
Poster Session at Graduate School Information Fair
DGC: Training Dynamic Graphs with Spatio-Temporal 
Non-Uniformity using Graph Partitioning by Chunks

Poster ID: 08 Fahao Chen, 2nd Year Ph. D Student
Computer Organization Lab., The University of Aizu

Background and Motivation

Figure 1: Dynamic graph neural network.

DGC: A Distributed System for Efficient DGNN Training

Evaluation

Conclusion Reference

A dynamic graph neural network (DGNN) is composed of multiple blocks, where
each block consists of a structure encoder and a time encoder, as illustrated in
Figure 1. The structure encoder extracts hidden information for each vertex by
aggregating information from its structural neighbors. Meanwhile, the time
encoder accumulates information for each vertex from its temporal neighbors.

(a) Average epoch time. (b) GPU workload divergence.

Figure 2: Performance of dynamic graph partitioning methods on different datasets

(1) Partitioning by Spatial Snapshots (PSS): it treats a snapshot as the partition unit and always keeps spatial
dependencies within the same GPU. (2) Partitioning by Temporal Sequences (PTS) [1]: A temporal sequence
records the states of the same vertex in different time. This approach eliminates communication overhead for vertices
when aggregating their temporal neighborhoods. However, high communication overhead may arise when vertices
aggregate their spatial neighborhoods, as spatial dependencies are broken down across GPUs. (3) Partitioning by
Snapshots and Sequences (PSS-TS) [2]: a joint method adopts PSS for the structure encoder while transitioning to
PTS for the time encoder.

Figure 3: System Overview
The design goals of DGC:
High training efficiency. Due to massive data dependencies (including spatial and
temporal dependencies) among vertices in dynamic graphs, distributed DGNN training
suffers from high communication cost that would be the performance bottleneck. DGC
needs to reduce communication cost to accelerate training process.
High GPU utilization. Multiple GPUs are used to train DGNNs for handling large dynamic
graphs. GPU utilization is a crucial metric for efficient resource management. DGC should
ensure high GPU utilization during DGNN training.
Consistent training convergence. While introducing various optimizations to accelerate
DGNN training, DGC needs to ensure that these designs do not compromise training
convergence, preserving the quality of the final model.

Partition by Graph Chunks (PGC): As shown in Figure 3, each graph chunk may contain vertices and
edge belonging to different snapshots and temporal sequences. We design a graph chunk generation
algorithm based on the graph coarsening technique with a full consideration of spatio-temporal non-
uniformity, so that each graph chunk has modest training workload and few edge connections to other
chunks. By a simple heuristic to assign these chunks to GPUs, DGC can achieve better workload balance
and reduced communication cost, to significantly improve DGNN training efficiency.
Chunk Fusion (CF): The fuse spatial and temporal chunks into larger ones before loading, while
considering the GPU memory constraint, to reduce redundant data loading and improve GPU utilization.
Adaptive stale embedding aggregation (SG): Motivated by the observation that vertices may generate
similar embeddings in different training epochs (Figure 5). DGC allows GPUs to reuse stale embeddings
from previous epochs if they are sufficiently similar, to reduce data traffic between GPUs.

Figure 4: An illustration of spatial fusion.

Figure 5: CDF of L2 distances between embeddings.

Figure 12 shows the overall speedup over PyGT when using different models. DGC outperforms all baselines by 1.25× - 7.52× (on average 3.95×, 3.97×, and 3.77× for T-GCN, DySAT, and MPNN-
LSTM, respectively). Different baselines exhibit varying performance on these datasets. DGC with only PGC module, denoted by the bar of “DGC w/o CF&SG”, can still accelerate the training process
by 1.03× to 4.92×, compared to other methods. When chunk fusion (CF) is enabled, the epoch time can be further reduced by 1.39×. (For more experiments, please refer to out paper [3].)

Figure 6: Epch time of different methods.

We introduces DGC, a distributed training framework designed to optimize DGNN training efficiency.
By incorporating a novel dynamic graph partitioning method (PGC) and run-time optimizations, DGC
effectively tackles the challenges of high communication costs and low GPU utilization in distributed
DGNN training. Experimental results demonstrate that DGC achieves a 1.25×-7.52× speedup
compared to state-of-the-art DGNN training frameworks.

[1] Guan, Mingyu, Anand Padmanabha Iyer, and Taesoo Kim. "DynaGraph: dynamic graph neural
networks at scale." Proceedings of SIGMOD Joint International Workshop on GRADES and and
NDA. 2022.
[2] Chakaravarthy, Venkatesan T., Shivmaran S. Pandian, Saurabh Raje, Yogish Sabharwal,
Toyotaro Suzumura, and Shashanka Ubaru. "Efficient scaling of dynamic graph neural networks."
In Proceedings of SC, pp. 1-15. 2021.
[3] Chen, Fahao, Peng Li, and Celimuge Wu. "DGC: Training Dynamic Graphs with Spatio-
Temporal Non-Uniformity using Graph Partitioning by Chunks.” Proceedings of SIGMOD. 2024


