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Importance Challenges

N

Predicting traffic congestion iIs crucial to achieve the following: . . .
J J J 1. How to store big congestion data effectively?
1. Sustainable Developmental Goals L . . .
P 2. Which is the best model to predict traffic congestion?
2. Autonomous driving 1. Several models exist to predict traffic congestion
3. Saving lives 2. Each model has its own selection bias
4. Smart Cities and 3. Selecting a right prediction model is an open-research problem.

5 Di ¢ ¢ 4. Ourresearch aims to address this open-research problem by evaluating
K ISaster managemen / \ various existing prediction models /
Addressing Challenge-1: Efficiently Storing the Big Congestion Data
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Figure 1. Proposed novel data warehouse schema to store traffic congestion data. Our schema allows us to create train-test

datasets 10 times faster than the state-of-the-art.

Addressing Challenge-2: Predicting Traffic Congestion
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