
1/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Algorithms and Data Structures
1st Lecture: Getting Started

Yutaka Watanobe, Jie Huang, Yan Pei, Wenxi Chen,
S. Semba, Deepika Saxena, Yinghu Zhou, Akila Siriweera

University of Aizu

Last Updated: 2023/12/05

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



2/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Outline

Algorithms
Data Structures
Pseudocode
Insertion Sort

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



3/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Algorithms

Informally, an algorithm is any well-defined computational
procedure that takes some value, or set of values, as input and
produces some value, or set of values, as output.
An algorithm is thus a sequence of computational steps that
transform the input into the output.
Example: Sorting problem

Input: A sequence of n numbers (a1, a2, ..., an).
Output: A permutation (i.e., reordering) (a′

1, a
′
2, ..., a

′
n) of the input

sequence such that a′
1 ≤ a′

2 ≤ ... ≤ a′
n.

Such an input sequence is called an instance of the sorting
problem.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



4/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Correct Algorithms

An algorithm is said to be correct if, for every input instance, it
halts with the correct output. We also say that a correct algorithm
solves the given computational problem.
An algorithm can be specified in English, as a computer
program, or even as a hardware design. The only requirement is
that the specification must provide a precise description of the
computational procedure to be followed.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



5/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Data Structures

A data structure is a way to store and organize data in order to
facilitate access and modifications.
No single data structure works well for all purposes, and so it is
important to know the strengths and limitations of several of
them.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



6/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Data Structures: Examples

Array 2D-Array List

Stack TreeQueue Graph

ND-Array

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



7/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Pseudocode Convention (1)

We typically describe algorithms as programs written in a
pseudocode that is similar in many respects to C, C++ or Java.
In pseudocde, we employ whatever method is most clear and
concise to specify a given algorithm.
The symbols /* ... */ indicate that the statement is a comment.
The symbols // also indicate that the statement located on the
right side of them is a commnet.
Indentation indicates block structure.
The symbol← or = indicates variable assignment.
Parameters are passed to a procedure by value.
The Boolean operators are short-circuiting.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



8/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Pseudocode Convention (2)

A[i] indicates the i-th element of an array A.
A.length indicates the length of the array A.
A[1, ... , j] indicates a contiguous subsequence of A including
A[1], A[2], ... A[j]
We use both 0-origin and 1-origin depending on the situation.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



9/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort

Consider the previous sorting problem.
Input: A sequence of n numbers (a1, a2, ..., an).
Output: A permutation (i.e., reordering) (a′

1, a
′
2, ..., a

′
n) of the input

sequence such that a′
1 ≤ a′

2 ≤ ... ≤ a′
n.

Let us consider the Insertion Sort algorithm.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



10/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (into nondecreasing order)
0 1 32 4 5

0 1 32 4 5

0 1 32 4 5

0 1 32 4 5

0 1 32 4 5

0 1 32 4 5

0 1 32 4 5

8 3 51 2 1

8

3

51 2 1

5

1

2 1

1 3

5

8 2 1

2

1

1 2

1

1 1 32 5 8

3 8

3 85

53 8

0.

1.

2.

3.

4.

5.

6.

13

1

5

2

1

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



11/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (0)

0 1 32 4 5

8 3 51 2 1

0.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



12/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (1)

0 1 32 4 5

8

3

51 2 1

1.

3

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



13/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (2)

0 1 32 4 5

5

1

2 13 8

2.

1

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



14/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (3)

0 1 32 4 5

1 3

5

8 2 1

3.

5

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



15/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (4)

0 1 32 4 5

2

13 85

4.

1 2

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



16/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (5)

0 1 32 4 5

1 2

1

53 8

5.

1

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



17/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Insertion Sort (6)

0 1 32 4 5

1 1 32 5 8

6.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



18/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Implementation

Pseudocode Insertion Sort (Note that array indices are based on
0-origin, and the number of elements is n = A.length)

01. for j ← 1 to n-1

02. key ← A[j]

03. // insert A[j] into the sorted sequence A[0,...,j-1]

04. i ← j - 1

05. while i ≥ 0 and A[i] > key

06. A[i+1] ← A[i]

07. i ← i-1

08. A[i+1] ← key

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



19/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Analyzing Algorithms

Analyzing an algorithm has come to mean predicting the
resources that the algorithm requires.
Occasionally, resources such as memory, communication
bandwidth, or computer hardware are of primary concern, but
most often it is computational time that we want to measure.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



20/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Input Size and Running Time

The best notion for input size depends on the problem being
studied.
For many problems, the most natural measure is the number of
items in the input. For many other problems, the best measure is
the total number of bits needed to represent the input in ordinary
binary notation.
The running time of an algorithm on a particular input is the
number of primitive operations or ”steps” executed.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



21/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Analysis of Insertion Sort

InsertionSort(A) cost times
01. for j ← 1 to n-1 c1 n
02. key ← A[j] c2 n − 1
03. // comment line c3 n − 1
04. i ← j - 1 c4 n − 1
05. while i ≥ 0 and A[i] > key c5

∑n−1
j=1 tj

06. A[i+1] ← A[i] c6
∑n−1

j=1 (tj − 1)
07. i ← i-1 c7

∑n−1
j=1 (tj − 1)

08. A[i+1] ← key c8 n − 1

Let tj be the number of times the while loop test in line 5 is executed
for the value of j .

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



22/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Calculation of Running Time

The running time of the algorithm is the sum of running times for
each statement executed.
We sum the product of the ”cost” and ”times” columns.
Let T (n) be the running time of InsertionSort(A) on an input
sequence of size n.

T (n) = c1n + c2(n − 1) + c4(n − 1)

+ c5

n−1∑
j=1

(tj) + c6

n−1∑
j=1

(tj − 1) + c7

n−1∑
j=1

(tj − 1) + c8(n − 1)

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



23/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Calculation (Best Case)

The best case occurs if the array is already sorted.
For each j = 1, 2, ..., n − 1, we then find that A[i] ≤ key in line 5
when i has its initial value of j − 1.
Thus, tj = 1 for j = 1, 2, ..., n − 1.

The best-case running time is given as follows:

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1)
= (c1 + c2 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8)

it is thus a linear function of n.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



24/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Calculation (Worst Case)

The worst case occurs if the array is in reverse sorted order.
We must compare each element A[j] with each element in the
entire sorted subarray A[0..j-1].
Thus, tj = j for j = 1, 2, ..., n − 1.

The worst-case running time is given as follows:

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5(
n(n + 1)

2
− 1)

+ c6(
n(n − 1)

2
) + c7(

n(n − 1)
2

) + c8(n − 1)

= (
c5

2
+

c6

2
+

c7

2
)n2 + (c1 + c2 + c4 +

c5

2
− c6

2

− c7

2
+ c8)n − (c2 + c4 + c5 + c8)

it is thus a quadratic function of n.
Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



25/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Worst-Case and Average-Case Analysis

We usually concentrate on finding only the worst-case running
time, that is, the longest running time for any input of size n.
In some particular cases, we shall be interested in the
average-case (or expected) running time of an algorithm.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



26/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Worst-Case Analysis

Three reasons for using the worst case:
The worst-case running time of an algorithm is an upper bound
on the running time for any input. Knowing it gives us a
guarantee that the algorithm will never take any longer.
For some algorithms, the worst case occurs fairly often. For
example, in searching a database for a particular piece of
information, the searching algorithm’s worst case will often occur
when the information is not present in the database.
The average case is often roughly as bad as the worst case.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures



27/27

Introduction Algorithms Data Structures Insertion Sort Analysis of the Algorithm

Reference

1 Introduction to Algorithms (third edition), Thomas H.Cormen,
Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The
MIT Press, 2012.

Y. Watanobe, J. Huang, Y. Pei, W. Chen, S. Semba, Y. Zhou, D. Saxena, A. Siriweera University of Aizu

Algorithms and Data Structures


