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1. Japan recorded 2.61 thousand fatalities in 2022 Table 1: Traffic incidents in Fukushima 2022 and 2023

2. 381 billion hours are lost annually in Japan. Total Incidents il s Total | Total Property
(Including Elderly) injuries

3. 12 trillion yen lost annually. Incldents

This Year 1,678 1 30 T 33 (17) 1,945 T 27,574 T
4. Improving traffic safety is crucial to achieve SDGs.

Last Year 1,559 ‘ 25 | s || an 1,790 | 27393 |
5.Thus, it isimportant fo discover fraffic congestion ER e 118 s : | © = -
patterns in large-scale transportation networks.

K Change of rate 7.6% 20,0 32.0% | (0.0%) 8.9% 0.7%
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1. How to model traffic congestion data?

Challenge

2. What should be the mathematical model to define traffic congestion patterns?

3. What s the algorithm to find all traffic congestion patterns?
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Our model and Algorithm
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