Poster ID: 18

Shota Suzuki, 4th Undergraduate Student ARC-iTransportation Cluster, The University of Aizu

Poster Session at Graduate School Information Fair Discovering Traffic Congestion Patterns in Big Transportation Networks

Importance

1. Japan recorded 2.61 thousand fatalities in 2022

- 2.381 billion hours are lost annually in Japan.
- 3. 12 trillion yen lost annually.
- 4. Improving traffic safety is crucial to achieve SDGs.

5. Thus, it is important to discover traffic congestion patterns in large-scale transportation networks.

Table 1: Traffic incidents in Fukushima 2022 and 2023

	Total Incidents	Total Deaths (Including Elderly)			Total injuries	Total Property incidents
This Year	1,678	30	33	(17)	1,949	27,574
Last Year	1,559	25	25	(17)	1,790	27,393
Change of Quantity	119	5	8	(0)	159	181
Change of rate	7.6%	20.0	32.0%	(0.0%)	8.9%	0.7%

Challenge

- 1. How to model traffic congestion data?
- What should be the mathematical model to define traffic congestion patterns?
- 3. What is the algorithm to find all traffic congestion patterns?

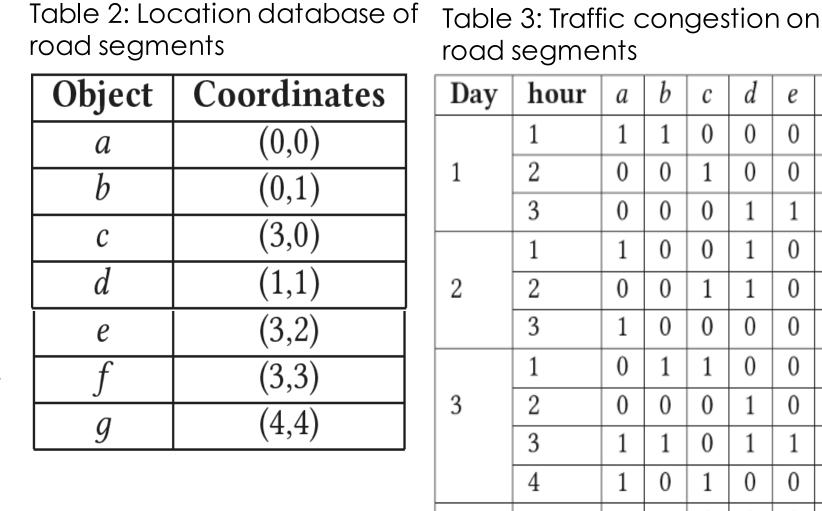
 $O = \{O_1, O_2, \dots, O_n\}$ be the set of objects

 $LD = \bigcup_{o_i \in o} (o_j, coordinateso_j)$

An Itemset, $G_i \subseteq O$

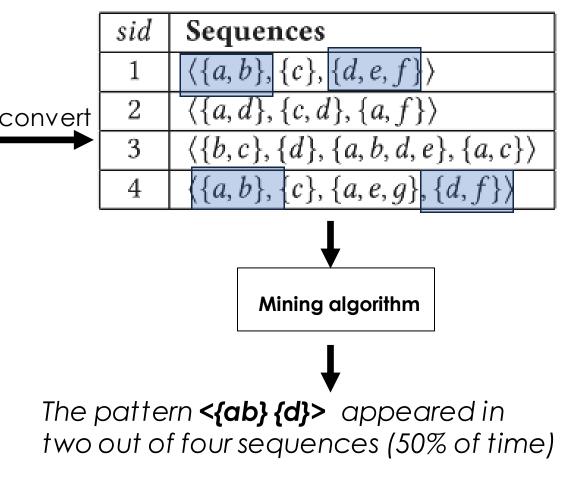
A sequence, $S_i = \bigcup_{i=1}^p G_i$

A sequence database, $SD = \bigcup_{sid=1}^{k} (sid, Sj)$


Neighborhood itemset, $NG_i \subseteq O$ $\forall O_i, Oj \in NGi, dist(Oi, Oj) \leq maxDist$

Neighborhood sequence, $NS_i = \bigcup_{i=1}^p NG_i$

If frequency of NS_i is greater than minimum support (minSup), we call it traffic congestion pattern


A depth-first search algorithm, GFSP, has been proposed

Our model and Algorithm

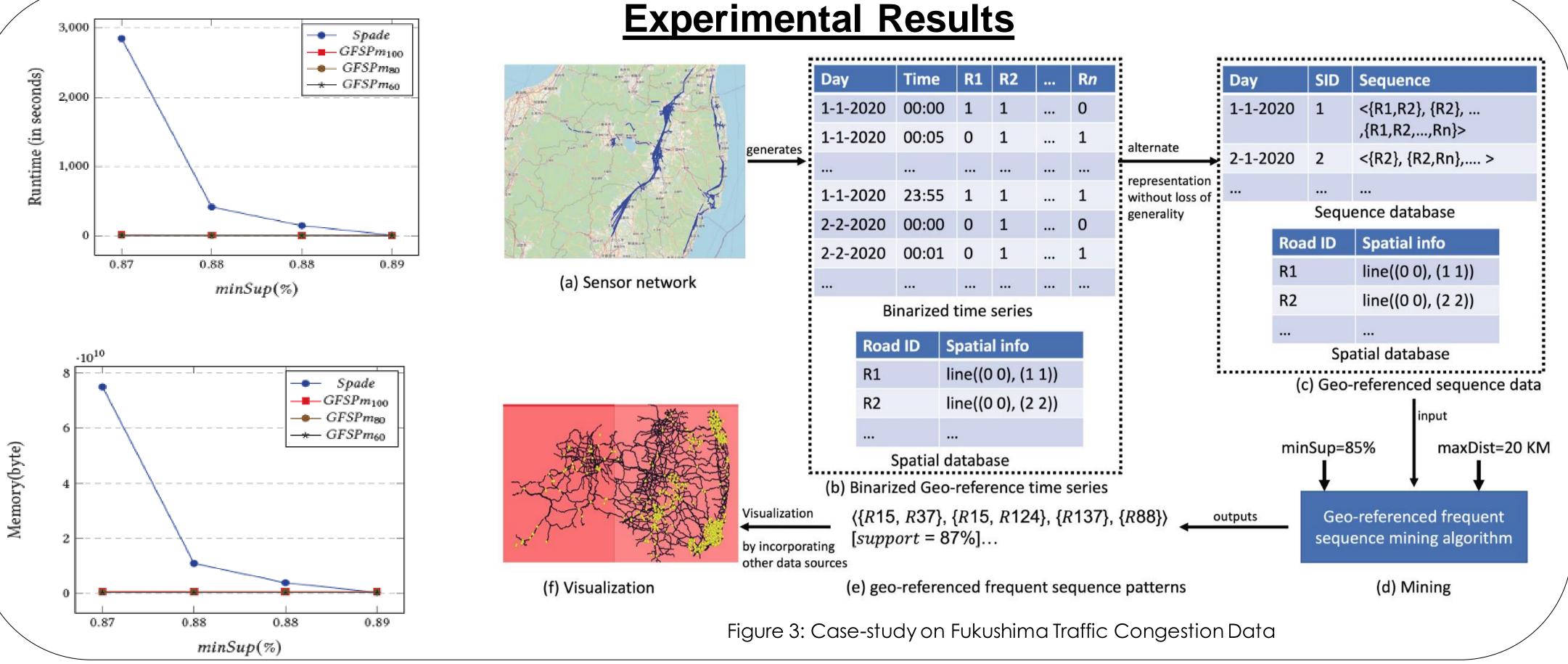

	segme	nis							
ay	hour	а	b	с	d	е	f	g	
	1	1	1	0	0	0	0	0	
	2	0	0	1	0	0	0	0	С
	3	0	0	0	1	1	1	0	
	1	1	0	0	1	0	0	0	
	2	0	0	1	1	0	0	0	
	3	1	0	0	0	0	1	0	
	1	0	1	1	0	0	0	0	
	2	0	0	0	1	0	0	0	
	3	1	1	0	1	1	0	0	
	4	1	0	1	0	0	0	0	
	1	1	1	0	0	0	0	0	
	2	0	0	1	0	0	0	0	
	3	1	0	0	0	1	0	1	
	4	0	0	0	1	0	1	0	

Table 4: sequence database

Meaning of above pattern:

- 1. Congestion was first observed on the roads a and b.
- 2. Later, congestion was observed on road d.

and and and a for and	Day	Time	R1	R2		Rn		Day	SID
	1-1-2020	00:00	1	1		0		1-1-2020	1
the second the second	1-1-2020	00:05	0	1		1	alternate		
	erates						\mapsto	2-1-2020	2
La Alian La	1-1-2020	23:55	1	1	1992	1	representation without loss of		

Day SID		Sequence			
1-1-2020	1	<{R1,R2}, {R2}, ,{R1,R2,,Rn}>			
2-1-2020	2	<{R2}, {R2,Rn}, >			
•••					

Publication:

Suzuki Shota and Rage Uday Kiran: Towards Efficient Discovery of Spatially Interesting Patterns in Geo-referenced Sequential Databases. To be appeared in SSDBM 2023 (CORE RANK: A)