n + 5= 0(n’)
[
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Growth of Functions

Comparison of Computational Complexity

n logn /n nlog n n? an n!

5 2 2 10 25 32 120

10 3 3 30 100 1024 3628800

20 4 4 80 400 1048576 2.4 x10'8
50 5 7 250 2500 1018 3.0 x10%4
100 6 10 600 10000 1030 9.3 x10'%7
1000 9 31 9000 1000000 10300 4.0 x 102567
10000 13 100 130000 100000000 103000 1035660
100000 16 316 1600000 1010 1030000 10456574
1000000 19 1000 19000000 102 10300000 15565709
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Growth of Functions

Comparison of Computational Complexity
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Sorting Algorithms

Sorting Algorithms

m Insertion Sort
m Bubble Sort
m Selection Sort
m Shell Sort

m Merge Sort

m Quick Sort

m Heap Sort

m Counting Sort
m Bucket Sort
m efc.
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Bubble Sort

Bubble Sort

Bubble Sort is a popular sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order.

01. bubbleSort() // O-origin

02. for i = 0 to N-1

03. for j = N-1 downto i + 1

04. if A[j]1 < A[j - 1]

05. swap A[j] and A[j - 1]
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Bubble Sort

Bubble Sort
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Bubble Sort

Variables for Bubble Sort

it
A | The input array with N integers
The loop variable which indicates the first element
of the unsorted sub-array

J | The loop variable which indicates the two adjacency elements
in the unsorted sub-array

-~

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

University of Aizu

Algorithms and Data Structures



Bubble Sort

Analysis of Bubble Sort

N(N—1
B T(N)=(N-1)+(N-2)+(N-3)+..+1="1D
m Then, complexity of Bubble Sort is O(N?)
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Selection Sort

Selection Sort

Consider sorting N numbers stored in an array A by first finding the
smallest element of A and exchanging it with the element in A[Q].
Then find the second smallest element of A, and exchange it with
A[1]. Continue in this manner for the first n — 1 elements of A.

01. selectionSort() // O-origin

01. for i =0 to N - 2

02. minj = 1

03. for j =1 toN-1
04. if A[j] < Alminj]
05. minj = j

06. swap A[i] and A[minj]
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Selection Sort

Selection Sort
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Selection Sort

Variables for Selection Sort

minj

A The input array with N integers

The loop variable which indicates the first element

of the unsorted sub-array

f The loop variable which traverses the unsorted sub-array
minj | The pointer which indicates the minimum element

in the unsorted sub-array

-~

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



Selection Sort

Analysis of Selection Sort

N(N—1
BT(N)=(N—=1)+(N—=2)+ (N —3)+..+1="01
m Then, complexity of Selection Sort is O(N?)
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Stability

Stability

m Stability is an important property of sorting algorithms.

m In the stable sort, numbers with the same value appear in the
output array in the same order as they do in the input array.

m That is, ties between two numbers are broken by the rule that
whichever number appears first in the input array appears first in
the output array.

m The property of stability is important only when satellite data are
carried around with the element being sorted.
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Stability

Stability

m Bubble Sort is a stable sorting algorithm because it swaps
adjacent elements, and only if the first one is strictly greater than
the second one.

m Selection Sort is not a stable sorting algorithm because the order
of elements with the same key can be changed after swap. It
swaps elements which are not adjacent.

m What about other sorting algorithms?
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Stability

Stability

An example of unstable sort by Selection Sort.

0 0 1 2 3 2. 0 1 2 3 0 1 E
3A| 5 3B 1 1 d@ 3A 1 3B 3A | 5
1 0 1 2 3 3. 0 1 2 3
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