Algorithms and Data Structures
2nd Lecture: Growth of function / Sort

Yutaka Watanobe, Jie Huang, Yan Pei, Wenxi Chen,
S. Semba, Deepika Saxena, Yinghu Zhou, Akila Siriweera

University of Aizu

Last Updated: 2024/12/05

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Outline

m Growth of Functions
m Bubble Sort

m Selection Sort

m Stability

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Growth of Functions

Asymptotic Notations

m When we look at input size large enough to make only the order
of growth of the running time relevant, we are studying the
asymptotic efficiency of algorithms.

m Usually, an algorithm that is asymptotically more efficient will be
the best choice for all but very small inputs.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Growth of Functions

Big-Oh Notations

m O-notation (big-oh): asymptotic upper bound O(g(n)) = {f(n) :
there exists positive constants ¢ and ny such that
0 < f(n) < cg(n) forall n> np}.

cg(n)

fn)

n

Sn) = O(g(n))

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Growth of Functions

Notational Conventions

m Conventionally, we write f(n) = O(g(n)) to indicate that f(n) is a
member of the set O(g(n)), instead of writing f(n) € O(g(n)).

m Moreover, we use asymptotic notations within mathematical
formulas. For example, we write:

2% +3n+1 =2+ O(n) = O(n?)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Growth of Functions

Simple Examples

m 3 +2n+5=0(n)
m 1000n+5 = O(n)

m (3/2)" =0(2")

m log, n? = O(log n)

m 8 +2n + 5= 0(n’)
[

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Growth of Functions

Comparison of Computational Complexity

n logn /n nlog n n? an n!

5 2 2 10 25 32 120

10 3 3 30 100 1024 3628800

20 4 4 80 400 1048576 2.4 x10'8
50 5 7 250 2500 1018 3.0 x10%4
100 6 10 600 10000 1030 9.3 x10'%7
1000 9 31 9000 1000000 10300 4.0 x 102567
10000 13 100 130000 100000000 103000 1035660
100000 16 316 1600000 1010 1030000 10456574
1000000 19 1000 19000000 102 10300000 15565709

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Z axena, A. Siriweera University of Aizu

Algorithms and Data Structures

Growth of Functions

Comparison of Computational Complexity

5500

5000

4500

4000

3500

3000

2500

2000

5n’ 25nlog,n

100n

4004/n

'400Iogzn

iversity of Aizu

Algorithms

Data Structures

Sorting Algorithms

Sorting Algorithms

m Insertion Sort
m Bubble Sort
m Selection Sort
m Shell Sort

m Merge Sort

m Quick Sort

m Heap Sort

m Counting Sort
m Bucket Sort
m efc.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Bubble Sort

Bubble Sort

Bubble Sort is a popular sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order.

01. bubbleSort() // O-origin

02. for i = 0 to N-1

03. for j = N-1 downto i + 1

04. if A[j]1 < A[j - 1]

05. swap A[j] and A[j - 1]

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Bubble Sort

Bubble Sort

0. 0 2 3 4 5. 0 1 2 3 8. 0 1 2 3 4
|s s 2 & 1] \1|s\3\w 1zlse°
1 2 3 6. 0 1 9 0 4
5 32 1 5 4 1|2 4

2 3 4 . 0 3 4 0 2 3 4

53 4 1 ‘3‘4‘ ‘1‘2‘3'5‘4‘

3. 0 2 3 - 1 2 3
@@=+ [tlz]s a4

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Bubble So

Siriweera

Algorithms Data Structures

Bubble Sort

Variables for Bubble Sort

it
A | The input array with N integers
The loop variable which indicates the first element
of the unsorted sub-array

J | The loop variable which indicates the two adjacency elements
in the unsorted sub-array

-~

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

University of Aizu

Algorithms and Data Structures

Bubble Sort

Analysis of Bubble Sort

N(N—1
B T(N)=(N-1)+(N-2)+(N-3)+..+1="1D
m Then, complexity of Bubble Sort is O(N?)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Selection Sort

Selection Sort

Consider sorting N numbers stored in an array A by first finding the
smallest element of A and exchanging it with the element in A[Q].
Then find the second smallest element of A, and exchange it with
A[1]. Continue in this manner for the first n — 1 elements of A.

01. selectionSort() // O-origin

01. for i =0 to N - 2

02. minj = 1

03. for j =1 toN-1
04. if A[j] < Alminj]
05. minj = j

06. swap A[i] and A[minj]

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Selection Sort

Selection Sort

)]
(@)
™)
o
)
(@)
@

. @)

w TL@

IS _.;

iversity of Aizu

Algorithms Data Structures

Selection Sort

Selection Sort

iversity of Aizu

Algorithms Data Structures

Selection Sort

Selection Sort

Siriweera University of Aizu

Algorithms and Data Structures

Selection Sort

Selection Sort

iversity of Aizu

Algorithms Data Structures

Selection Sort

Selection Sort

iversity of Aizu

Algorithms Data Structures

Selection Sort

Selection Sort

Siriweera University of Aizu

Algorithms and Data Structures

Selection Sort

Selection Sort

iversity of Aizu

Algorithms Data Structures

Selection Sort

Selection Sort

iversity of Aizu

Algorithms Data Structures

Selection Sort

Selection Sort

iversity of Aizu

Algorithms Data Structures

Selection Sort

Variables for Selection Sort

minj

A The input array with N integers

The loop variable which indicates the first element

of the unsorted sub-array

f The loop variable which traverses the unsorted sub-array
minj | The pointer which indicates the minimum element

in the unsorted sub-array

-~

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Selection Sort

Analysis of Selection Sort

N(N—1
BT(N)=(N—=1)+(N—=2)+ (N —3)+..+1="01
m Then, complexity of Selection Sort is O(N?)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Stability

Stability

m Stability is an important property of sorting algorithms.

m In the stable sort, numbers with the same value appear in the
output array in the same order as they do in the input array.

m That is, ties between two numbers are broken by the rule that
whichever number appears first in the input array appears first in
the output array.

m The property of stability is important only when satellite data are
carried around with the element being sorted.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Stability

Stability

m Bubble Sort is a stable sorting algorithm because it swaps
adjacent elements, and only if the first one is strictly greater than
the second one.

m Selection Sort is not a stable sorting algorithm because the order
of elements with the same key can be changed after swap. It
swaps elements which are not adjacent.

m What about other sorting algorithms?

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

Stability

Stability

An example of unstable sort by Selection Sort.

0 0 1 2 3 2. 0 1 2 3 0 1 E
3A| 5 3B 1 1 d@ 3A 1 3B 3A | 5
1 0 1 2 3 3. 0 1 2 3

University of Aizu

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera

Algorithms

Stability

Reference

Introduction to Algorithms (third edition), Thomas H.Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2012.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures

