A Learning-based Incentive Mechanism for
Federated Learning

Yufeng Zhan, Peng Li, Member, IEEE, Zhihao Qu, Member, IEEE, Deze Zeng, Member, IEEE,
and Song Guo, Fellow, IEEE

Abstract—Internet of Things (IoT) generates large amounts
of data at the network edge. Machine learning models are
often built on these data, to enable the detection, classification,
and prediction of future events. Due to network bandwidth,
storage, and especially privacy concerns, it is often impossible
to send all the IoT data to the data center for centralized model
training. To address these issues, federated learning has been
proposed to let nodes use local data to train models, which
are then aggregated to synthesize a global model. Most of the
existing work has focused on designing learning algorithms with
provable convergence time, but other issues such as incentive
mechanism are unexplored. Although incentive mechanisms have
been extensively studied in network and computation resource
allocation, yet they can not be applied to federated learning
directly due to the unique challenges of information un-sharing
and difficulties of contribution evaluation. In this paper, we
study the incentive mechanism for federated learning to motivate
edge nodes to contribute model training. Specifically, a deep
reinforcement learning-based (DRL) incentive mechanism has
been designed to determine the optimal pricing strategy for the
parameter server and the optimal training strategies for edge
nodes. Finally, numerical experiments have been implemented
to evaluate the efficiency of the proposed DRL-based incentive
mechanism.

Index Terms—Federated learning, incentive mechanism, deep
reinforcement learning (DRL)

I. INTRODUCTION

Deep learning has demonstrated great potentials to revo-
lutionize the Internet-of-Things (IoT) by improving the effi-
ciency of deployment and management of IoT, enhancing IoT
security and privacy protection, and enabling various smart
applications [1]-[3]. The success of deep learning for IoT
stems from the availability of big training data and massive
computation power. However, in many applications, training
data are generated by distributed devices or equipments owned
by individuals or different organizations, who hesitate to share
their data that expose privacy. Moreover, it becomes difficult to
aggregate these data to a single computing site for centralized
training due to the increasing data size.

Federated learning has been proposed to enable distributed
computing nodes to collaboratively train models without ex-

Y. Zhan, and S. Guo are with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong. E-mail: zhanyf1989 @ gmail.com,
song.guo@polyu.edu.hk.

P. Li is with the School of Computer Science and Engineering, The Univer-
sity of Aizu, Japan. E-mail: pengli@u-aizu.ac.jp. P. Li is the corresponding
author.

Z. Qu is with Hohai University and the Department of Computing, The
Hong Kong Polytechnic University. E-mail: quzhihao@hhu.edu.cn.

D. Zeng is with the School of Computer Science, China University of
Geoscience, China. E-mail: deze@cug.edu.cn.

posing their own data. Its basic idea is to let these computing
nodes train local models using their own data, respectively, and
then upload the local models, instead of data, to a logically
centralized parameter server that synthesizes a global model.
Since an inception by Google [4], federated learning has
attracted great attentions from both academia and industry.

Although federated learning has shown great advantages in
enabling collaborative learning while protecting data privacy,
it still faces an open challenge of incentivizing people to join
the federated learning by contributing their computation power
and data. An intuitive idea is to reward participants according
to their contributions, following the existing incentive mecha-
nism designs for many other scenarios [5]-[11]. Unfortunately,
there are two main difficulties that make traditional incentive
mechanisms unfit in federated learning. First, computing nodes
do not share their decisions due to privacy concerns. Without
the information of other nodes, it would be impossible for
a participant to derive an optimal decision with close-form
expression. Second, it is difficult to evaluate the contribution
of participants to the accuracy of trained models. Evidences
have shown that the relationship between model accuracy
and the amount of training data is nonlinear [12], [13]. The
model accuracy depends on the model complexity and data
quality, and can hardly be predicted in advance. Without
accurate evaluation of contributions, incentive mechanisms
cannot correctively reward participants, leading to financial
loss or low participation rate.

Another challenge, in parallel with incentive mechanism de-
sign, imposed by many intelligent IoT applications is to update
models using fresh data, so that they can provide services
with high accuracy to adopt to the new environment [14].
For example, the weather-related predication services [15],
[16] always prefer the latest temperature and humidity data.
Therefore, the model for weather prediction needs to be re-
trained periodically using recently collected data from sensors.
This requirement has been advocated by a recently proposed
concept called the Age of Information (Aol) [17], which is
a new metric to quantify the freshness of collected data in
IoT. Although there exist some preliminaries studies [18], [19],
they cannot be combined with incentive mechanism design for
federated learning.

In this paper, we propose a novel incentive mechanism
design that integrates model updating using fresh data for
federated learning in IoT applications. A parameter server,
usually residing at the cloud, publishes a federated learning
task with rewards. A number of edge computing nodes, each
of which is in charge of some IoT devices, participate the

federated learning by training local models using collected
data from devices. The parameter server aims to minimize the
total reward, while each edge node has its own interests of
maximizing the revenue that is defined by the received reward
from the parameter server minus its cost of data collection and
model training. We formulate the problem as a Stackelberg
game and derive the Nash Equilibrium that describes the
steady state of the whole federated learning system, given the
full knowledge of participants’ contributions.

To address the challenges of unshared decisions and am-
biguous contribution evaluation, we design an algorithm based
on deep reinforcement learning (DRL), which can learn system
states from historical training records. DRL approach has been
widely used in mobile networks [20]-[24]. Furthermore, it can
adjust the strategies of the parameter server and edge nodes,
according to environmental changes that may impose different
requirements on training data. The main contributions of this
paper are summarized as follows.

o We study and formulate a Stackelberg game for federated
learning in IoT by integrating an incentive mechanism
and model updating requirements.

o We derive the Nash Equilibrium for the cases that par-
ticipants share their decisions (e.g., the amount of data
used for model training) and the parameter server can
accurately evaluate their contributions to the training
accuracy.

e We design an algorithm using DRL, so that the pa-
rameter server and edge nodes can dynamically adjust
their strategies to optimize their interests, even without
the knowledge of participants’ decisions and accurate
contribution evaluation.

« Extensive simulations are conducted to evaluate the per-
formance of our proposals. The results show that the
proposed learning-based approach matches the theoretical
analysis.

The rest of this paper is organized as follows. Some impor-
tant literature related to our work is reviewed in Section II.
Section III presents the problem description. Section IV gives
the incentive mechanism for scenarios of complete information
sharing. Section V provides the DRL-based incentive mech-
anism of scenarios without knowing any prior information.
Finally, Section VI evaluates the system performance by
numerical experiments and Section VII concludes the paper.

II. RELATED WORKS
A. Federated Learning

As a natural extension of distributed learning, federated
learning moves the training computation from centralized data
centers to devices or computing sites at network edge, so that
data can be kept at local storage to avoid the risks of privacy
leakage. This concept of federated learning is initialized by
Google [4] and later has attracted great research attentions
[25]-[28]. Since training computation is distributed among
devices connected with Internet, communication becomes the
main bottleneck. McMahan et al. [25] have presented a practi-
cal model for the federated learning based on model averaging
and conducted an extensive empirical evaluation. Tran et

al. [26] have studied the federated learning over wireless
networks by formulating an optimization problem that capture
tradeoff between communication and computation cost. Zhan
et al. [29] have proposed an experience-driven computation
resource allocation scheme to improve the energy efficiency of
federated learning by lowing CPU-cycle frequency of mobile
devices who are faster in the training group.

B. Incentive Mechanism Design

Incentive mechanisms based on game or auction theories
have been extensively studied in network and computation
resource allocation. Xu et al. [30] have studied truthful in-
centive mechanism for scenarios where mobile crowdsensing
tasks are time dependent. Li et al. [31] have summarized
incentive mechanism for both open and sealed markets for
device-to-device communications. An incentive mechanism for
the temperature setting in shared spaces in smart buildings
has been studied by [32]. Liu et al. [33] have proposed an
auction-based incentive mechanism to motivate spare vehicle
nodes to participate data caching in vehicle networks. In [34],
Zhan et al. have proposed the incentive mechanism based on
bargaining approach for crowdsensing. However, none of the
above work can be applied to solve our problem due to the
special challenges of unshared decisions and difficulties of
contribution evaluation in federated learning.

III. PROBLEM DESCRIPTION

In this section, we briefly introduce the basics of federated
learning followed by the system model and problem formula-
tion.

A. Edge-based Federated Learning

Edge-based federated learning is a promising distributed
privacy-preserving machine learning technique that enables
edge nodes to collaboratively train a shared global model
without the need of uploading private local data to a central
server. Assume that there are N edge nodes with local datasets
{X1, Xy, ..., Xn}. We define x, 2 | X.|, where | - | denotes
the size of the dataset. As shown in Fig. 1, each edge
node downloads a shared global model ¥ from the parameter
server and trains the model using its local data. Then, edge
nodes upload the new weights or gradients (i.e., local model
update) to the parameter server that updates the global model.

Therefore, the total size of data samples from N edge nodes
N

is > x, = X. The loss function of the edge node n with
n=1
dataset X, is)
A
F0) 2 3 f0).
JEXn
where f; () is the loss function on the data sample j. The goal
is to optimize the global loss function F'(¢}) by minimizing the

weighted average of every edge node n’s local loss function
F,(9) on its local training samples [35], i.e.,

N
A ZjeUn x, 13(9) B nZ::1 T b (D)
o= Uy, Aol B X ’

Py . :
aggregation
oo (4, ¥
T| |T =
[]] m O O (]
9, 9 9,9 Sl Sy
AE S AE S - pE S

Fig. 1: Training Process of federated learning.

and

¥ = arg min F(9). (1)

Due to the inherent complexity of many machine learning
models, it is hard to find a close-form solution to Eq. (1).
Therefore, it is often solved through gradient-descent tech-
niques [25].

B. System Model

We consider one parameter server resides in the cloud, who
wants to motivate a set N’ = {1,2,---, N} of edge nodes to
participate in the model training. These edge nodes connect
to the cloud via the Internet backbone. In order to participate
in the model training, each edge node collects data from the
IoT devices and then trains a model shared with other edge
nodes. In this paper, we model systems in a quasi-static state,
which means no edge node joins or leaves.

The parameter server generates only one training task in
each period by announcing a total payment 7 > 0, while
each edge node decides its level of participation based on
the parameter server’s payment. Without loss of general-
ity, each edge node n € N maintains a dataset X, and
XN X = 0,Vm € Nym # n. If X, = (), edge node n
does not participate in the model training. The training cost
of edge node n includes two parts, computational cost and
communication cost, which are proportional to the amount
of data used for training. We let ¢ and ¢’ denote
unit computational cost and communication cost, respectively.
Assume that all the training data in each edge node has the
same quality and is independently and identically distributed,
then the reward received by edge node n is proportional to
x,,. Therefore, the utility of edge node n is defined by

Ln com cm
Un(xfum—n) =N T—C, Tpn—C, pxna 2)
> Tm
m=1
where ©_,, = (z1,22, ", Tp—1,Tnt1, ", TN) is the train-

ing strategies of others except edge node n. The training
data contributed by each edge node can help the parameter
server train a better model. In this case, the computational
cost of edge node n is c™Pz,, and the communication cost
is ¢€°™x,,. We use u(7) to denote the utility of the parameter
server, which indicates the gain of model accuracy minus the
the total rewards paid to edge nodes. We conduct experiments
to measure the model accuracy under different amount of
training data and show the results in From Fig. 2. We observe

100

¢ data
—fitted curve

951

90 ¢

85+

Test Accuracy (%)

80

75

0 1 2 3 4 5 6
Number of Samples x10%

Fig. 2: Test accuracy with varying the number of training
samples on MNIST dataset.

that the test accuracy of training model can be regarded as a
concave function with respect to the amount of training data.
Therefore, the utility of the parameter server is defined as

u(r) = Ag(X) -, 3)

where A > 0 is a system parameter and g(X) is a concave
function with respect to the amount of training data.

C. Problem Formulation

We formulate the incentive mechanism for federated learn-
ing as a Stackelberg game [36] in each training period. There
are two stages in this mechanism. In the first stage, the
parameter server announces a total reward of 7, followed
by the second stage that each user determines its training
strategy to maximize its own utility. Therefore, the parameter
server is the leader and the edge nodes are the followers in
this Stackelberg game. Game theory is a powerful framework
to analyze the interactions among multiple players who act
in their own interests, such that no player has the incentive
to deviate unilaterally. Moreover, by using the intelligence
of each player, game theory is a useful tool for designing
decentralized mechanisms with low complexity, such that the
players can self-organize into a mutually satisfactory solution.
The strategy of the parameter server is the reward 7 and that of
edge node n is the amount of contributed training data, which
is denoted by x,,. Note that the second stage of the game can
be considered as a non-cooperative game. For any reward 7
given by parameter server and other nodes’ decisions x_,,
edge node n would like to determine a optimal decision x,
to maximize its utility in terms of obtained reward and cost,
ie., max Un (Tp, T_p)-

Definition 1. Nash Equilibrium. A set of strategies x* =
(x],25,---,2y) is a Nash equilibrium [36] of the second
stage game if for any edge node n,

Up (T, ®2,,) > Un(Tn, T,),
for any x, > 0.

The existence of the Nash equilibrium is important, since its
strategy profile is stable (no player has an incentive to make

a unilateral change) whereas a non-Nash equilibrium strategy
profile is unstable.

IV. INCENTIVE MECHANISM WITH FULL INFORMATION

In this section, we first prove that for any given 7, the
second-stage game has a unique Nash equilibrium. For the
parameter server in the first stage, it needs to select a value
of 7 to maximize its utility in Eqn. (3), i.e., maxu(7). In
Section IV-B, we prove that the game has a unique 7-Stackelberg
equilibrium.

A. Edge node Participation

To study the Nash equilibrium of the second stage game in
federated learning game, we derive the first order derivative
of u,(x,, x_,) with respect to x,, as

Otn(Tn, T—p) _ —Tn o (4)
oz, N 5 N
(Z_l l‘m) 2—1 Tm

Based on the first-order derivative of wu,,, we can derive the
second-order derivative of w,,(x,, _,) with respect to x,, as

0°? e , T 2% m
ULéZn 2m n) __ TNm;énx L. (5)
" (-Tm)g
m=1

Lemma 1. If the following conditions are satisfied, there exists
a Nash equilibrium in the game [36].

o The player set is finite.

o The strategy sets are closed, bounded, and convex.

o The utility functions are continuous and quasi-concave in
the strategy space.

Based on Eqn. (2), we know that x,, < m because
u, must be positive. Therefore, from Lemma 1, we can derive
that there exists a Nash equilibrium in the second stage game.

Setting % =0, we have

];T:'L'n + T _ C(»;;,()m _ c;:zmp =0. (6)
(5 o)

Solving z,, in Eqn. (6), we obtain

T Zm;ﬁn Tm

LTy = Ccom + Ccmp

=D e)
If the right hand side of Eqn. (7) is positive, it is also the
best response strategy of edge node n, due to the concavity of
uy,. Otherwise, edge node n does not participate in the edge-
based federated learning. Furthermore, if the right hand side
of Eqn. (7) is more than d,, then edge node n participates
with its best response by setting z,, = d,,. Therefore, we have

0,if 7 < (™ + ") X sn T
™D P 0,d); ®

xn = D
ceo™+cy,

- Zm;ﬁn Tm, T €
dyn, otherwise.

Theorem 1. For any m € M C N participating the game
(i.e., T, € (0,dy)), its optimal strategy is
. M—-1)r M —1)(cSom + P

cmp
EnEM(c;”erc,imp) Ynem (Cﬁom +Cn)

Proof. According to Eqn. (8), for any m € M, we have

M
*
E T,

T2 oner\{m} Tn

ceom csmP (10)
n=1 m m
M
By setting £ = > a7, we can derive that
n=1
"1‘ _ g fZ(Ctl;omJ’_C;m,p)
» €2(c5"meg™?)
I v , (11)
Ty =& — 72 A" o)
Therefore,
M
Z (com + Ccmp)
=M — —"—— (12)
Based on Eqn. (12), we have
M—-1
g= Mo (13)

M=

(e + ")

n=1

By plugging Eqn. (13) into Eqn. (11), we can derive

* (M_].)T (M_]_)(Com+ccmp))
X = _ .
m Ene/\/((cg]’o”urcflmp) Zne./\/l (ccom + ccmp)

Since @, € (0,d,), we can derive that
(M—1)7 (M=1)(cEF™ f-cemP)
ZnEM(c;‘;oerCfme) (EnGM(CCOWL+CC"LP)) € (07 dn)
O

B. parameter Server Payment Determination

According to the above analysis, the parameter server, which
is the leader in the Stackelberg game, knows that there exists
a unique Nash equilibrium among edge nodes under any given
value of 7. Therefore, the parameter server can maximize its
utility by choosing the optimal 7. Substituting Eqn. (9) into
Eqgn. (3), we have

u(r) =g _ap) -7 (14)

Theorem 2. There exists a unique Stackelberg equilibrium
(t*,x*), where T* is the unique maximizer of the parameter
server utility in Eqn. (3) over T € [0, 0).

Proof. The first order derivative of u(7) is

ou(r) s o 0X
or Ag(X) or !
0xzy Oz} 0x;
= MGG)L

Hence, the second order derivative of u(7) is

0?u(r) Oz Oz} oz,

_ " et § 2 2
or? = A (X or + or T or)
, 0z 9%l 0z,
+)\g(X)((?TQJr@TQ Tt (‘37'2)
M
A7 (X) W=D -

D1 DmeM(esem e

(M = D)™ + ™) (1o
Dreml(cgn +))
Since g(X) is a concave function of X, then we can derive
that 021;(27) < 0. Therefore the utility of the parameter server
u(7) defined in Eqn. (3) is a strictly concave function of 7
for 7 € [0,00). Since the value of u(7) is 0 for 7 = 0 and
goes to —oo when 7 goes to oo, it has a unique maximizer 7*.
Therefore, there exists a unique Stackelberg equilibrium. [J

V. DRL-BASED INCENTIVE MECHANISM WITH
INCOMPLETE INFORMATION

In this section, we study the DRL-based incentive mecha-
nism design without any prior information. We first introduce
the basic learning mechanism of applying DRL into the
decentralized incentive mechanism design problem. We then
describe how we transform it into a learning task and design
a DRL approach to determine the optimal strategies for the
parameter server and edge nodes, respectively.

A. A Basic Learning Mechanism

Unlike existing approaches, DRL strives to learn a general
action decision from past experiences based on the current
state and the given reward. The workflow of DRL-based in-
centive mechanism is illustrated in Fig. 3, where the parameter
server acts as a leader who interacts with the environment
in the DRL setting. At each training period ¢, the parameter
server agent observes a state s; and determines an action
7¢. When this action is done, edge nodes interact with each
other to determine their optimal participation level strategies.
Since each edge node does not know any information about
the decisions of other edge nodes, they need to learn the
optimal strategy. We can use an offline mode to train the edge
nodes. All the edge nodes interact with each other in a non-
cooperative game simulation environment to learn the Nash
equilibrium. After each edge node learns the Nash equilibrium,
they update the model based on their local data and upload
the updated model to the parameter server. Utile now, the
t-th training period ends. Then the current state transits to
the next state s;;; and the parameter server agent receives a
reward 7. If the parameter server agent continues this process,
it gets accumulated rewards after every action until done. The
objective of DRL is to find an optimal policy = mapping
a state to an action that maximizes the expected discounted
accumulated reward.

B. Design Details

Our DRL-based incentive mechanism uses an actor-critic
DRL model based on the state-of-the-art policy gradient
method Proximal policy optimization (PPO) [37].

1) State space of the parameter server: We consider the
practical scenario where the parameter server needs to train
a machine learning model periodically. The parameter server
can only observe the past strategies of edge nodes. Hence,
the state space of the parameter server’s DRL formula-
tion consists of two components, including its past payment
strategy history {7_r,7—r+1, --,7k—1} and edge nodes’
past participation level history {@:—r,®t—r4+1, ", ®t—1}.
Integrating all these components together, the state in-
put of the parameter server can be represented as s; =
{thL» Lt—LyTt—L+1s Lt—L+15" "5 Tt—1, thfl}-

2) State space of the edge nodes: In each training period,
edge nodes should determine their optimal training strategies.
Since the edge nodes do not know any prior information
of the others, it is very hard for the them to determine the
optimal training strategies under the given payment. Hence,
we use a offline training mode where edge nodes learn
their optimal training strategies (i.e., Nash equilibrium) in a
simulated environment. As has formulated in Section III-B,
the training strategies of edge nodes are affected by all the
nodes’ private information and the parameter server’s payment
strategy. But for each edge node, it could observe the history
of other edge nodes’ training strategies and current parameter
server’s payment. Therefore, the state input of edge node n is

n tk—L _ tk—L+1 tk—1 ¢
St,k:{wfn b pn ol LT

3) Policy of the parameter server: When receiving a state
s¢, the parameter server agent needs to take an action 7y
to incentivize the edge nodes. The action space can be
represented as 7 € [0,400). Since the action space of
the parameter server agent is continuous, there are infinite
{state, action} pairs so that they can not be stored in a tabular
form and solve the problem by Q learning [38], [39]. To
address this issue, we use a neural network to represent the
policy mg. Then we can represent the parameter server’s policy
as 7(7¢|s¢, 0) — [0, 00).

4) Policies of edge nodes: In the simulated non-cooperative
game environment, each edge node needs to determine the
training strategy x3', when receiving a state s3',. Since the ac-
tion space of each edge node is also continuous, the neural net-
work is also used to represent the policy 7, (2} |8}y, On) —
[0,00). Edge nodes continuously learn until they reach the
Nash equilibrium under the current parameter server’s payment
strategy.

5) Reward of the parameter server: When applying an
action 7 to the state sy, the parameter server agent receives
a reward r; from the environment. Considering the model
formulation in Section III-B, we define the reward r; as
the utility function of the parameter server which satisfies
re = u(7).

6) Reward of edge nodes: In the t-th training period, at
the k-th game, each edge node determines a training strategy
xf .- As has formulated in Section III-B, the reward 7’2 x can
be defined as r}), = u"(asﬁk,a:;g,n).

C. DRL Training Methodology

We train the DRL-based incentive mechanism model based
on actor-critic model [40] since the actor-critic architecture

Reward

Parameter server agent

Federated learning environment

Reward

Edge node i agent

Policy network

State

Past payment

strategy history Payment strategy

Edge nodes’
past training
strategies
history

pE

Parameter server

Current task
publisher
strategy

Trajning strategy

Edge nodes’
past training
strategies
history

Observe next state from the environment

Observe next state from the environment

Fig. 3: The workflow of using DRL for incentive mechanism design in federated learning.

well matches our scenario and it also has shown successful
applications in many other applications [41]-[43]. For the
parameter server, it maintains a policy m(7¢|s¢, @) (the actor
network) and an estimation of the value function V(s:,w)
(the critic network), where @ is the policy parameter and
w is the parameter of the value function. Each edge node
also maintains a policy m,(z}|s}?,0,) and an estimate of
the value function V,(s},w,). In each training period, the
parameter server determines a policy 7¢. After all the edge
nodes receive the payment issued by the parameter server,
each edge node agent continues to take actions x after all edge
nodes determining their actions. The edge node agents update
both the policy and value functions based on the returns of
every D actions. As the training continues, each edge node
will learn the optimal training strategy under the payment
of 7. The parameter server agent continues to determine the
payment strategy after receiving the optimal training strategy
of edge nodes. It also updates both the policy and value
function based on the returns of every D training period. The
parameters of the deep neural networks are selected through
fine-tuning. Especially, the actor network has two hidden fully-
connected layers, each of which contains 200 nodes and 50
nodes, respectively. The critic network also has two hidden
fully-connected layers, each of which has 200 nodes and 50
nodes, respectively.

The policy gradient methods [44] are fundamental to recent
breakthroughs in using deep neural networks for updating the
DRL model. However, getting good results via policy gradient
methods is challenging because they are sensitive to the choice
of stepsize. If two small, the progress is hopelessly slow. But
too large, the signal is overwhelmed by the noise, or one
might see catastrophic drops in performance. They also often
have very poor sample efficiency, taking millions (or billions)
of timesteps to learn simple tasks [45]. Some works have
sought to eliminate these flaws of policy gradient method with
approaches like TRPO [46] and ACER [47], by constraining
or otherwise optimizing the size of a policy update. However,
they are too complicated to implement. PPO algorithm [37]
strikes a balance between ease of implementation, sample
complexity, and ease of tuning, trying to compute an update
at each step that minimizes the cost function while ensuring
the deviation from the previous policy is relative. Hence, in

this paper, the training process of the parameter server agent
and edge node agent employs the state-of-the-art policy opti-
mization approach PPO. Once the actor-critic network is well
trained, parameter server and edge nodes can determine their
own strategies based on the output of their actor networks,
respectively.

During the learning-based incentive mechanism execution,
given the observation information as input, the participants
utilize their own actor networks to generate actions, and
thus the computational complexity is merely based on a
fully-connected deep neural network. According to [48], the
time complexity of a fully-connected deep neural network is
determined by the number of multiplication operations, which

F

is O(> eyey_1), and € is the number of neural units in fully-
=1

connefcted layer f. In our design, we use two-fully hidden

layers in the actor networks. Meanwhile, since modern edge

nodes are becoming stronger and stronger, they can afford

the computational overhead incurred by such a kind of actor

networks.

VI. PERFORMANCE EVALUATION
A. Experiment Settings

In this section, extensive experiments are conducted to
evaluate the performance of the proposed incentive mechanism
in federated learning. We conduct our experiments using
Tensorflow 1.9 on Ubuntu 16.04 LTS. The parameters of
DRL agent are selected through fine-tuning. Specially, the
actor network has two hidden fully-connected layers, each of
which contains 200 nodes and 50 nodes, respectively. The
critic network also has two hidden fully-connected layers,
each of which has 200 nodes and 50 nodes, respectively. We
set D = 20 and L = 5 by default. In this paper, we use
g(X) =10%1In(1+ X) to denote the benefit of the parameter
server in the federated learning.

B. Experiment Results

We first study the convergence of the proposed DRL-based
incentive mechanism when there are two edge nodes. We set
i =" =1, ¢ = 0.5, &&°™ = 3 and A = 10. As

shown in Fig. 4(a), the parameter server’s pricing strategy

4
o

5
—DRL-based
[---- Stackelberg equilibrium

e ey e rvers DY |

— Edge node 1, DRL-based
— Edge node 2, DRL-based
---- Nash equilibrium

P

o
e
o

/

o
IS

o
©

w
o

Task publisher's strategy
IS
Edge nodes' training strategies
=
I S

3

e

] 50 100 150 200 0 50 100 150 200
Episode Episode

(a) Strategy of parameter server. (b) Strategies of edge nodes.

Fig. 4: Convergence of DRL-based incentive mechanism.

converges to the Stackelberg equilibrium. In Fig. 4(b) the
edge nodes’ training strategies also converge to the Nash
equilibrium. From Fig. 4, we can see that the incentive
mechanism designed in this paper can motivate the edge nodes
to participate in the federated learning. Also, the DRL-based
incentive mechanism can learn the optimal strategies for the
parameter server and edge nodes.

We then study the influence of training cost. Specifically,
we study the training cost by changing edge node 1’s unit
communication cost (i.e., c{®") from 0.5 to 2.5. The unit
computational costs of edge nodes are ¢{""? = 1 and ¢5"? = 1,
respectively. The unit communication cost of node 2 is c§°™ =
3. As shown in Fig. 5(a), we observe that the parameter server
decreases its payment as the increasing of training cost. For
example, when the training cost of node 1 is 1.5, the parameter
server makes the payment of 4.5 to incentivize the edge nodes
to participate in the federated learning. However, when the unit
training cost of node 1 increases to 3.5, a lower payment of
2.5 will be made to edge nodes. In Fig. 5(b), we observe that
the edge nodes’ participation level decreases when the training
cost increases. For example, when edge node 1’s training cost
is 1.5, edge node 1 participates the federated learning with
participation level of 0.6. But when the training cost increases
to 3.5, edge node 1 participates in the federated learning with
only 0.18 participation level. As shown in Fig. 5(c), it is
expected that the parameter server’s utility decreases as the
training costs of edge nodes increase. In Fig. 5(c), we compare
the DRL-based incentive mechanism with the random and
greedy approaches. In random approach, the parameter server
determines the payment in each training round randomly,
while in greedy the parameter server determines its strategy
according to the best strategy in the past training periods. In
the actual scenario, the parameter server does not know any
prior information about the edge nodes and the relationship
between model accuracy and the amount of training data.
Therefore, the parameter server could only determines the
payment to the edge nodes randomly. In Fig. 5(c), we can
find that the DRL-based incentive mechanism is much better
than the baselines.

Fig. 6 shows the impact of number of edge nodes. In this
experiment, we randomly choose edge node’s unit communi-
cation cost ¢5°™ and unit computation cost ¢ within (0, 2].
As shown in Fig. 6(a), we observe that the parameter server’s
utility increases when the number of edge nodes increases. For

example, when there are only 2 edge nodes, the parameter
server’s utility is nearly 3.2. However, when the number of
edge nodes increases to 10, a higher utility of 7.2 can be
obtained by the parameter server. In Fig. 6(b), we observer
that the average utility of edge nodes decreases as more and
more edge nodes participate in the federated learning. That
is, although the parameter server increases its payment to
incentivize more edge nodes to participate in the federated
learning in Fig. 6(c), it leads to more competition among edge
nodes. Therefore, each edge node could obtain less reward
from the parameter server. For example, the average utility of
edge nodes decreases by 94.8% as the number of edge nodes
changes from 2 to 10.

VII. CONCLUSION

In this paper, we have studied the distributed machine learn-
ing on edge nodes, federated learning, in which the training
model is distributed to participating edge nodes performing
training tasks on their local data. Though it has the benefit
of data privacy, it is not clear how the incentive mechanism
impacts on the utility of the parameter server. We address
this issue by providing an incentive mechanism based on
Stackelberg game approach. First, we analyze the uniqueness
of the Nash equilibrium in the second-stage of the Stackelberg
game and the uniqueness of the Stackelberg equilibrium in the
first-stage. Second, due to the unique challenges of unshared
information and difficulties of contribution evaluation in feder-
ated learning, we propose the DRL-based incentive mechanism
to address these issues. Finally, numerical experiments have
been done to further demonstrate the efficiency of the DRL-
based incentive mechanism as compared with the baseline
approaches.

ACKNOWLEDGMENT

This work was supported by the General Research Fund
of the Research Grants Council of Hong Kong (PolyU
152221/19E), National Natural Science Foundation of China
(Grant 61872310), JSPS Grants-in-Aid for Scientific Research
JP19K20258, Basic Research-Free Exploration Project of
Shenzhen under Grant JCYJ20170818103849343, and China
Postdoctoral Science Foundation 2019M661709.

REFERENCES

[11 S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, L. Su, and
T. Abdelzaher, “Deep learning for the internet of things,” Computer,
vol. 51, no. 5, pp. 3241, May 2018.

[2] P.Liu, Y. Ding, and T. Fu, “Optimal throwboxes assignment for big data
multicast in vdtns,” Wireless Networks, pp. 1-11, 2019.

[3] P. Li, T. Miyazaki, K. Wang, S. Guo, and W. Zhuang, “Vehicle-assist
resilient information and network system for disaster management,”
IEEE Transactions on Emerging Topics in Computing, vol. 5, no. 3,
pp. 438-448, July 2017.

[4] B. A. y. Arcas, G. Andrew, D. Bacon, K. Bonawitz, and et al.,
“Federated learning: Collaborative machine learning without
centralized training data,” https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html, april 6, 2017.

[5] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
Incentive mechanism design for mobile phone sensing,” in Proc. of ACM
MobiCom, 2012, pp. 173-184.

[6] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Truthful incentive
mechanisms for crowdsourcing,” in Proc. of IEEE INFOCOM, 2015,
pp. 2830-2838.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

]
o
3
-
)

—“+E 1, DRL- -#+-DRL-based
=+ DRL-based 2 - dge nade 1, based -o-Stackelberg equilibrium
=45 -©-Stackelberg equilibrium| | 0.6 Edge node 2, DRL-based 147 Greedy 1
b % -©-Nash equilibrium > --Random
2 [=12l
-‘-E 4 @05 512
=) K

" c P
_a; .E 2 1 |
<35 ‘s 0.4 [
[7] fos =
2 = 208r
5 g 2
a 3 5 03r
x o % 0.6
] < ©
E (] 0.2 -

25 _g» . 0.4

i)
2 | | | | | 0.1 | | | | | 0.2 | | | | !
0.5 1 1.5 2 2.5 0.5 1.0 1.5 2.0 25 0.5 1.0 15 2.0 25
Unit communication cost of edge node 1 Unit communication cost of edge node 1 Unit communication cost of edge node 1
(a) Strategy of parameter server. (b) Strategy of edge nodes. (c) Parameter server’s utility.

Fig. 5: Performance of the incentive mechanism when varying the unit communication cost of edge node 1.

8 ~DRL-based 15 Q —+DRL-based 8 —+DRL-based
o-Stackelberg equilibrium > -©-Nash equilibirum . -©-Stackelberg equilibrium
E7 § 37.5
z s | g
S 1l =

L6 g o 70
2 H 5
[] © <
s » o
35 K 565
~ g 0.5 a
g o 3
4 § S 6

3 0 5.5

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Number of edge nodes Number of edge nodes Number of edge nodes
(a) Parameter server’s utility. (b) Edge nodes’ average utility. (c) Strategy of parameter server.
Fig. 6: Performance of the incentive mechanism when varying the number of edge nodes.

X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li, “Free market of information at network edge,” in Proc. of IEEE INFOCOM, 2019, pp.
crowdsourcing: Incentive mechanism design for mobile sensing,” IEEE 118-126.
Transactions on Parallel and Distributed Systems, vol. 25, no. 12, pp. [18] S. K. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often
3190-3200, 2014. should one update?” in Proc. of IEEE INFOCOM, 2012, pp. 2731-2735.
D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasks truthfully ~ [19] S. K. Kaul, M. Gruteser, V. Rai, and J. B. Kenney, “Minimizing age of
without sacrificing utility: Online incentive mechanisms with budget information in vehicular networks,” in Proc. of IEEE SECON, 2011, pp.
constraint,” in Proc. of IEEE INFOCOM, 2014, pp. 1213-1221. 350-358.
Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos, “Trac: ~ [20] K. Ota, M. S. Dao, V. Mezaris, and F. G. De Natale, “Deep learning
Truthful auction for location-aware collaborative sensing in mobile for mobile multimedia: A survey,” ACM Transactions on Multimedia
crowdsourcing,” in Proc. of IEEE INFOCOM, 2014, pp. 1231-1239. Computing, Communications, and Applications, vol. 13, no. 3s, pp. 1-
Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, and H. Zhang, “Incentive mech- 22, 2_017‘ . o)
anism for computation offloading using edge computing: A stackelberg ~ [211 H. Li, K. Ota, and M. Dong, “Learning iot mn edge: Deep learning for
game approach,” Computer Networks, vol. 129, pp. 399-409, 2017. the internet of things with edge computing,” IEEE Network, vol. 32,

Y. Zhan, C. H. Liu, Y. Zhao, J. Zhang, and J. Tang, “Free market of no. 1, pp. 96-101, 2018.

multi-leader multi-follower mobile crowdsensing: An incentive mech- [22] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized

anism design by deep reinforcement learning,” IEEE Transactions on computation offloading performance in virtual edge computing systems
Mobile Computing, 2019. via deep reinforcement learning,” IEEE Internet of Things Journal,

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient vol. 6, no. 3, pp. 400.5_4018’ 2019. e .

¢ . X A [23] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelligent vnf
dynamic resource scheduler for deep learning clusters,” in Proc. of ACM : . ; . .
EuroSys, 2018, pp. 1-14. orchestration and flow scheduling via model-assisted deep reinforcement

. e . learning,” IEEE Journal on Selected Areas in Communications, 2019.
Y. Zhan, S.’ Guo, P. .Ll’ K. Wang, and Y‘. Xia,]_31g ,d ata analytics by [24] D. Zeng, L. Gu, S. Pan, J. Cai, and S. Guo, “Resource management
crowdlearning: Architecture and mechanism design,” IEEE Network, at the network edge: A deep reinforcement learning approach,” IEEE
2019. Network, vol. 33, no. 3, pp. 26-33, 2019.

H. Tian, M. Yu, 'and W. Wa.ng”:«(‘:ontinuum: A platform for cost-aware, [25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
low-latency continual learning,” in Proc. of ACM SoCC, 2018, pp. 26— “Communication-efficient learning of deep networks from decentralized
40. data,” in Proc. of AISTATS, 2017, pp. 1273-1282.

A. Grover, A. Kapoor, and E. Horvitz, “A deep hybrid model for weather [26] N. H. Tran, W. Bao, A. Zomaya, N. Minh N.H., and C. S. Hong,
forecasting,” in Proc. of ACM SIGKDD, 2015, pp. 379-386. “Federated learning over wireless networks: Optimization model design
S. E. Haupt and B. Kosovic, “Big data and machine learning for applied and analysis,” in Proc. of IEEE INFOCOM, 2019, pp. 1387-1395.
weather forecasts: Forecasting solar power for utility operations,” in [27] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
Proc. of IEEE SSCI, 2015, pp. 496-501. “On the convergence of federated optimization in heterogeneous net-

C. Li, S. Li, and Y. T. Hou, “A general model for minimizing age of works,” arXiv preprint arXiv:1812.06127, 2018.

(28]

[29]

[30]

[31]

(32]

[33]

(34]
(351
[36]

(371

[38]
(391
[40]

[41]

[42]

[43]

[44]

[45]
[46]

(471

[48]

J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in iot,” IEEE Internet of Things Journal,
pp. 1-1, 2019.

Y. Zhan, P. Li, and G. Song, “Experience-driven computational resource
allocation of federated learning by deep reinforcement learning,” in Proc.
of IPDPS, 2020.

J. Xu, J. Xiang, and D. Yang, “Incentive mechanisms for time win-
dow dependent tasks in mobile crowdsensing,” IEEE Transactions on
Wireless Communications, vol. 14, no. 11, pp. 6353-6364, 2015.

P. Li and S. Guo, “Incentive mechanisms for device-to-device commu-
nications,” IEEE Network, vol. 29, no. 4, pp. 75-79, 2015.

T. Wang, Y. Xu, C. Withanage, L. Lan, S. D. Ahipa?ao?lu, and C. A.
Courcoubetis, “A fair and budget-balanced incentive mechanism for
energy management in buildings,” [EEE Transactions on Smart Grid,
vol. 9, no. 4, pp. 3143-3153, 2018.

J. Liu, W. Wang, D. Li, S. Wan, and H. Liu, “Role of gifts in decision
making: An endowment effect incentive mechanism for offloading in
the iov,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6933-6951,
2019.

Y. Zhan, Y. Xia, and J. Zhang, “Incentive mechanism in platform-centric
mobile crowdsensing: A one-to-many bargaining approach,” Computer
Networks, vol. 132, pp. 40-52, 2018.

H. Zhu and Y. Jin, “Multi-objective evolutionary federated learning,”
IEEE Transactions on Neural Networks and Learning Systems, 2019.
R. B. Myerson, Game theory. Harvard university press, 2013.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver ef al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.
V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Proc. of
NIPS, 2000, pp. 1008-1014.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” in Proc. of ICLR, 2017.

Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, “Experience-driven
congestion control: When multi-path tcp meets deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1325-1336, 2019.

C. H. Liu, Z. Chen, and Y. Zhan, “Energy-efficient distributed mobile
crowd sensing: A deep learning approach,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1262-1276, 2019.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. of NeurIPS, 2000, pp. 1057-1063.
OpenAl, “Proximal policy optimization,”
openai-baselines-ppo/, july 20, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. of ICML, 2015, pp. 1889-1897.
Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press,
2016.

https://openai.com/blog/

Yufeng Zhan received his Ph.D. degree in the
School of Automation from Beijing Institute of
Technology, China, in 2018. He is currently a Post-
Doc in the Department of Computing with The Hong

N> o=
" & & Kong Polytechnic University. His research interests
z'—/ include mobile computing, machine learning and

networked control systems.

Peng Li received his BS degree from Huazhong
University of Science and Technology, China, in
2007, the MS and PhD degrees from the University
of Aizu, Japan, in 2009 and 2012, respectively. Dr.
Li is currently an Associate Professor in the Uni-
versity of Aizu, Japan. His research interests mainly
focus on cloud computing, Internet-of-Things, big
data systems, as well as related wired and wireless
’ networking problems. Dr. Li has published over
A 100 technical papers on prestigious journals and
conferences. He won the Young Author Award of
IEEE Computer Society Japan Chapter in 2014. He won the Best Paper Award
of IEEE TrustCom 2016. He supervised students to win the First Prize of
IEEE ComSoc Student Competition in 2016. Dr. Li serves as the guest editor
of several international journal special issues and he is the editor of IEICE
Transactions on Communications. He is a member of IEEE.

Zhihao Qu received his B.S. and Ph.D. degree
in computer science from Nanjing University, Nan-
jing, China, in 2009, and 2018, respectively. He is
currently an assistant researcher in the College of
Computer and Information, Hohai University, China.
His research interests are mainly in the areas of
wireless networks, edge computing, and distributed
machine learning.

Deze Zeng is currently a Full Professor in School of
Computer Science, China University of Geosciences,
Wuhan, China. He received his Ph.D. and M.S.
degrees in computer science from University of
Aizu, Aizu-Wakamatsu, Japan, in 2013 and 2009, re-
spectively. He received his B.S. degree from School
of Computer Science and Technology, Huazhong
University of Science and Technology, China in
2007. His current research interests mainly focus
on edge computing, and related technologies like
network function virtualization, machine learning,
and IoT. He has authored 3 books and over 100 papers in refereed journals
and conferences in these areas. He also received 3 best paper awards from
IEEE/ACM conferences and the IEEE Systems Journal Annual Best Paper
Award of 2017. He serves in editorial boards of Journal of Network and
Computer Applications and guest editors of many prestigious journals. He
has been the in organization or program committees of many international
conferences including ICPADS, ICA3PP, CollaberateCom, MobiQuitous, ICC,
Globecom. He is a member of IEEE, and senior member of CCF.

Song Guo received his Ph.D. in computer science
from the University of Ottawa. He is currently a full
professor in the Department of Computing with The
Hong Kong Polytechnic University. Prior to joining
PolyU, he was a full professor with the University of
Aizu, Japan. His research interests are mainly in the
areas of cloud and green computing, big data, wire-
less networks, and cyber-physical systems. He has
published over 300 conference and journal papers in
these areas and received multiple best paper awards
from IEEE/ACM conferences. His research has been
sponsored by JSPS, JST, MIC, NSF, NSFC, and industrial companies. He has
served as an editor for several journals, including IEEE TPDS, IEEE TETC,
IEEE TGCN, IEEE Communications Magazine, and Wireless Networks. He
has been actively participating in international conferences as general chair
and TPC chair. He is a senior member of IEEE, a senior member of ACM,
and an IEEE Communications Society Distinguished Lecturer.

