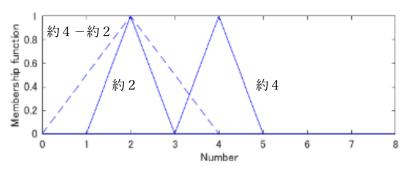
人工知能-AI の基礎から知的探索へ:演習問題解答例

第5章 しなやかな知識表現と推論

演習問題 5.1 例題 5.1 に定義されたファジィ集合 Aと Bの補集合を求めよ。

- A = 0.4/まさひろ+0.6/つよし+0.8/たくや+1.0/さぶろう+0.9/まさみ
- $B = 0.3/\pm 203 + 0.5/0 \pm 10.9/5 < e + 0.6/2 = 30.5/2 \pm 10.0/5 = 30.5/2 =$

解答


- $\overline{A} = 0.6/\pm 203 + 0.4/0 \pm 1 + 0.2/\hbar$ $< +0.0/2 = 3.6/\pm 203 + 0.1/\pm 23$
- $\overline{B} = 0.7/\pm 203 + 0.5/0 \pm 10.1/5 < 0.4/2 = 0.4/2 = 0.0/\pm 23$

演習問題 5.2 例題 5.1 に定義されたファジィ集合 A を利用して、ファジィ集合とその補集合の和集合は、全体集合ではない(すなわち、ファジィ論理において、補元律が成立しない)ことを示せ。

解答

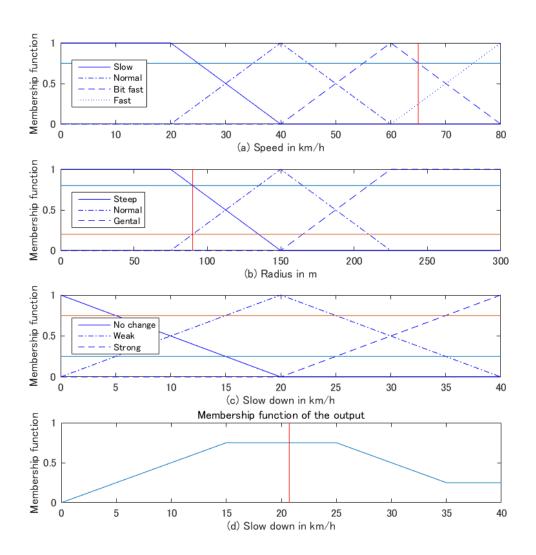
• $A \cup \overline{A} = 0.6/$ ± 3 ± 3 ± 4 \pm

全体集合 X は、すべての個体を無条件に含むので、すべての個体に対するメンバシップ関数値は 1 である。したがって、 $A \cup A \neq X$ 。

ファジィ数4と2の引き算

演習問題 5.3 ファジィ数 2 と 4 のメンバシップ関数が図 5.1 で与えられたとする。拡張原理をもとに、ファジィ数 4 引くファジィ数 2 のメンバシップ関数を求めよ。

解答


約4引く約2は、約2となるが、そのメンバシップ関数は、最初の約2よりも広くなる。 これは上の図の破線で示している。これを確認するためには、以下、0,1,2,3におけるメ ンバシップ関数値計算してみる。

x_1	x_2	$y=x_1-x_2$	$\mu_{約4}(x_1)$	$\mu_{ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	$\mu_{\aleph_14}(x_1) \wedge \mu_{\aleph_12}(x_2)$	$\mu_{約4-約2}(0)$
5	5	0	0	0	0	0
4.5	4.5	0	0.5	0	0	
4	4	0	1	0	0	
3.5	3.5	0	0.5	0	0	
3	3	0	0	0	0	
2.5	2.5	0	0	0.5	0	
2	2	0	0	1	0	
1.5	1.5	0	0	0.5	0	
1	1	0	0	0	0	

x_1	x_2	$y=x_1-x_2$	$\mu_{約4}(x_1)$	$\mu_{ \sharp h_2}(x_2)$	$\mu_{\aleph_14}(x_1) \wedge \mu_{\aleph_12}(x_2)$	μ _{約4-約2} (1)
5	4	1	0	0	0	0.5
4.5	3.5	1	0.5	0	0	
4	3	1	1	0	0	
3.5	2.5	1	0.5	0.5	0.5	
3	2	1	0	1	0	
2.5	1.5	1	0	0.5	0	
2	1	1	0	0	0	
1.5	0.5	1	0	0	0	
1	0	1	0	0	0	

x_1	x_2	$y=x_1-x_2$	$\mu_{\aleph_4}(x_1)$	$\mu_{\aleph_1}(x_2)$	$\mu_{\aleph_14}(x_1) \wedge \mu_{\aleph_12}(x_2)$	$\mu_{約4-約2}(2)$
5	3	2	0	0	0	1
4.5	2.5	2	0.5	0.5	0.5	
4	2	2	1	1	1	
3.5	1.5	2	0.5	0.5	0.5	
3	1	2	0	0	0	
2.5	0.5	2	0	0	0	
2	0	2	0	0	0	
1.5	-0.5	2	0	0	0	
1	-1	2	0	0	0	

x_1	x_2	$y = x_1 - x_2$	$\mu_{\aleph_14}(x_1)$	$\mu_{ \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	$\mu_{\aleph_14}(x_1) \wedge \mu_{\aleph_12}(x_2)$	$\mu_{約4-約2}(3)$
6	3	3	0	0	0	0.5
5.5	2.5	3	0	0.5	0	
5	2	3	0	1	0	
4.5	1.5	3	0.5	0.5	0.5	
4	1	3	1	0	0	
3.5	0.5	3	0.5	0.	0	
3	0	3	0	0	0	
2.5	-0.5	3	0	0	0	
2	-1	3	0	0	0	

演習問題 5.4 図 5.4 に示されている速度に関する言語的値のメンバシップ関数を、式で書け。また、速度が時速 65km に対して、それぞれの言語的値のメンバシップ関数値を求めよ。

解答

式は以下のようになる:

$$\mu_{\mathbb{E}^{V}}(v) = \begin{cases} 1 & v < 20 \\ -\frac{v}{20} + 2 & 20 \le v < 40 \\ 0 & 40 \le v \end{cases} \qquad \mu_{\tilde{\mathbb{H}}}(v) = \begin{cases} 0 & v < 20 \\ \frac{v}{20} - 1 & 20 \le v < 40 \\ -\frac{v}{20} + 3 & 40 \le v < 60 \\ 0 & 60 \le v \end{cases}$$

$$\mu_{\text{thin}}(v) = \begin{cases} 0 & v < 40 \\ \frac{v}{20} - 2 & 40 \le v < 60 \\ -\frac{v}{20} + 4 & 60 \le v < 80 \\ 0 & 80 \le v \end{cases} \qquad \mu_{\text{thin}}(v) = \begin{cases} 0 & v < 60 \\ \frac{v}{20} - 3 & 26 \le v < 80 \\ 1 & 80 \le v \end{cases}$$

$$\mu_{\text{He}}(65) = 0; \quad \mu_{\text{He}}(65) = 0; \quad \mu_{\text{He}}(65) = 0.75; \quad \mu_{\text{He}}(65) = 0.25.$$

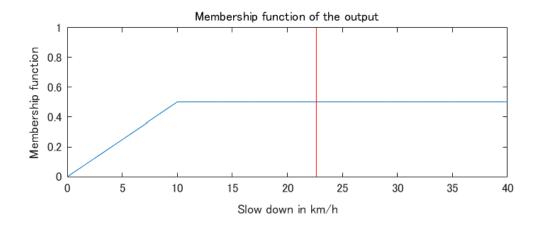
演習問題 5.5 例題 5.3 において、v=70km/h で、r=90m の場合、出力のメンバシップ関数を求めよ。これをもとに、どれくらい減速すべきかを議論せよ。

解答

例題と同じように、まず、与えられた入力が、各ルールの条件にどれくらい類似している かを求める。

 $S(R_1)$ =min(μ 普通(70), μ 急(90))=min(0,0.8)=0

 $S(R_2)=\min(\mu$ や速い(70), μ 急(90))= $\min(0.5,0.8)=0.5$


 $S(R_3)=\min(\mu_{遠 \lor}(70), \mu_{\oplus i}(90))=\min(0.5,0.2)=0.2$

 $S(R_4)=\min(\mu_{\mathbb{R}^{1/2}}(70), \mu_{\mathbb{R}}(90))=\min(0.5,0.8)=0.5$

これによって最終出力 B*のメンバシップ関数を求め、以下のようになる:

$$\mu_{R^*}(y) = \max[\min(0.5, \mu_{\text{ELSB}}(y)), \min(0.5, \mu_{\text{ELSB}}(y))]$$

これは、以下の図に示される。

 B^* のメンバシップ関数の重心 b^* は、減速すべき量である。式(5.9)で計算した結果、 b^* =22.6338 となる。すなわち、時速をおよそ 23 km 減らして、このカーブを通過すれば、安全運転につながると考えられる。

演習問題 5.6 例題 5.4 において、2 種類のパターンを分類することができる境界線は一本に限らない。図 5.7 の左の図に他の 2 本の境界線も描いてある。これを参考に、例題 5.4 の解答と異なる解を一つ与えよ。

解答

図 5.7 の右の図の破線は、もう一つの解である。要は、2 種類のパターンをきれいに分けることができれば解である。

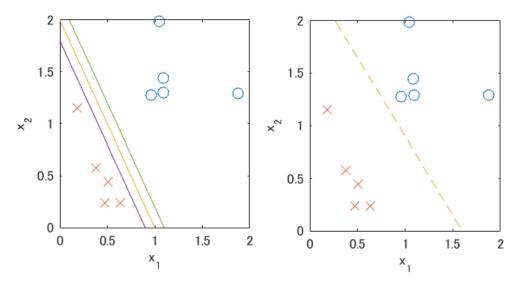


図 5.7 単一ニューロンで解決できる分類問題の例(左図は例題 5.4 の回答で、右図は演習問題 5.6 の回答である)

表 5.10 MLP の各ニューロンの出力

x_1	x_2	<i>y</i> ₁ ¹	y_2^1	y^2
-1	-1	0	-1	-1
-1	1	<u>1</u>	-1	1
1	-1	-1	<u>1</u>	1
1	1	0	-1	-1

演習問題 5.7 例題 5.5 について、(1,-1)と(1,1)が入力された場合、表 5.10 を参考に、ワーキングメモリの内容を表 5.11 あるいは表 5.12 と同じようにまとめ、それをもとに、システムの判断を解釈せよ。

解答

1) (1,-1)に対するワーキングメモリの内容は、以下のようなる:

データ名	データの意味	データタイプ	データの値	時刻
x_1	第1入力	2 値	1	0
x_2	第2入力	2 値	-1	0
<i>y</i> ₁ ¹	隠れ要因 1	3 値	-1	1
y ₂ ¹	隠れ要因 2	3 値	1	1
y ²	出力	3 値	1	2

(1,-1)が入力された場合、一番目の隠れニューロンが偽、二番目の隠れニューロンが真となり、その次、出力ニューロンが真となる。ワーキングメモリの内容は、上の表のようになる。例題 5.5 の回答に合わせて、システムの判断は、以下のように解釈できる。すなわち、二つの入力が異なると、二つの隠れニューロンも異なる主張をし、そのとき、出力ニューロンが真となる。

2) (1,1)に対するワーキングメモリの内容は以下のようになる:

データ名	データの意味	データタイプ	データの値	時刻
x_1	第1入力	2 値	-1	0
x_2	第2入力	2 値	1	0
y ₂ ¹	隠れ要因 2	3 値	-1	1
y ²	出力	3 値	-1	2

(1,1)が入力された場合、一番目の隠れニューロンが無反応、二番目の隠れニューロンが偽となり、その次、出力ニューロンも偽となる。この結果は、例題 5.5 の回答に合わせて、

以下のように解釈できる。すなわち、二つの入力が同じであるとき、隠れニューロン1が 無反応となり、出力ニューロンが隠れニューロン2の判断に従う。