Implementation and Analysis of Large Receive
Offload in a Virtualized System

Takayuki Hatori and Hitoshi Oi
The University of Aizu, Aizu Wakamatsu, JAPAN
{s1110173,hitoshi}@u-aizu.ac. jp

Abstract—System level virtualization has advantages such as
easy server consolidation, dynamic reconfiguration, and low
power consumption. However, there exists network overhead. In
native environment, software level Large Receive Offload (LRO)
is effective to improve network receive performance.

In this paper, we present the performance study of the LRO
implemented in a Xen virtualized environment. We implemented
LRO in both the physical and the virtual interface and mea-
sured the performance in these cases. The receive performance
improved 22% with LRO implementation in the virtual interface,
whereas no performance improvement appeared with an LRO
implemented physical interface. We analyze the performance
improvement and describe effectiveness of LRO.

I. INTRODUCTION

System level virtualization has advantages such as easy
server consolidation, dynamic reconfiguration, and lower
power consumption, and is a popular method in building high-
performance servers. With the recent hardware support for
virtualization like Intel VT and AMD SVM, those advantages
have grown by reducing virtualization overhead costs.

These advantages of system virtualization are not free.
In particular, we are interested in the overhead of manag-
ing concurrent accesses to a network interface. Menon et
al. [3] found network receive performance difficult to improve.
Their research aimed to improve network performance by
utilizing network interface card (NIC) abilities like checksum
offloading and TCP segmentation offloading. Willmann et
al. [8] suggested Concurrent Direct Network Access (CDNA)
architecture. It achieved high network performance on both
receive path and transmit path as native environment, however,
it required a CDNA aware special NIC. Previous researches
have focused on hardware support for virtualization, and more
studies must be conducted on software level optimization.

A technology called Large Receive Offload (LRO) [5]
was recently proposed. The core idea is to increase network
bandwidth at the expense of latency. Gallatin [1] found that
LRO was effective to improve receive throughput although it
was entirely implemented at the software level.

In this paper, we apply LRO to a Xen para-virtualized
environment [7]. In the Xen para-virtualized environment,
two network interfaces exist. We implemented LRO in both
interfaces and analyzed the performance impact.

The rest of this paper is organized as follows. We begin
in Section II with related work. In Sections III and IV, we
present descriptions of LRO and Xen as background for our
work. In Section V, we describe our LRO implementations

onto a virtualized environment. In Section VI, we describe
experimental environment. Section VII presents the results
and analysis of the experiments. The paper is concluded in
Section VIII.

II. RELATED WORK

Willmann et al. [8] suggested CDNA architecture to im-
prove network performance of virtualized environment. It
thrust virtualization overhead and complexity resulting from
the software level virtualization upon a NIC. Although it
achieved 17% higher transmit throughput and 69% higher
receive throughput than non-CDNA virtualized system, it
required a CDNA aware NIC to assist virtualization.

With respect to network performance improvement in vir-
tualized environment by software level optimization, Menon
et al. [3] reported network transmit performance improvement
by a factor of 4.4. They also reported 18% improvement in
receive performance from non-optimized virtualized system.
However, it remained at 61% degradation from native Linux.

These researches indicated difficulty in improving receive
performance of virtualized system at the software level.

ITI. LARGE RECEIVE OFFLOAD

Large receive offload is a technique for increasing in-bound
throughput by reducing the CPU utilization. It works by
aggregating multiple incoming packets from a single network
stream at the Ethernet layer, and delivering them to upper layer
as one big packet.

Application

TCP/UDP
One big packet arrives

1P
Ethernet

Several packe)& arrives

Fig. 1. Network stack with LRO

This technique was first proposed by Grossman [5] who
implemented it for a specific NIC. After the introduction
of LRO and its performance impact, developers hoped for
a generalized LRO. That hope was realized when Themann

produced a generalized patch [4]. It enabled device drivers to
use the same LRO implementation with a few modifications.

His patch contains core implementation of packet aggre-
gation. Depending on how device drivers copy a received
packet from a NIC onto memory, it offers two different
aggregation modes, skb-mode and page-mode. The former
is for aggregating multiple socket buffers, each containing
one packet. The latter is for aggregating multiple pages, each
containing one packet, by creating one socket buffer inside the
LRO implementation. Thus, while the page-mode aggregation
can reduce the socket buffer consumption compared to skb-
mode, it can also waste more memory for smaller packets.

According to benchmarks, even implementing LRO entirely
at the software level can improve receive performance [1].

IV. XEN SYSTEM LEVEL VIRTUALIZATION

Xen [7] is an open source Virtual Machine Monitor (VMM).
It allows multiple operating systems to run on the same
machine and to access concurrently to hardware resources. It
adopts para-virtualization technology that requires operating
systems to be modified.

Xen provides abstracted Virtual Machines (VM), called
a domain, for each operating system. Although it is easily
manageable for Xen, an abstracted VM is different from
underlying physical resources.

There are two kinds of domains called domain0O and do-
mainU in the Xen para-virtualized environment, privileged and
unprivileged respectively. The domain0 can access physical
hardware, whereas the domainU cannot. To access physical
hardware from the domainU, an operating system must access
an abstracted VM. The domainO detects the access, and
emulates what the domainU wants to do. In this paper, we
use a term driver domain to represent a privileged domain0,
and guest domain to represent an unprivileged domainU.

In Xen para-virtualized environment, a physical interrupt is
first handled by a Xen interrupt handler, and then delivered to
a target VM through an event channel provided by Xen. Xen
also provides grant tables for safe memory sharing between
VMs. It enables a VM to grant a page with permission to
another VM.

To manage safe access to network interfaces and block
devices, Xen provides IO channels composed of split device
drivers, backend and frontend drivers. The former is used in
a driver domain and the latter is used in a guest domain. The
split device drivers share a single memory ring to transfer data
through the ring. They use the event channel to notify the other
side, and the grant table to transfer data through the ring. This
ring consists of a fixed number of buffers, and it provides fair
share of hardware capacity between VMs.

A. Virtual Network

A simplified Xen virtualized network is represented in
Fig. 2. Xen adopts bridge networking to multiplex packets
to each VM. A physical interface is connected to a bridge,
and the bridge is connected to virtual interfaces. There exists
some couples of virtual network interfaces, backend interfaces

Driver Domain uest Domain

Application
Shared
Rin
Physical| [Backend A/Qf\v rontend
Interface| [[nterface \@/ I[nterface]
¥ ¥ I
. Event Channel ¥
Xen VMM
Fig. 2. Virtualized network

in a driver domain and frontend interfaces in a guest domain.
A packet is exchanged between the couple of virtual interfaces
by the split device drivers.

In a network IO channel, Xen offers two types of data
transfer modes between domains, transferring data by copying
and by page swapping. The former copies a packet onto
a page granted by a guest domain. The latter exchanges a
page containing a packet with a free page granted by a guest
domain. The data copying method is useful for a small data
transfer because it costs per byte, whereas the page swapping
method is useful for a large data transfer because it costs per
transfer. In this research, we used copying method because it
was widely used with Xen version 3.1.0 we employed.

V. LRO IMPLEMENTATION

In this section, we describe how we implemented LRO to
network interfaces. For both implementation on a physical
interface and a virtual interface, we used Themann’s LRO
patch [4]. It provides two methods to aggregate packets (skb-
mode and page-mode.) Both of our target interfaces manage a
packet as a socket buffer, and thus we implemented skb-mode
LRO on both interfaces.

To utilize the patch, it was required to implement some
initiation operations, and a function that seeks headers from a
received packet. To monitor how much LRO can aggregate
packets in average, we also implemented some functions
to make the information available from a Linux command
ethtool. In addition, depending on where to implement LRO,
some difficulties occurred. We will explain these difficulties,
and present how we avoided them in the following subsections.

A. Physical Interface

Although this research targets the receive network perfor-
mance, we had a trouble with a transmit network path. The
bridge networking uses a receive path to obtain a packet from
an interface, and a transmit path to deliver the packet to an
interface. It forces a received packet at a physical interface to
pass through both of the receive path and the transmit path.

As mentioned above, we employed skb-mode LRO imple-
mentation. This made everything worse. The Linux receive
path was capable of aggregated packets by LRO, however,
the transmit path was not. Furthermore, Xen’s split device
drivers for a network IO channel could not transmit skb-mode
aggregated packets. In order to carry skb-mode aggregated

packets at the physical interface, we modified the transmit path
to reconstruct one big packet by linearizing the aggregated
packets. It meant one extra data copy became required for all
LRO aggregated packets.

B. Virtual Interface

LRO implementation on a virtual network interface was
not complicated. We implemented LRO in a frontend virtual
interface used in a guest domain. Thus, it aggregated packets
after passing through a bridge and a network IO channel. It
meant that we could aggregate after sophisticated operations.
However, one technique was required.

It was necessary to isolate loop-backed packets transmitted
from virtualized sub-network, such as packets from a driver
domain. Those packets had a different structure from packets
received at a physical network interface. They maintained data
and headers separately, and required two page transfers per
packet at the network IO channel. After transferring such a
page-divided packet, a backend driver forced to reconstruct a
socket buffer to combine a header part with a data part.

The problem was that the reconstructed packet was not
linear. It was obliged to treat the packet as a fragmented
packet like an over Maximum Transmission Unit (MTU) size
packet. The Linux network stack could not recognize skb-
mode aggregated socket buffers that contained fragmented
packets. In this research, we required loop backed packets for
an experimental script. Not to include those packets in the
experimental data stream, we created two couples of virtual
interfaces, and divided the network streams.

VI. EXPERIMENTAL ENVIRONMENT

We implemented LRO described in Section V on Xen ver-
sion 3.1.0 para-virtualized system with Linux version 2.6.18
for both a driver domain and a guest domain.

For the receiver machine, we used Dell PowerEdge SC440
with 1.86 GHz Intel Xeon. This machine has one RealTek
gigabit PCI NIC and 2 GB memory. A non-virtualized sender
machine has 2 GHz AMD Athlon64 X2 with 2 GB memory,
and an on-board gigabit NIC.

We wrote simple sender and receiver programs and executed
on each machine. These programs communicate over the
Ethernet connected by a Logitec gigabit switching hub. We
measured the time to transfer 10GB data with the MTU size
of 1500 bytes through a TCP session.

Config. System LRO

Native Native No

Guest-1 | Virtualized No

Guest-2 | Virtualized | Physical Interface

Guest-3 | Virtualized Virtual Interface
TABLE I

EXPERIMENTAL CONFIGURATIONS

We examined four configurations presented in TABLE I for
the receiver machine. Differences were in whether the system
was virtualized or not, and in LRO implementation. The

receiver processes ran in guest domains of Guest-1, Guest-2,
and Guest-3 configurations. It meant a packet passed through
a network bridge in the driver domain and then arrived at the
guest domain. For Guest-1, Guest-2, Guest-3 configurations,
we assigned the driver domain and the guest domain with
one virtual CPU each, which guaranteed fair sharing of CPU,
and 1 GB and 512 MB memory respectively. For a Native
configuration, we assigned full physical resources.

As a profiling tool, we employed Xenoprof [2], and tcpdump
for network traffic monitoring. Xenoprof is a profiling tool
based on OProfile [6] targeting a Xen virtualized environment.
It collects hardware events such as clock cycles and retired
instructions. Packet monitoring by tcpdump operated in the
sender machine not to make any performance degradation on
the receiver machine. We also used Linux commands ethtool
and ifconfig to obtain LRO specific information and total
network traffic information.

VII. RESULTS

In this section, we present results of our experiments first,
and then analyze performance improvement and effectiveness
of LRO. All the results were averages of five executions.

Config. | Throughput LRO Rate

Native 557.0 1.00

Guest-1 505.4 1.00

Guest-2 508.4 1.99

Guest-3 615.3 4.92
TABLE II

THROUGHPUT (MBPS) AND LRO RATE (PACKETS)

TABLE II describes receiver throughput in Mbps and
LRO rate, the average number of packets aggregated in one
group by LRO, achieved by four configurations defined in
Section VI. The non-LRO virtualized environment, Guest-
1, achieved throughput of 505 Mbps, which was 91% of
the native Linux throughput, 557 Mbps. Guest-2, which had
a LRO implemented physical interface, achieved almost the
same throughput as Guest-1 with twice the LRO rate. The con-
figuration with a LRO implemented virtual interface, Guest-
3, improved upon the non-LRO virtualized environment by
22%, and upon native Linux by 10%, and achieved throughput
of 615 Mbps. It was significant that Guest-3 achieved higher
throughput than native Linux.

Regarding LRO rate, in both Guest-2 and Guest-3 configu-
rations, LRO could not aggregate efficiently multiple packets,
whereas LRO implementation permitted the aggregation of 64
packets. It is considered that the CPU did not wait further
packet reception as the CPU was not busy and could handle
interrupts for packet reception immediately. Compared to
Guest-2, Guest-3 achieved a higher LRO rate. It might be due
to the high throughput or a configuration difference, where to
aggregate packets, or both.

A. CPU Utilization

In this subsection, we present profiling result collected by
Xenoprof, in virtualized environments, and by OProfile, in

a native environment. We profile clock cycles and retired
instructions, and estimate CPU utilization. These events were
sampled at every 10000 occurrence during the execution of
10GB transfer.

Config. | Clock Instr.
Native 6.27 6.30
Guest-1 9.71 7.16
Guest-2 8.01 5.36
Guest-3 9.87 7.49
TABLE III

CLOCK CYCLES AND RETIRED INSTRUCTIONS (X 106)

TABLE III presents clock cycles and retired instructions
consumed across the system. In this table, low consumption of
clock cycles and retired instructions of the Guest-2 configura-
tion was distinguished. In particular, Guest-2 consumed fewer
retired instructions than native Linux. Besides, compared to
non-LRO Guest-1, that achieved nearly the same throughput as
Guest-2, consumption of clock cycles and retired instructions
decreased 18% and 25% respectively.

Config. Domain | Clock Instr.

Guest-1 driver 2.32 1.50
guest 7.39 5.67

Guest-2 driver 2.09 1.33
guest 5.92 4.03

Guest-3 driver 3.33 2.27
guest 6.54 5.23
TABLE IV

BREAKDOWN OF CLOCK CYCLES AND RETIRED INSTRUCTIONS (x 10)

TABLE IV presents per VM consumption of clock cycles
and retired instructions. Although Guest-2 required extra data
copy in a driver domain, required for aggregated packets to
pass through a bridge, the driver domain consumed fewer clock
cycles and fewer instructions than those of a Guest-1 driver
domain. It indicated that LRO implementation in a physical
interface could improve CPU utilization of individual VMs,
thus, improve across the system. With an LRO aware network
bridge and split device drivers, which can manage LRO
aggregated packets without any overhead, this improvement
in CPU utilization will increase.

In the Guest-3 configuration, as seen in TABLE IV, a
guest domain’s clock cycles and instructions reduced from the
Guest-1 configuration. However, a driver domain consumed
more clock cycles and more instructions than Guest-1, and
thus, consumption of clock cycles and instructions increased
across the system as presented in TABLE III.

Despite the use of the same driver domain as the Guest-
1 configuration, we observed that the CPU utilization was
lowered in the Guest-3. It is possibly the result of 18% higher
throughput than Guest-1, but further investigation is needed to
identify the source of this performance degradation.

B. Network Traffic

In this subsection, we present network traffic profiling
observed by tcpdump and Linux commands. In this research,
we examined a sender-receiver networking model through a
TCP session. Traffic from the sender to the receiver was a
data packet, and traffic from the receiver to the sender was
acknowledgment.

For each received packet, an acknowledgment packet with
the identification of the received packet, such as the data
segment number is returned to the sender. In order to reduce
the acknowledgment traffic, there is a strategy called delayed
acknowledgment to aggregate acknowledgments. It permits to
aggregate two acknowledgments for packets received within
500 milliseconds. Fig. 3 describes how the delayed acknowl-
edgment works.

Sender Receiver
Transmit
Data Packets| Wait For
Receive Another Receive
One Ack
Fig. 3. Delayed acknowledgment
Config. | Phys. Rx. Phys. Tx. | TCP Rx.
Guest-1 7.42 3.86 7.42
Guest-2 7.42 2.77 3.74
Guest-3 7.43 1.49 1.51
TABLE V

NETWORK TRAFFIC (X 106PACKETS)

TABLE V presents total network traffic information ob-
served at the receiver machine. Phys Rx and Phys Tx rep-
resents the numbers of packets received at and transmitted
from the receiver machine respectively. TCP Rx represents
received packets at the TCP layer in a guest domain. We
calculate TCP Rx by dividing Phys Rx by LRO rate, the
average number of aggregated packets in one group by LRO,
presented in TABLE II. Because the TCP layer recognizes
aggregated packets by LRO as one big packet, there exists a
difference between Phys Rx and TCP Rx.

By comparing transmitted packets from the receiver ma-
chine and received packets at the TCP layer, it was clear that
delayed acknowledgment did not work well in the Guest-3
configuration. It could aggregate only 1.03 acknowledgments,
whereas it could aggregate 1.93 and 1.41 acknowledgments in
Guest-1 and Guest-2 configurations, respectively.

The inefficient delayed acknowledgment was a characteris-
tic of LRO implementation in the guest domain. In order to
aggregate acknowledgments, it was required to deliver several
packets to the TCP layer in a short delay. It was also required
that these packets had data segment numbers in serial order.
However, when short delayed and serial ordered packets were
transferred from a driver domain together at once, they were

aggregated by LRO, which was implemented in the Ethernet
layer. In consequence, one big packet arrived at the TCP layer
in the guest domain, and it became difficult to receive another
packet in time.

Config. | Ack. Sack. Sack.
Rate(%)
Guest-1 | 3.54 0.502 14.191
Guest-2 | 2.47 0.354 14.341
Guest-3 | 1.26 0.120 9.514
TABLE VI

ACKNOWLEDGMENT TRAFFIC (X IOGPACKETS)

TABLE VI describes acknowledgment traffic captured by
tcpdump in the sender machine. Ack and Sack are abbrevi-
ations of acknowledgments and selective acknowledgments.
A selective acknowledgment is an alternative of acknowledg-
ments that informs disordered or lost packets. It forces the
sender TCP layer to retransmit the desired packet as soon
as possible. Sack rate represents the ratio of Sack packets
against the Ack packets. Due to insufficient buffer space for
tcpdump, several packets were dropped from capturing. It
appeared as the difference between acknowledgments observed
in the sender machine and transmitted packets counted in the
receiver machine presented in TABLE V.

According to Linux implementation, the selective acknowl-
edgment rate is used to estimate available network bandwidth
in the sender side TCP layer for congestion control. Fig. 4
describes a model of congestion control strategy in Linux.
As an acknowledgment receives, the estimated bandwidth will
grow. Once a selective acknowledgment arrives, it decreases
to a slow start thresh, calculated by using maximum estimated
bandwidth, until another acknowledgment arrives.

Estimated Bandwidth
Available Bandwidth

Fig. 4. Model of congestion control strategy

Of note was a low selective acknowledgment rate of the
Guest-3 configuration, whereas those of Guest-1 and Guest-
2 configurations were equally higher. This low Sack rate led
to a high estimated bandwidth on the sender side which in
turn resulted in more packets transfer at once. TABLE VI
indicated the 40% lower selective acknowledgment rate than
in Guest-1 and Guest-2 configurations resulting in the 18%
higher throughput in the Guest-3 configuration.

According to RFC 2582 [9] and Linux implementation, a
selective acknowledgment is not aggregated by the delayed
acknowledgment mentioned before. The unsuccessful delayed
acknowledgment increased only acknowledgments. It resulted
in depressing the selective acknowledgment rate in the Guest-3
configuration.

Based on the results of the Guest-3 configuration, we can
reduce 500 milliseconds delay for every group of aggregated
packets at the expense of 2% increase in acknowledgment by
preventing the unsuccessful delayed acknowledgment. How-
ever, current Linux implementation does not allow us to
restrain the delayed acknowledgment and incorporating this
option into the TCP layer of the Linux is another topic of our
future work.

VIII. CONCLUSION

We implemented LRO on two different interfaces in the
virtualized system. We found that LRO in a physical interface
reduced the numbers of clock cycles and instructions across
the system while achieving the same throughput as the original
system. However, we also found that packet aggregation by
LRO did not work as we expected. It indicated that LRO in the
physical interface would achieve higher throughput in network
bound environments.

We found that LRO in the virtual interface achieved a
higher throughput than the original virtualized system. We
consider that this was the result of fewer acknowledgment
aggregations due to the combination of the LRO and the
delayed acknowledgment on the network stack.

We identified the overhead in LRO (e.g. extra data copy
in the bridge) and the interface problem with the Linux
implementation (e.g. the delayed acknowledgment). These are
the issues that need be solved to take full advantage of the
LRO in the virtualized system.

ACKNOWLEDGMENT

This work is supported in part by grant from the University
of Aizu Competitive Research Funding.

REFERENCES

[1]1 A. Gallatin, “Re: [RFC 0/1] Iro: Generic Large Receive Offload for TCP
traffic,” July 2007, http://lkml.org/lkm1/2007/7/25/313.

[2] A. Menon et al., “Diagnosing Performance Overheads in the Xen Virtual
Machine Environment,” VEE ’05: Proc. Ist ACM/USENIX Int. Conf.,
pp.13-23, 2005.

[3] A. Menon, A. L. Cox and W. Zwaenepoel, “Optimizing Network Virtual-
ization in Xen,” USENIX-ATC ’06: Proc. Annu. Technical Conf., pp.15—
28, 2006.

[4] J.-B. Themann, “[RFC 0/1] Iro: Generic Large Receive Offload for TCP
traffic,” July 2007, http://lkml.org/lkm1/2007/7/20/250.

[5] L. Grossman, “Large Receive Offload implementation in Neterion 10GbE
Ethernet driver,” Proc. Linux Symp., vol. One, pp.195-200, July 2005.

[6] OProfile, http://oprofile.sourceforge.net/news/.

[7] P. Barham et al., “Xen and the Art of Virtualization,” SOSP ’03: Proc.
19th ACM Symp., pp.164-177, 2003.

[8] P. Willmann et al., “Concurrent Direct Network Access for Virtual
Machine Monitors,” HPCA '07: Proc. IEEE 13th Int. Symp., pp.306-317,
2007.

[9] S. Floyd and T. Henderson, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” 1999, RFC2582.

