Poster ID:01

Reo Kurosawa, Shuya Tsuta, Rentaro Mashiko,1st Year Master Student, Supervised by Prof.Nobuyoshi Asai, The University of Aizu

Poster Session at Graduate School Information Fair Research and Development toward Practical Quantum Computing

General Background

Introduction

- The process rule for transistors used in classical computers is about to reach 1 nm(10 atoms size).
- The 1nm process rule reaches the quantum world, and the process rule will eventually reach its physical size limits.

New computational technologies are needed...

Quantum Computers as a New Computational Technology

Current Quantum Computer

- The quantum computer used in the demonstration experiment is called NISQ.
- This NISQ contains errors due to noise and produces calculation results containing errors.
- A fault-tolerant quantum computer with quantum error correction will be developed in the future.

Fig.1: Development Phase and Features of QCs

Research Targets

Fig.3: Benefits by Practical QCs

• The goal is to mitigate noises and reduce errors in NISQ(This research field is called *quantum error mitigation* (QEM) [4]).

Expected Results

- This research helps promote the development of Early-FTQC.
- QEC and QEM can coexist.
- Better results for quantum algorithms.

<u>Methodology</u>

Post-processing of calculation results by statistical processing using classical computer.

Reference

- increase the computational cost and take time to compile...
- The goal is to devise more efficient mapping methods.

Expected Results

- The Qiskit map and my development have similar performance.
- The time cost of compiling quantum circuit is reduced.

Methodology

- In terms of the topology of the physical quantum processor, a more efficient mapping method is considered and simulated using Qiskit.
- Fig.10: Mapping from logical quantum processor to physical quantum processor[5]. We need to map these virtual qubits in a one-to-one correspondence to the "physical" qubits in an actual quantum device.

[1] Gambetta, Jay M., Jerry M. Chow, and Matthias Steffen. "Building logical qubits in a superconducting quantum computing system." *npj quantum information* 3.1 (2017): 2.
[2] Grover, Lov K. "A fast quantum mechanical algorithm for database search." *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*. 1996.
[3] Qiskit, https://qiskit.org/ [last accessed 16 September 2023]
[4] Qiskit, https://qiskit.org/ecosystem/ibm-runtime/locale/ja_JP/tutorials/Error-Suppression-and-Error-Mitigation.html [last accessed 16 September 2023]
[5] Qiskit, https://qiskit.org/documentation/apidoc/transpiler.html [last accessed 16 September 2023]