

# Distributed Autonomy Meets Neuromorphic Intelligence



THE UNIVERSITY OF AIZU

Advanced Computing Systems Laboratory

**Abderazek Ben Abdallah**

School of Computer Science and Engineering  
The University of Aizu, Japan

Email: [benab@u-aizu.ac.jp](mailto:benab@u-aizu.ac.jp)

# Biography

## Education

**1988.9–1994.6** B.S. in Electrical Engineering, University of Sfax, and Huazhong University of Science and Technology (HUST)

**1994.9–1997.7** M.S. in Computer Engineering, Huazhong University of Science and Technology (HUST)

**1999.4–2002.3** Ph.D. in Computer Engineering, The University of Electro-Communications (UEC), Tokyo

## Professional Experience

**2002.4–2007.3** Research Associate, UEC, Tokyo

**2007.4–2007.9** Assistant Professor, UEC, Tokyo

**2007.10–2011.3** Assistant Professor, University of Aizu

**2011.4–2012.3** Associate Professor, University of Aizu

**2012.4–2014.3** Senior Associate Professor, University of Aizu

**2014.4–Present** Professor, University of Aizu

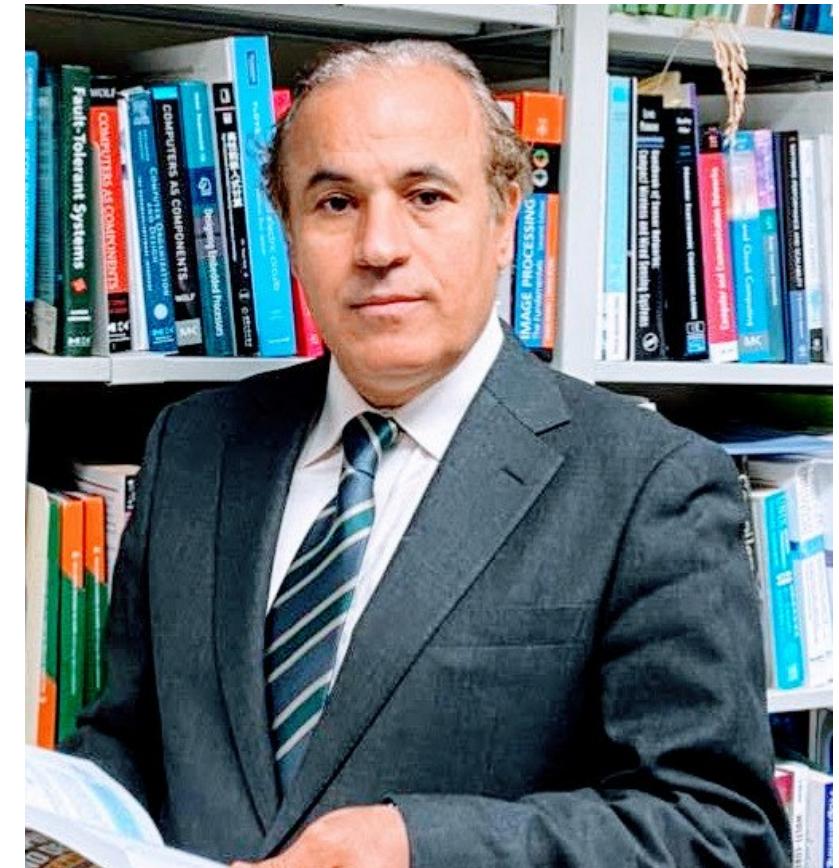
**2014.4–2022.3** Head, Computer Engineering Division, UoA

**2014.4–Present** Member, Education & Research Council, UoA

**2022.4–Present** Chair, Dept. of Computer Science & Engineering, UoA

**2022.4–Present** Dean, School of Computer Science & Engineering, UoA

**2022.4–Present** Regent, University of Aizu

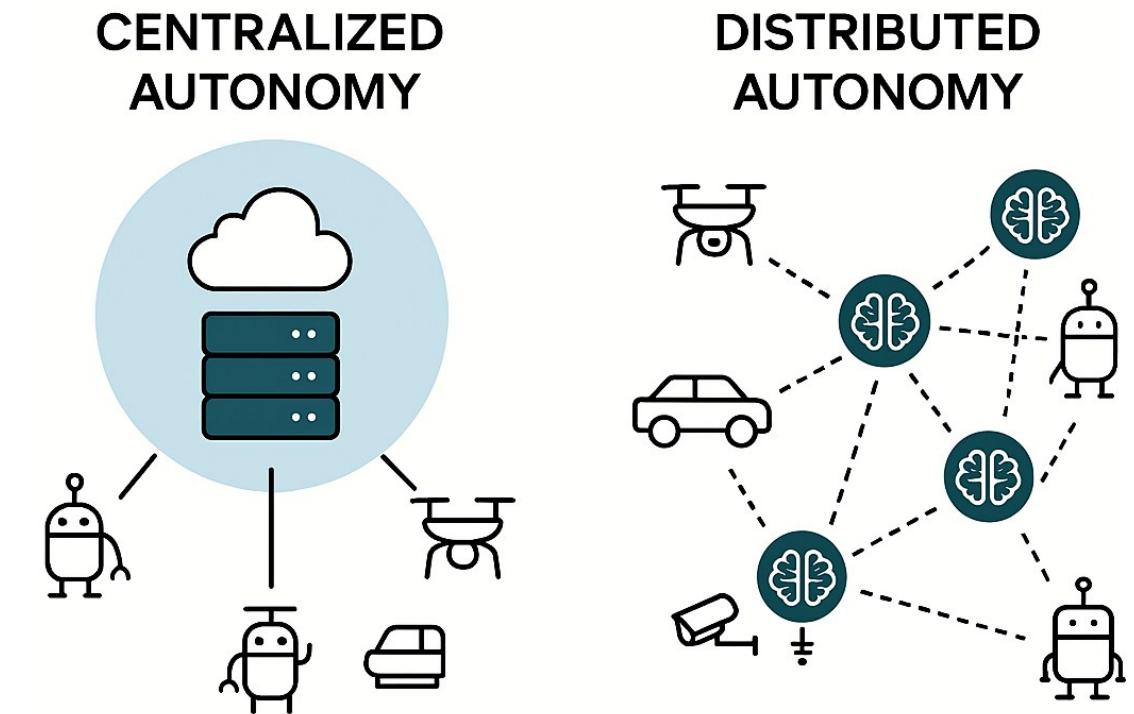


# Agenda

- The Evolution of Autonomy
- Distributed Autonomous (DA) Systems
- Neuromorphic Computing
- DA + Neuromorphic Intelligence
- Applications and Case Studies
- Research Challenges
- Vision & Outlook

# Why is Autonomy Shifting from Centralized to Distributed ?

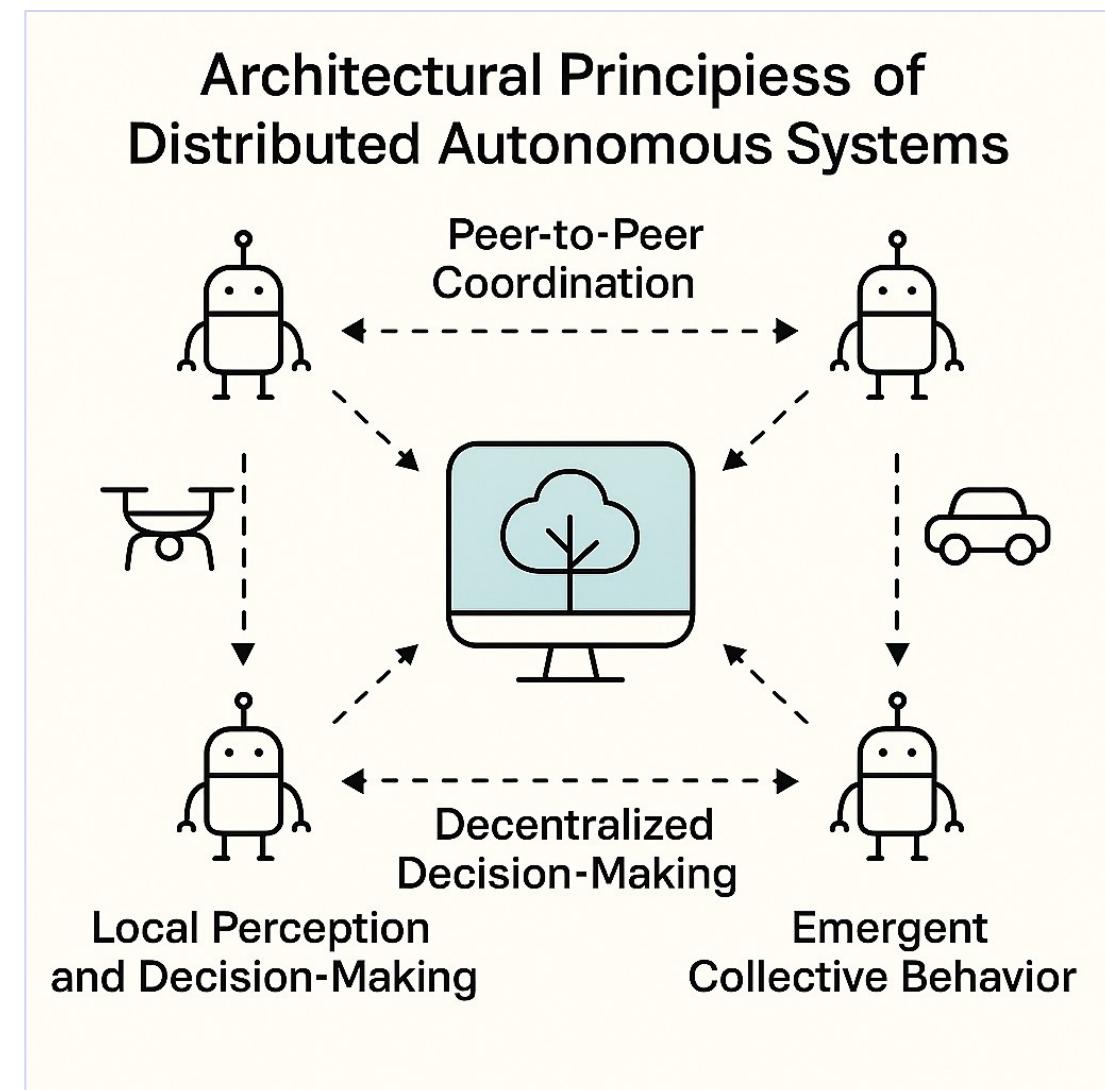
- Centralized vs. distributed autonomy
- Limitations of cloud-centric AI
- Real-world examples where distributed autonomy is essential
  - Multi-robot systems
  - Smart mobility
  - Environmental sensing networks



Why autonomy is shifting from centralized to distributed

# Architectural Principles of Distributed Autonomous Systems

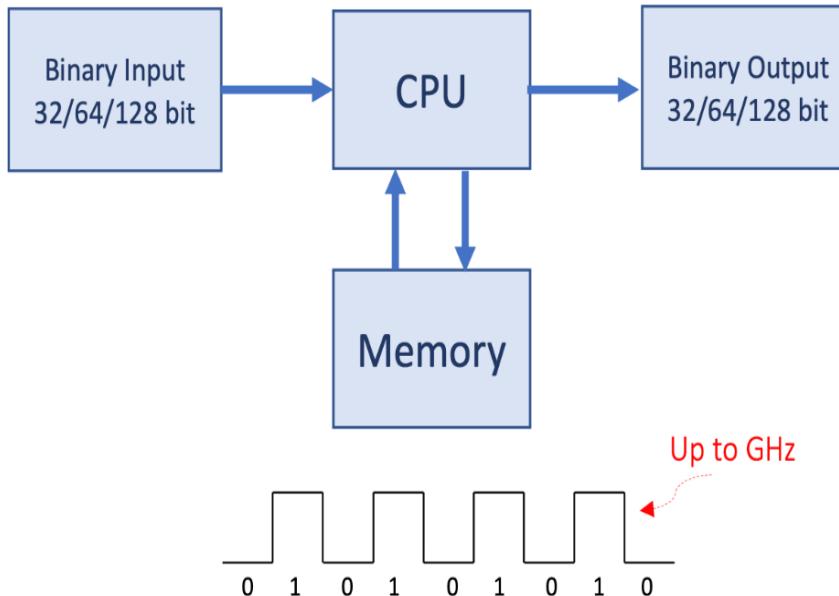
- Local perception and decision-making
- Peer-to-peer coordination
- Emergent collective behavior
- Robustness and scalability



# Neuromorphic Computing

## *von Neumann architecture*

Transistors switch in nanoseconds

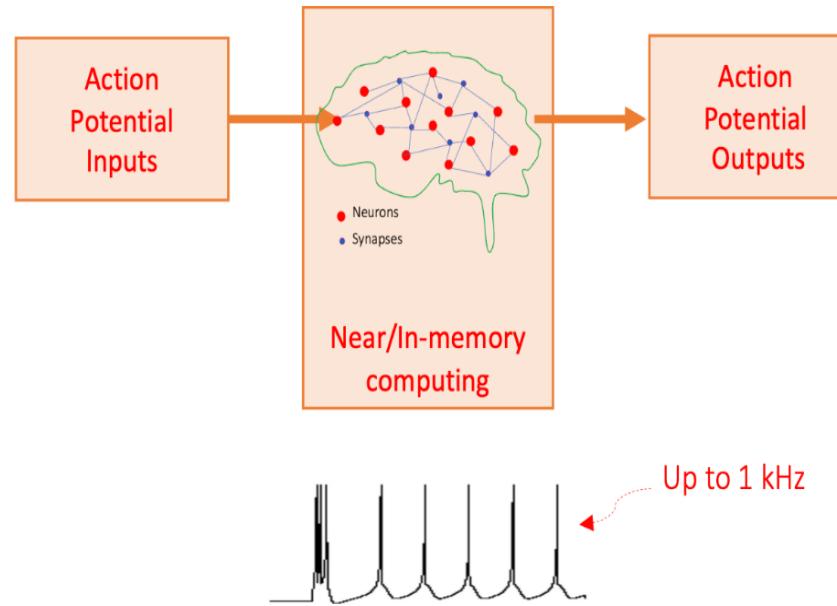


Signal in von Neumann architecture

Serial computing, separated memory and computing unit, and digital information processing

## *Neuromorphic Computing*

Neurons switch in milliseconds



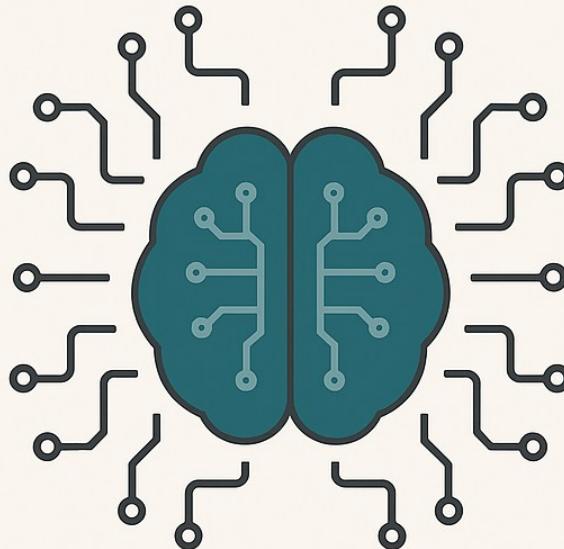
Signal in neuromorphic architecture

In-memory computing, analog computing, and parallel computing/

- SNN: synaptic weights and neuron behaviors usually are not fixed but evolve with timing-dependent dynamics.
- ANN: The synaptic weights and neuron functions are static after training

# Neuromorphic Computing

## NEUROMORPHIC COMPUTING



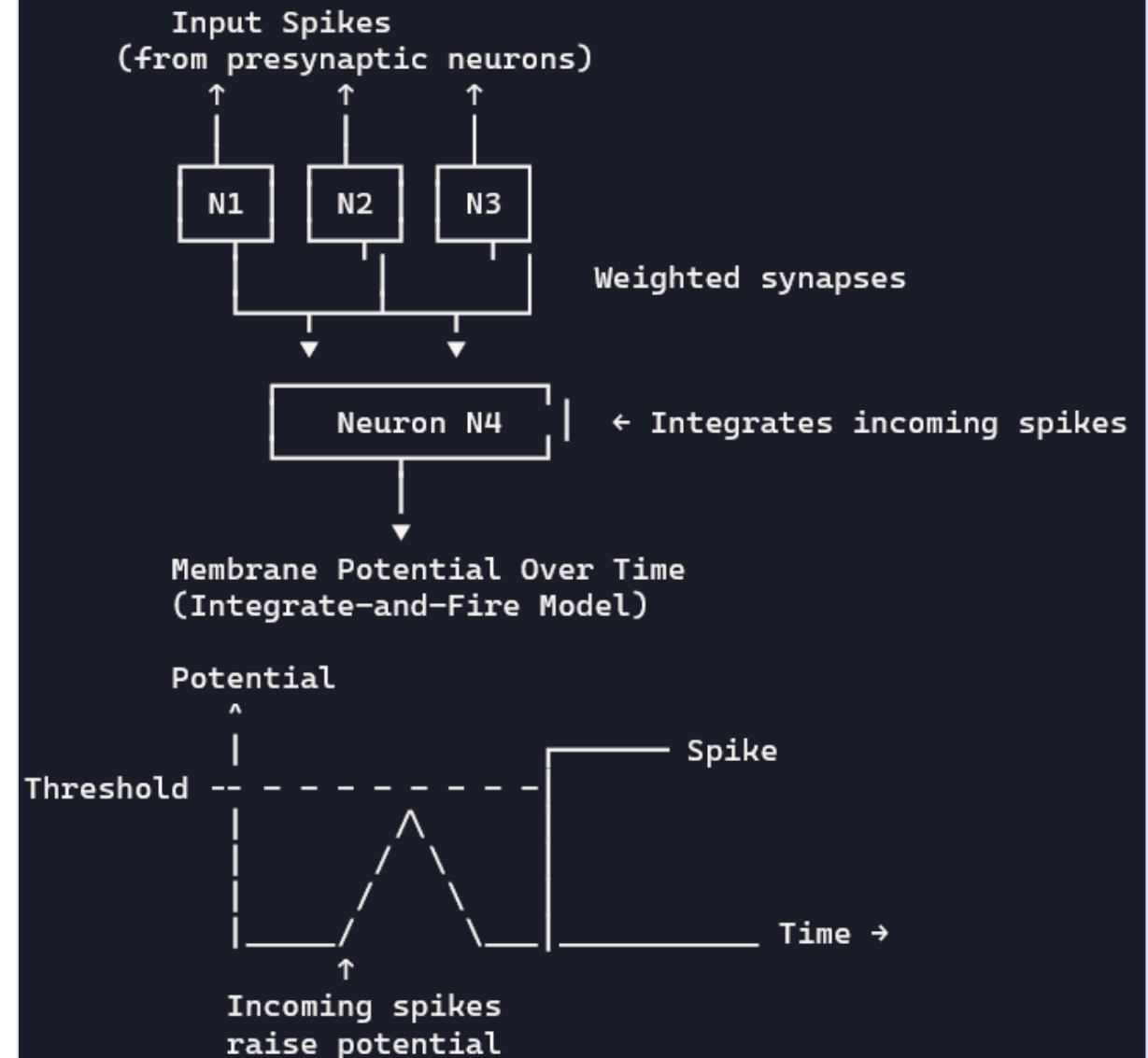
SPIKING  
NEURAL  
NETWORKS



EVENT-  
DRIVEN



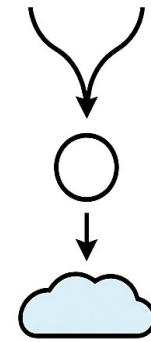
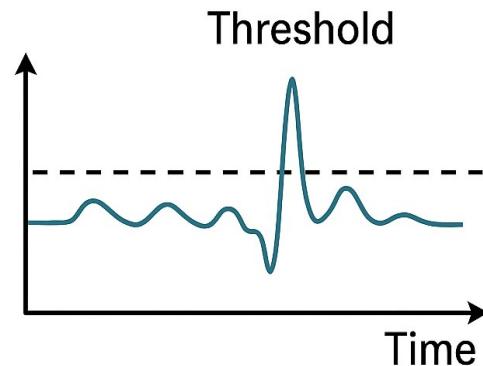
LOW  
POWER



# Neuromorphic Computing

## Event-Driven Phenomena in Spiking Neural Networks

Stimulus detected

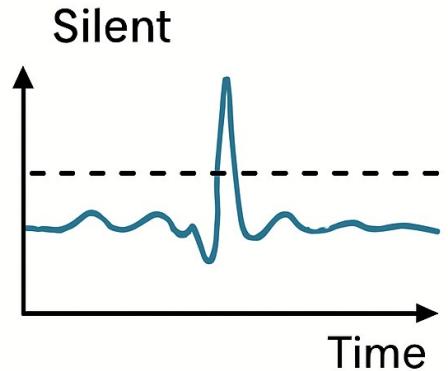


SPIKING NEURAL NETWORKS

EVENT-DRIVEN



## Event-Driven Behavior of a Spiking Neural Network

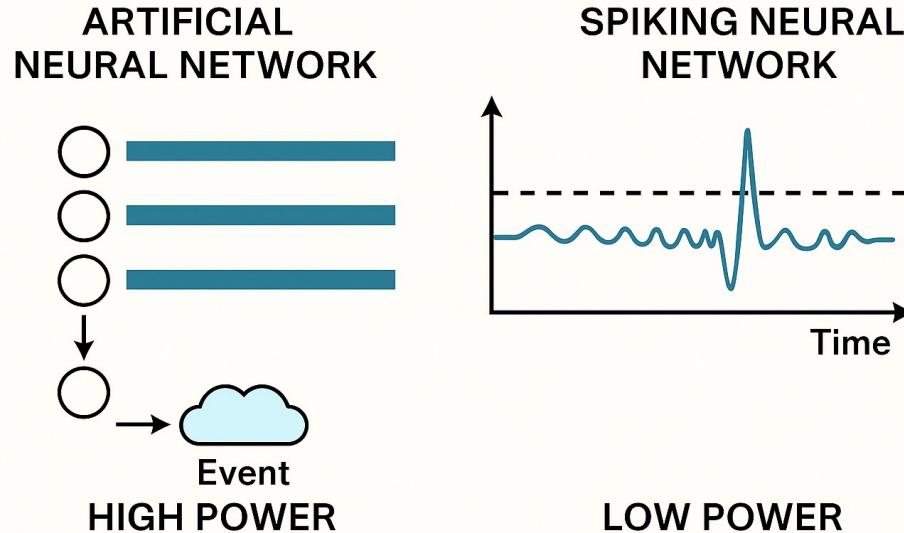


LOW POWER

SNNs operate **only when events occur**—specifically, when a neuron receives a spike, and its membrane potential crosses a threshold. This is fundamentally different from traditional neural networks, which process data continuously across all neurons.

# Neuromorphic Computing

## Time-Driven vs. Event-Driven Neuron Activity

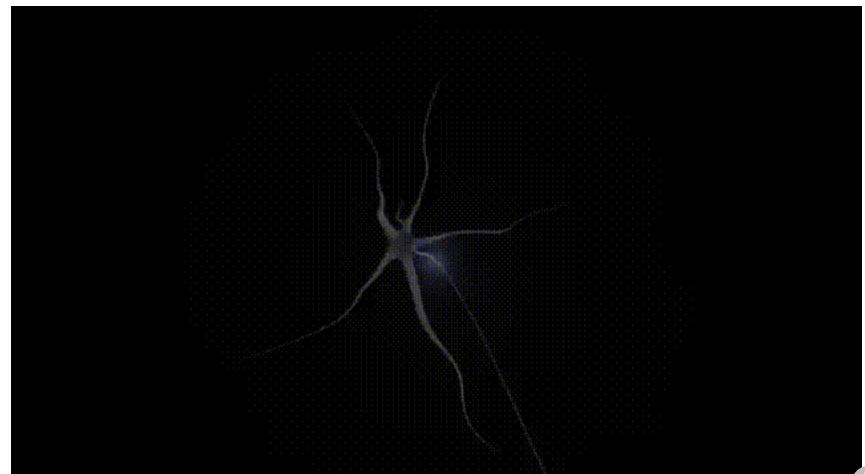


| Feature                 | ANN (Time-Driven) | SNN (Event-Driven) |
|-------------------------|-------------------|--------------------|
| Neuron Activation       | Continuous        | Sparse             |
| Computation Trigger     | Clock cycles      | Input spikes       |
| Memory Access           | Frequent          | On-demand          |
| Power Consumption       | High              | Low                |
| Biological Plausibility | Low               | High               |

ANNs process data in fixed time steps across all neurons, regardless of whether meaningful input is present.

SNNs only activate neurons when an input spike occurs—computation is triggered by events, not time.

→ SNNs avoid unnecessary computation, saving energy.



# Sparsity in Neural Networks

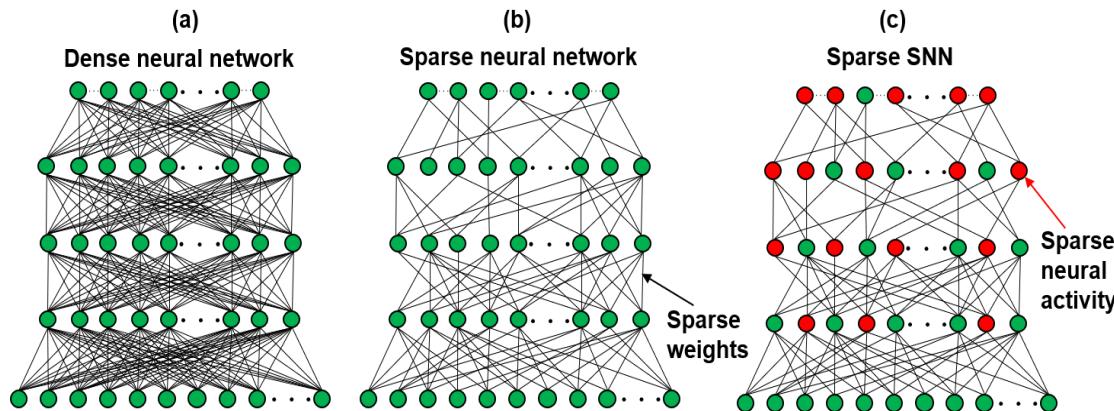
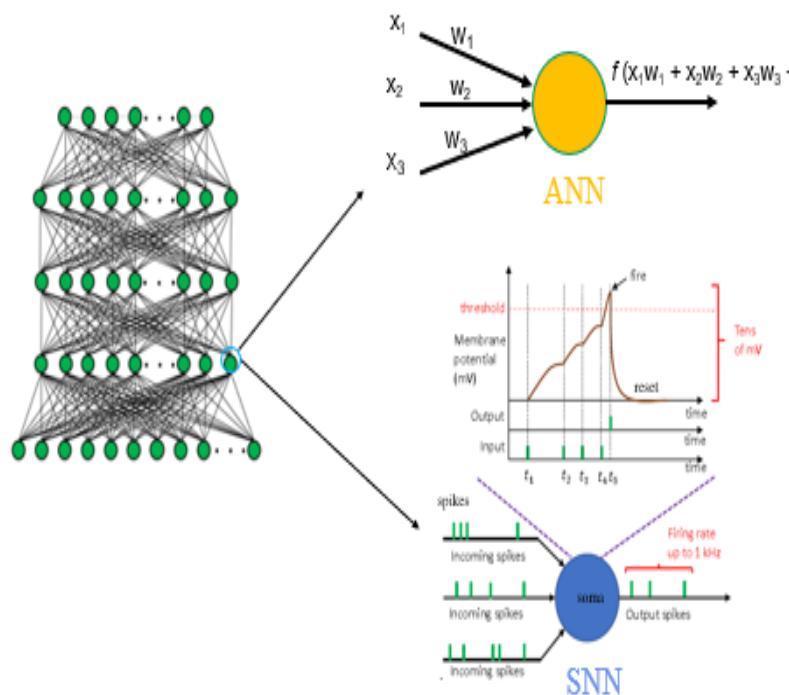
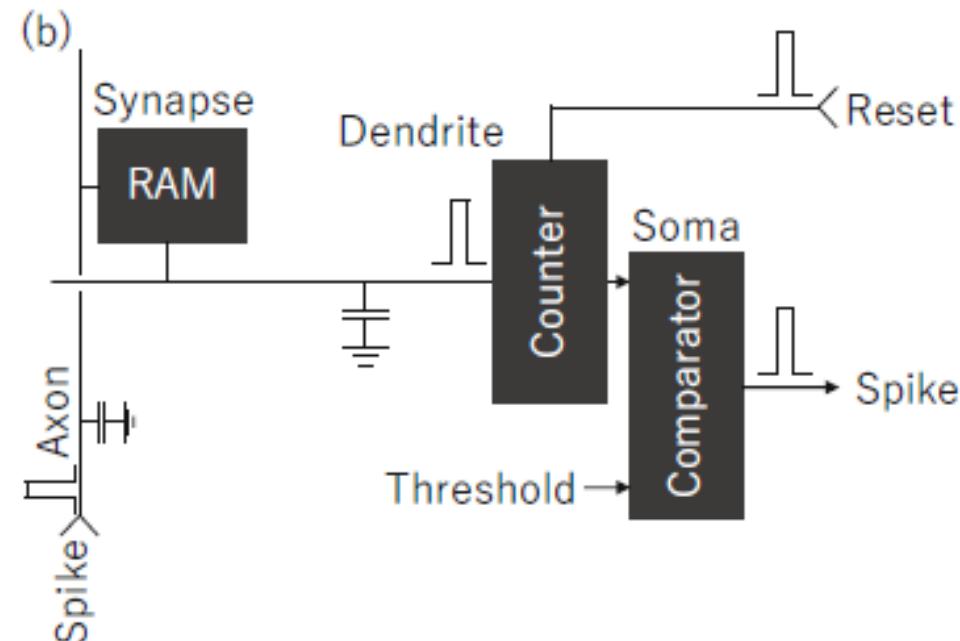


Illustration of sparsity in neural network

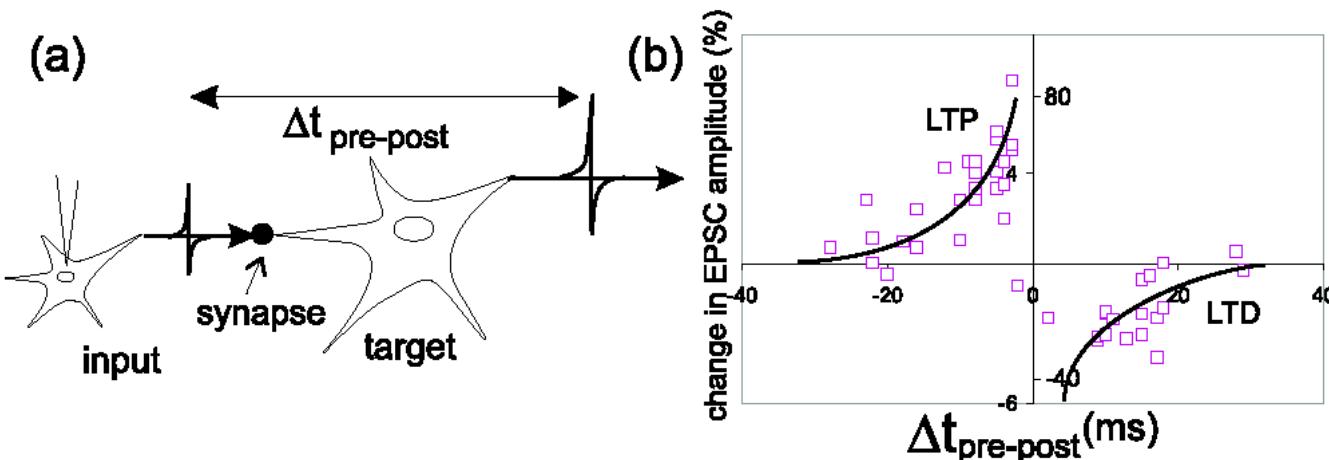


- Only 0.5% to 2% of neurons in the neocortex are active at any time [Lennie 2003]
- Only 1% to 5% of connections exist between two connected layers in the neocortex and 30% of those connections change every few days [Holmgren 2003]

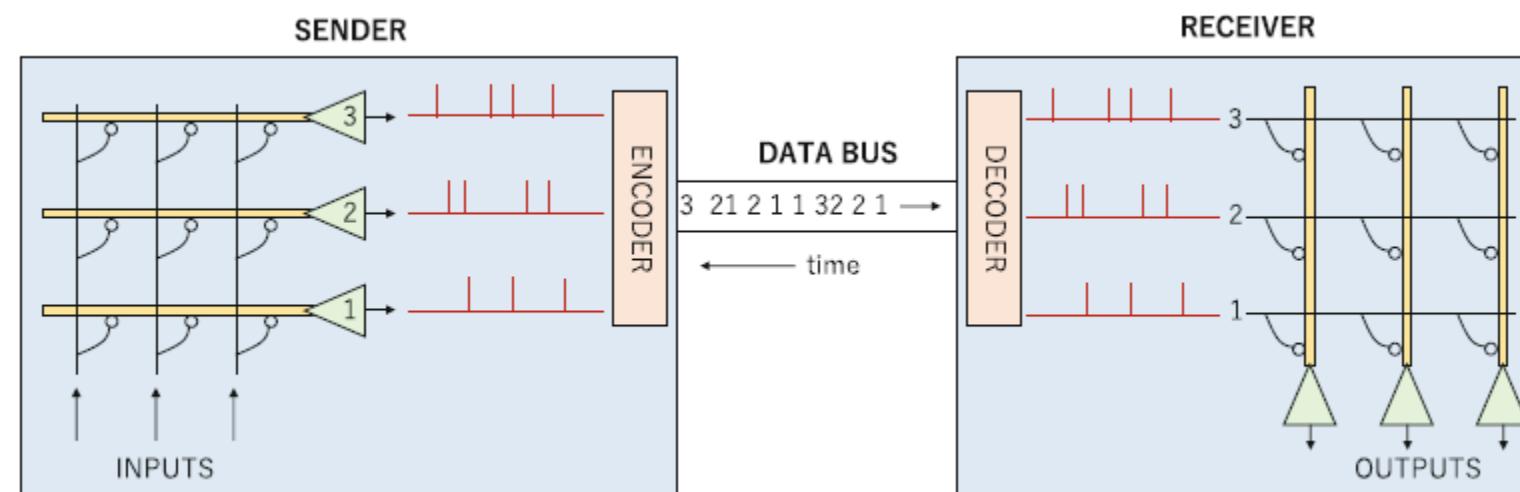


# Neuron Learning & AER

- Learning rules based on STDP specify changes in **synaptic strength** depending on the **time interval** between each pair of presynaptic and postsynaptic events.

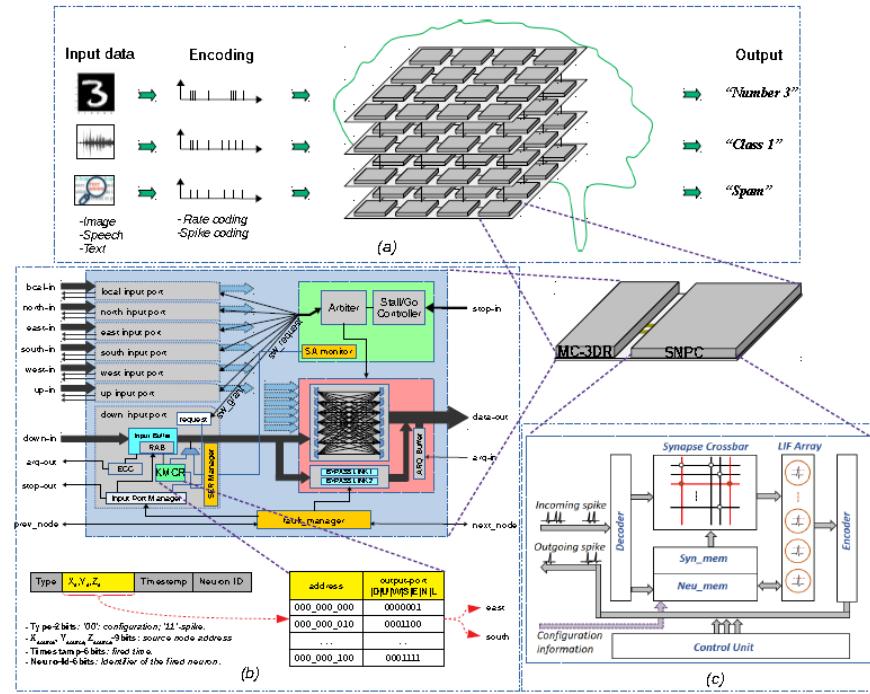
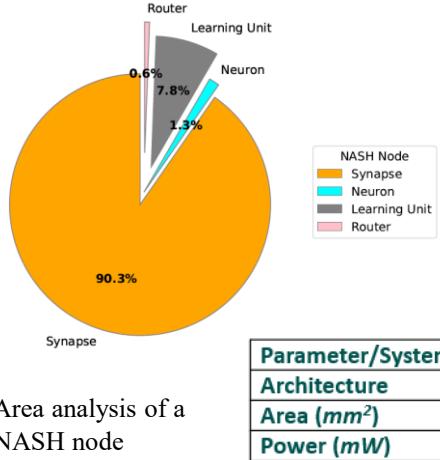
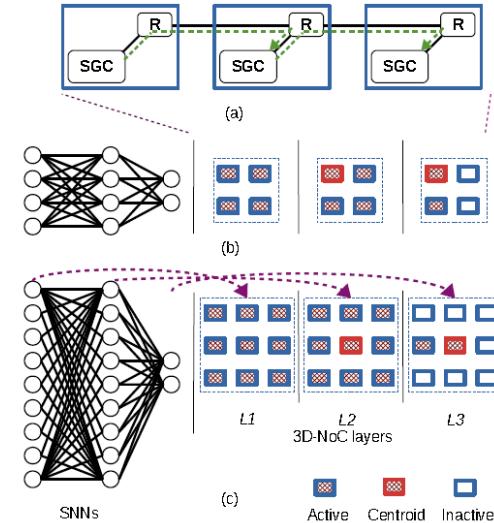
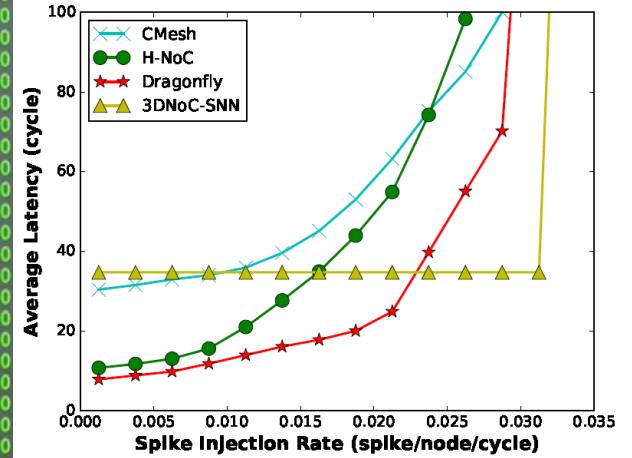


- If the **presynaptic** neuron fire **before** the **postsynaptic** neuron within a preceding 20ms, LTP occurs
- If the **presynaptic** neuron fire **after** the **postsynaptic** neuron within the following 20ms, LTD occurs

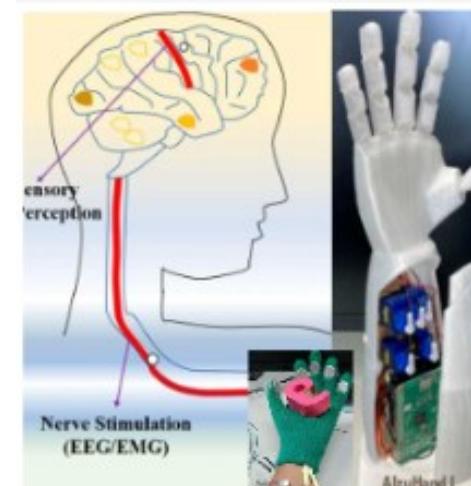
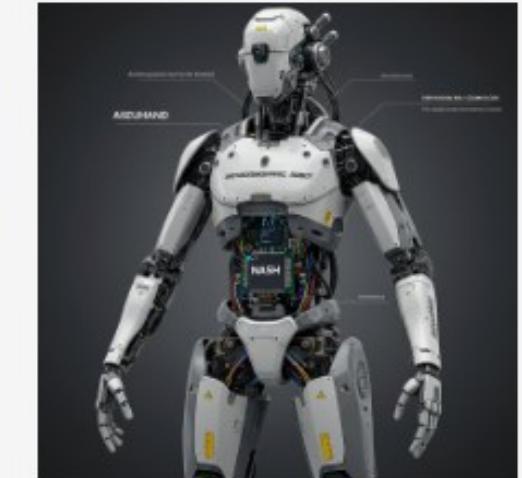


Address-event  
representation (AER)  
protocol

# Low-power 3D-NoC-Baded Neuromorphic SoC

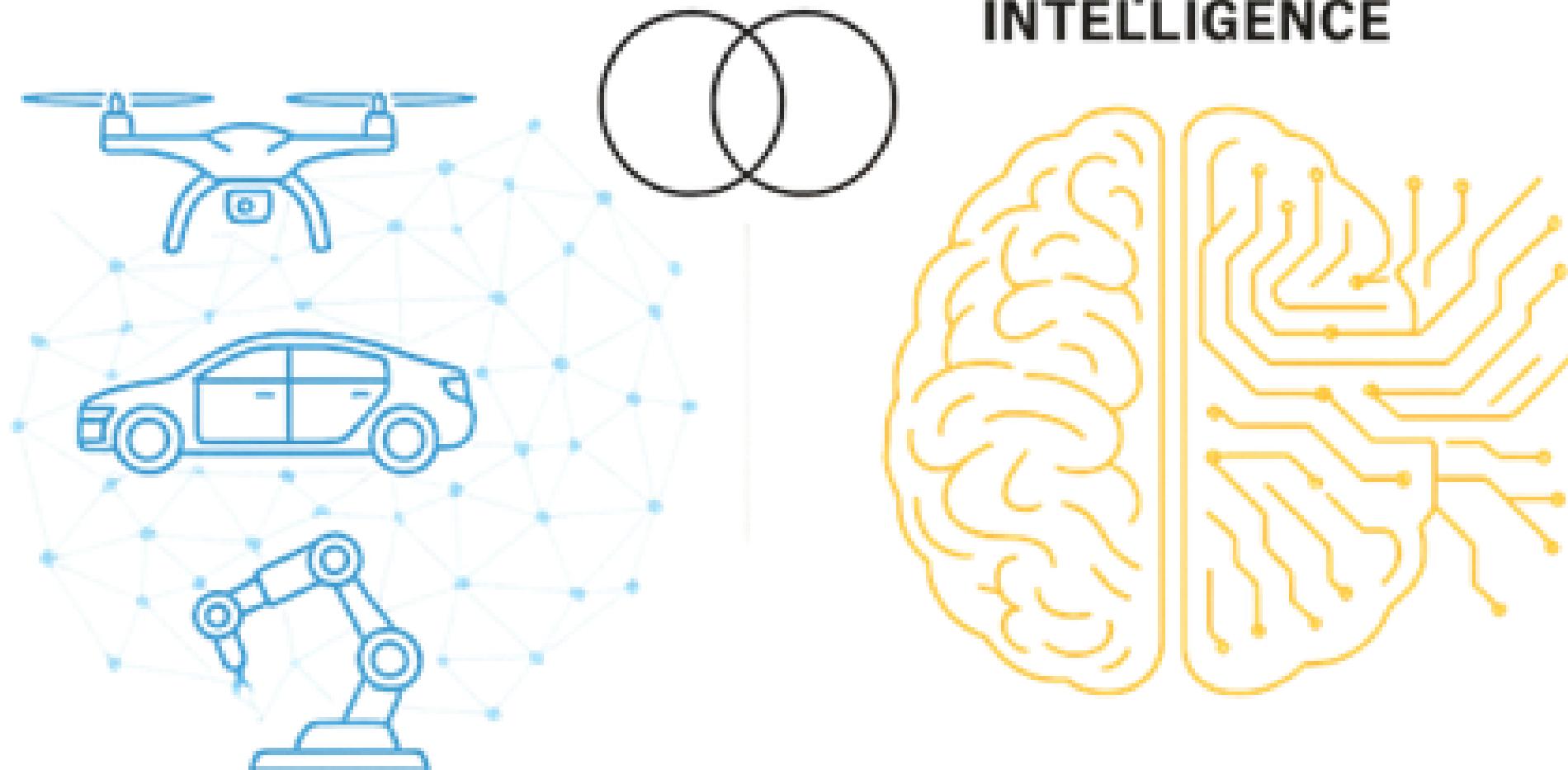


## Evaluation Result



# Distributed Autonomy + Neuromorphic Intelligence

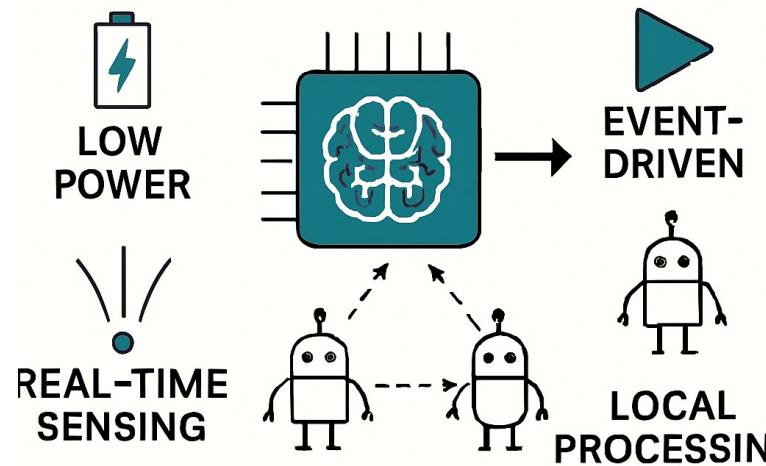
## CONVERGENCE DISTRIBUTED AUTONOMY + NEUROMORPHIC INTELLIGENCE



# Distributed Autonomy + Neuromorphic Intelligence

## How neuromorphic principles enhance distributed agents

### How Neuromorphic Principles Enhance Distributed Agents



### Distributed Autonomy

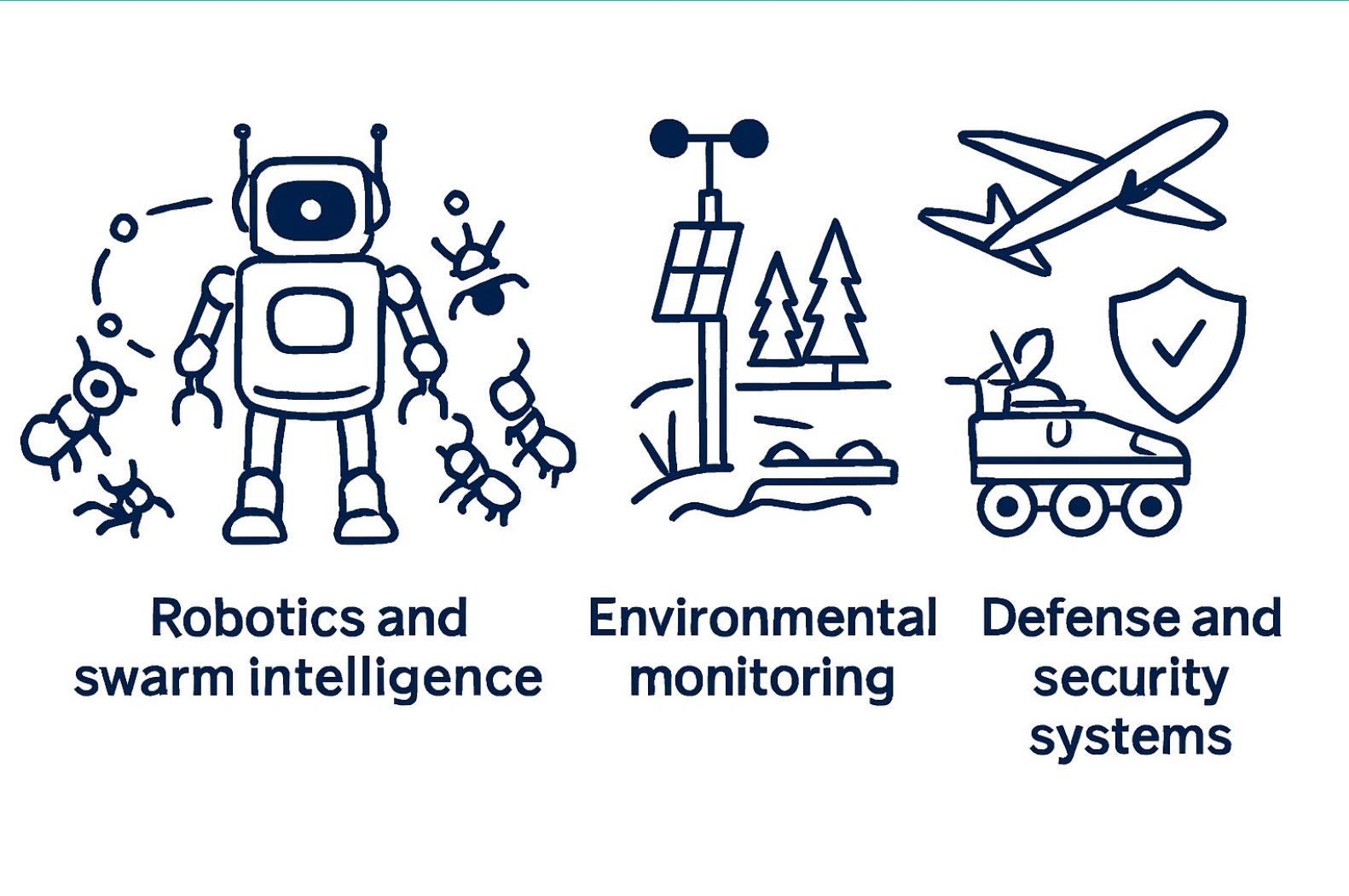
- ✓ Event-Driven Computation
- ✓ Spiking Neural Networks (SNNs)
- ✓ Local Learning and Adaptation)

| Feature           | Traditional Agent | Neuromorphic Agent |
|-------------------|-------------------|--------------------|
| Computation Model | Continuous        | Event-driven       |
| Power Consumption | High              | Ultra-low          |
| Learning          | Centralized       | Local & adaptive   |
| Communication     | Bandwidth-heavy   | Sparse & efficient |
| Scalability       | Limited           | High               |

- ✓ Low-Power Hardware Integrator
- ✓ Scalable Decentralized Intelligence

# Applications and Case Studies

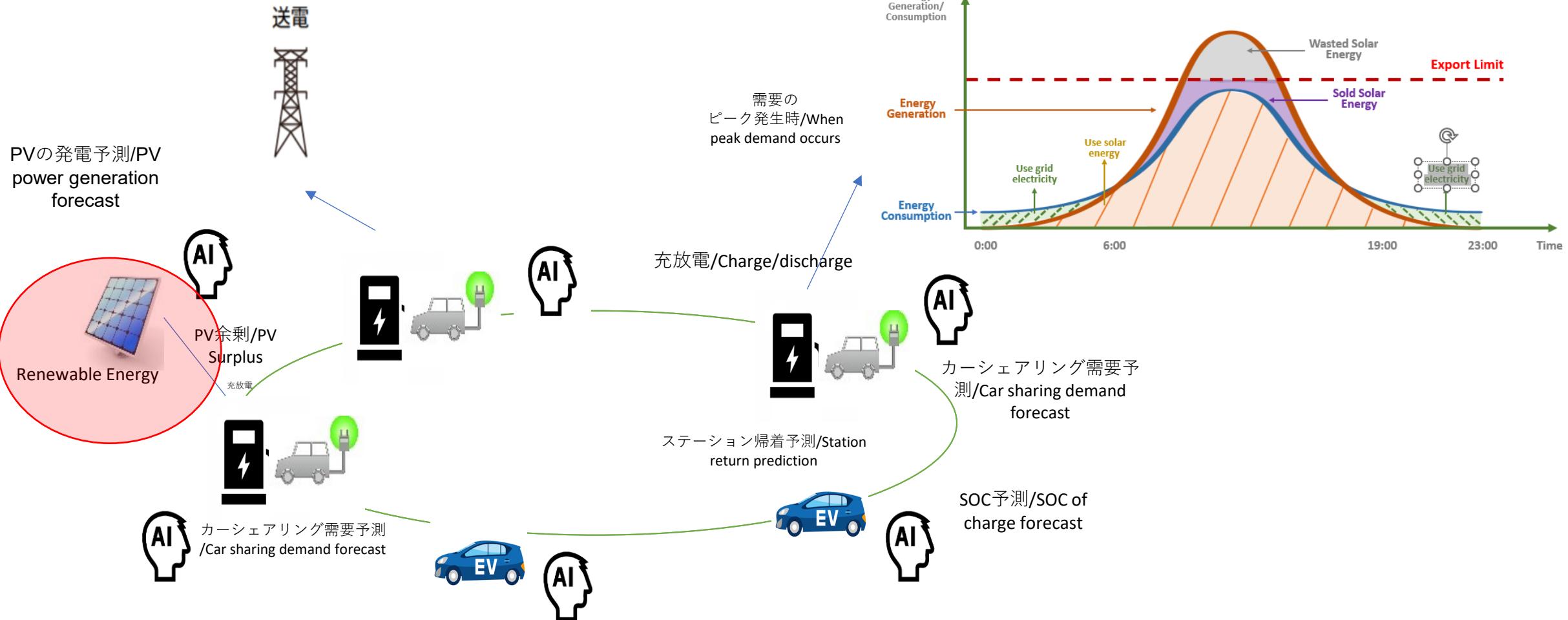
- Robotics and swarm intelligence
- Robotics and swarm intelligence
- Environmental monitoring
- Space and planetary exploration
- Defense and security systems



# Real-World Deployment 1: Intelligent Off-Grid Energy Storage Powered by Distributed EV Autonomy

# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

## Vision and Motivation/ビジョンと動機



# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

## System Overview

### Solar panels

Average efficiency:  
20–22% efficient.



① Store & Record harvested energy amount

### Battery management system

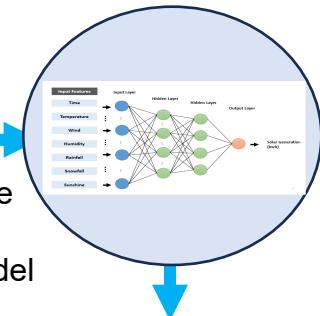


② Upload data to the cloud

### Cloud server



### Inference server



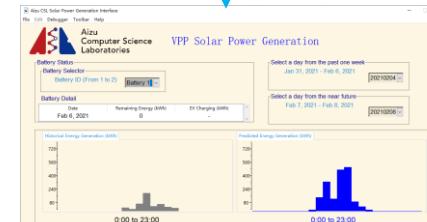
③ Read and transmit data



### Weather API

④ Transmit a) weather information in the past (used for model training) and b) future weather forecast (used for model inference)

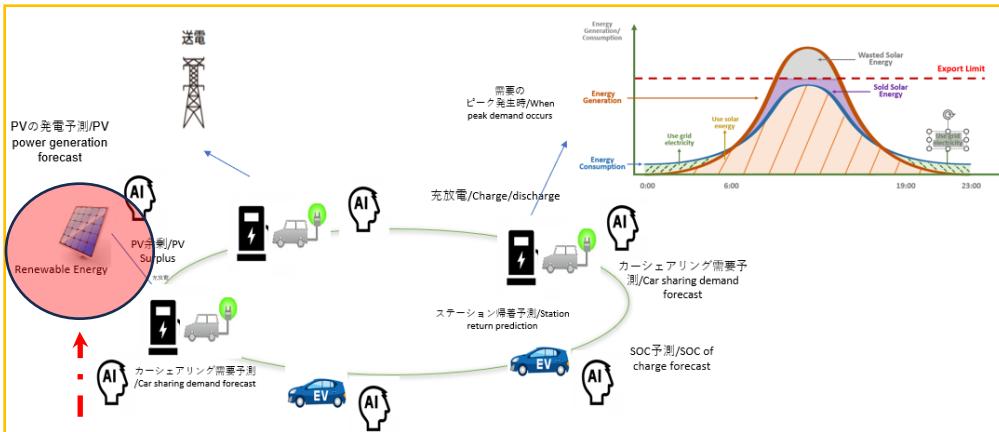
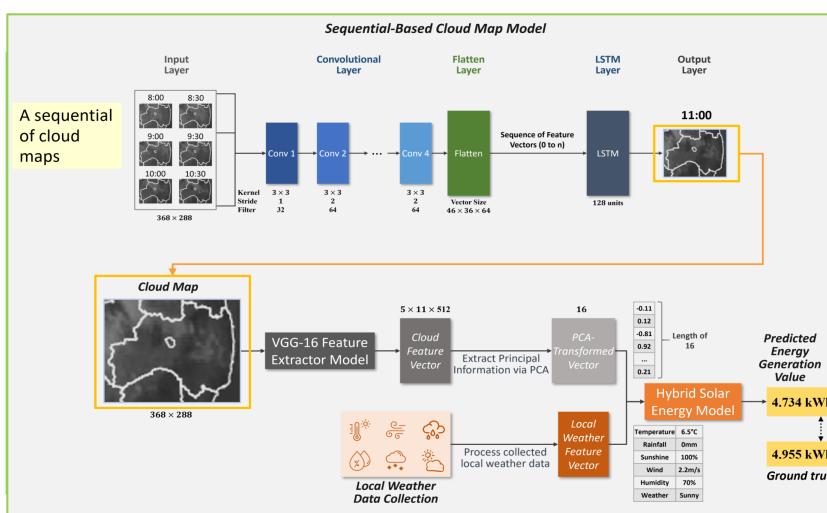
### Software tool for solar power generation prediction



⑤ Predict the solar energy generation and display the result on the UI.

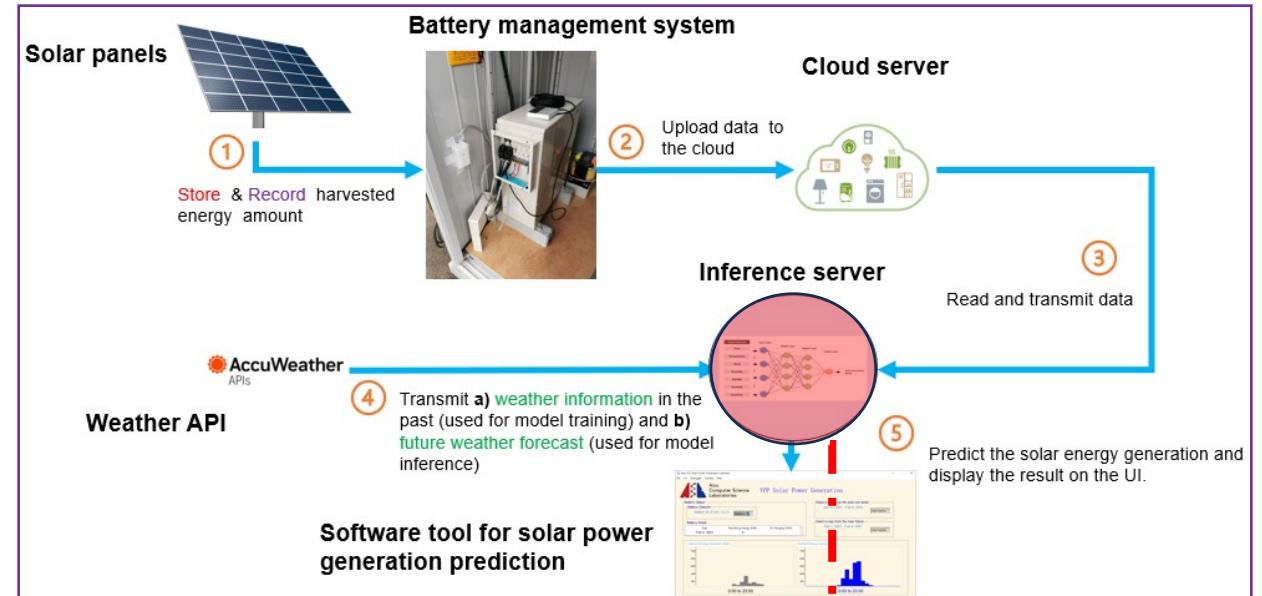
# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

## System Overview

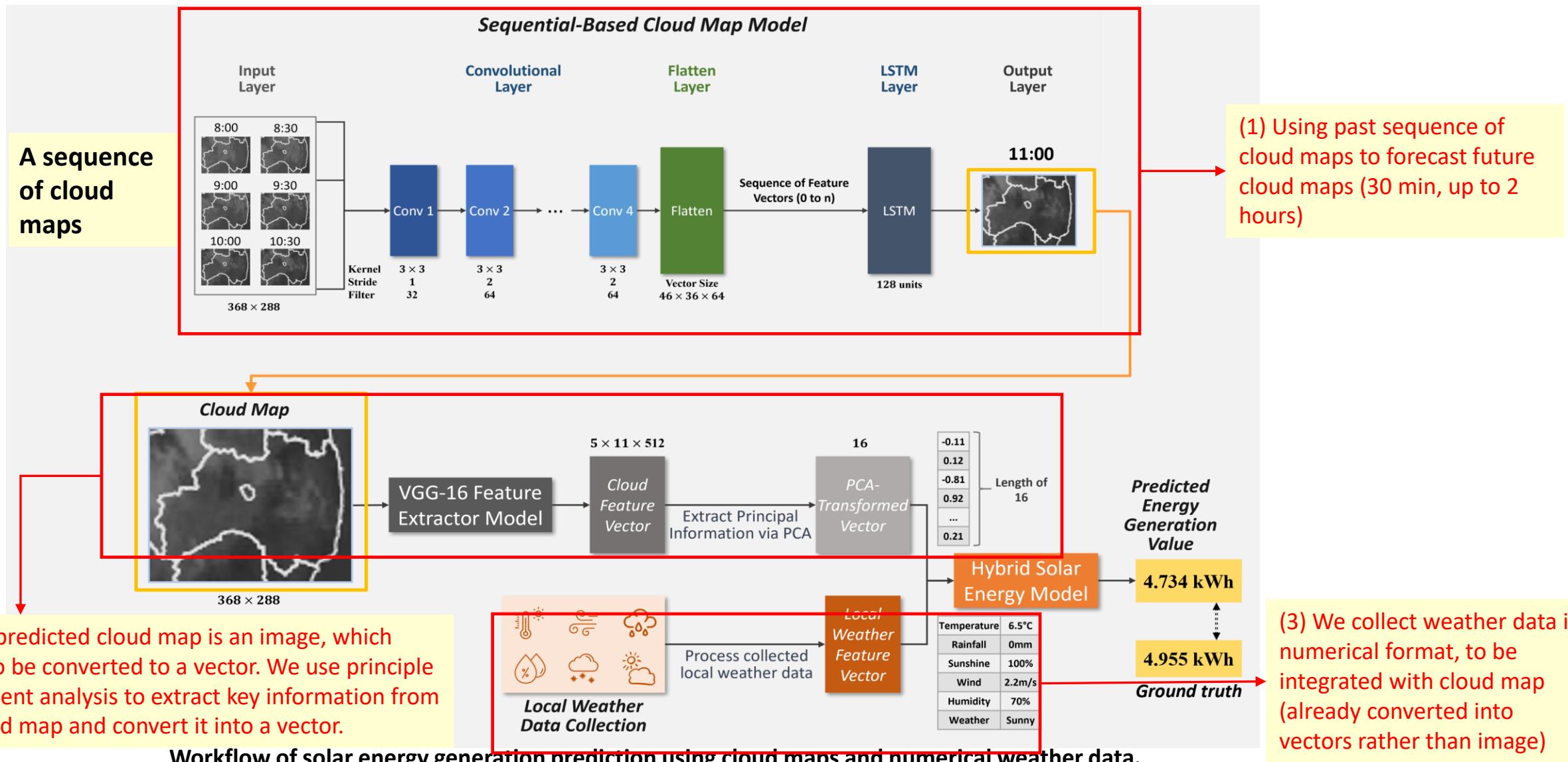


Workflow of solar energy generation prediction using cloud maps and numerical weather data.

## 1. PVの発電予測/PV power generation forecast



# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

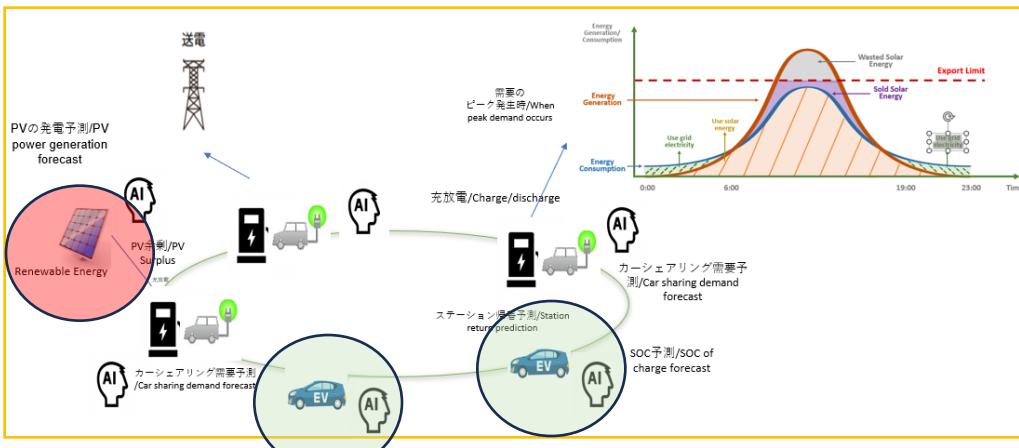


For cloud map: Japan Meteorological Agency, "Weather Satellite Himawari," accessed Nov. 25, 2025, <https://www.jma.go.jp/bosai/map.html>

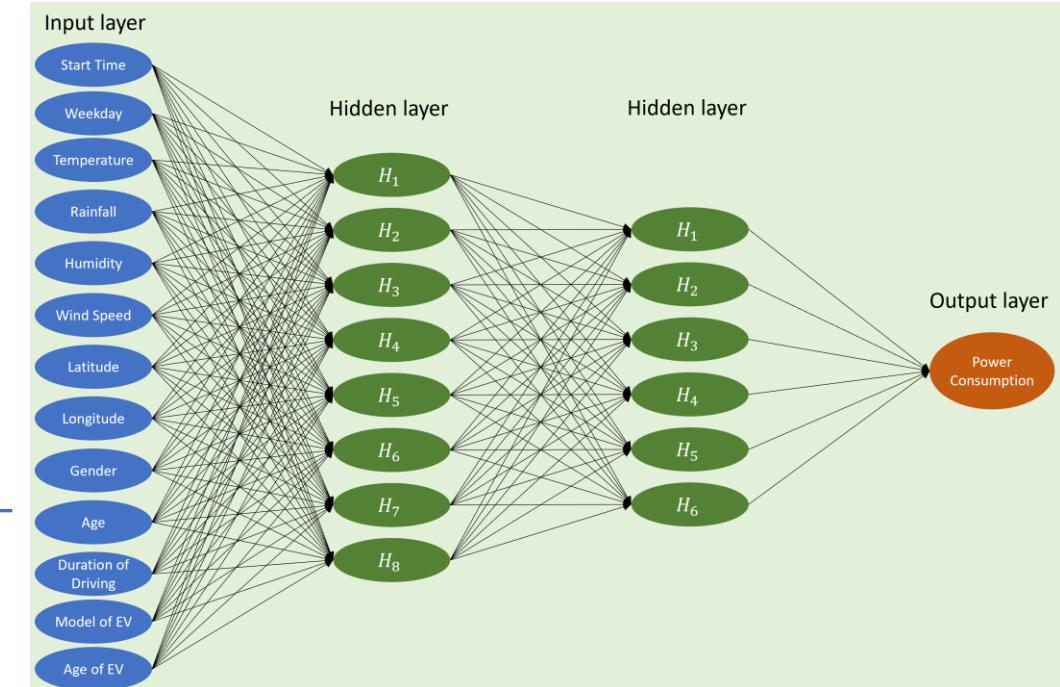
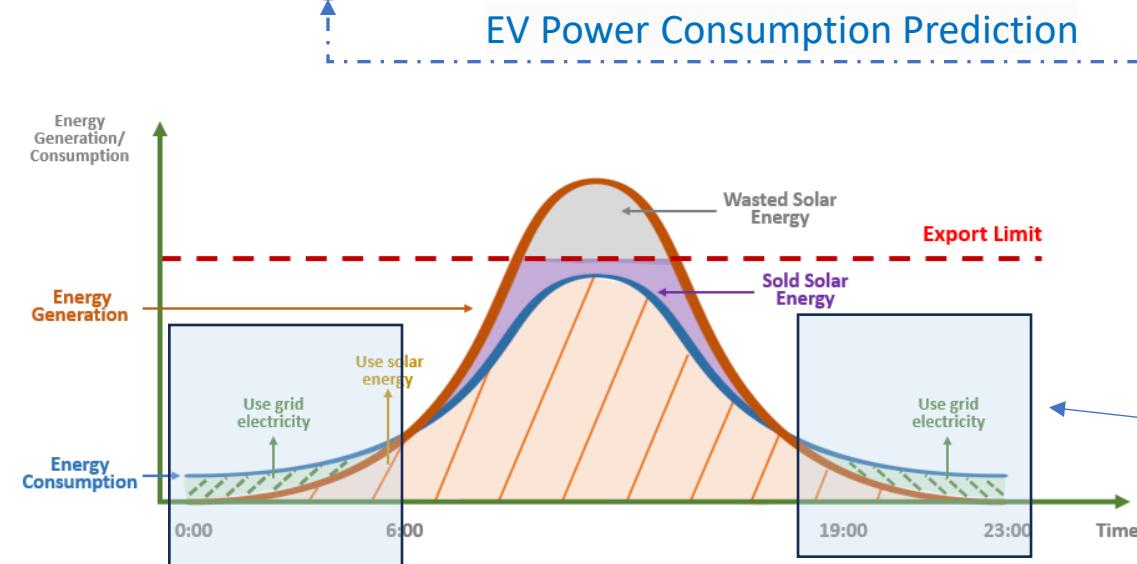
For weather data: Japan Meteorological Agency, "Historical weather data," accessed Nov. 25, 2025, <https://www.data.jma.go.jp/risk/obssl/index.php>

# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

## System Overview



## 2. EV Power Consumption Prediction



EV discharge period

# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

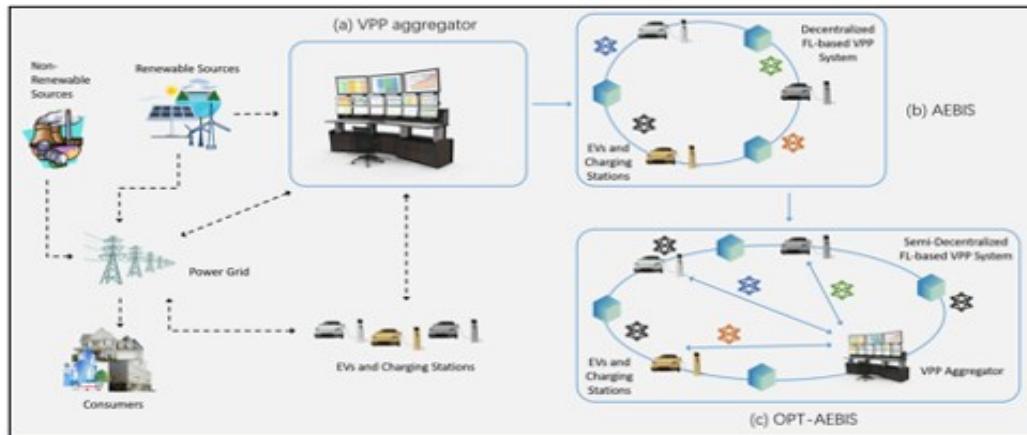


Fig. 1. Virtual Power Plant (VPP): (a) conventional VPP aggregator, (b) AEBIS, (c) optimized AEBIS (O-AEBIS).



Fig. 5. A demonstration of the energy management system based on our system named AEBIS and its optimized version O-AEBIS.

benab@u-aizu.ac.jp

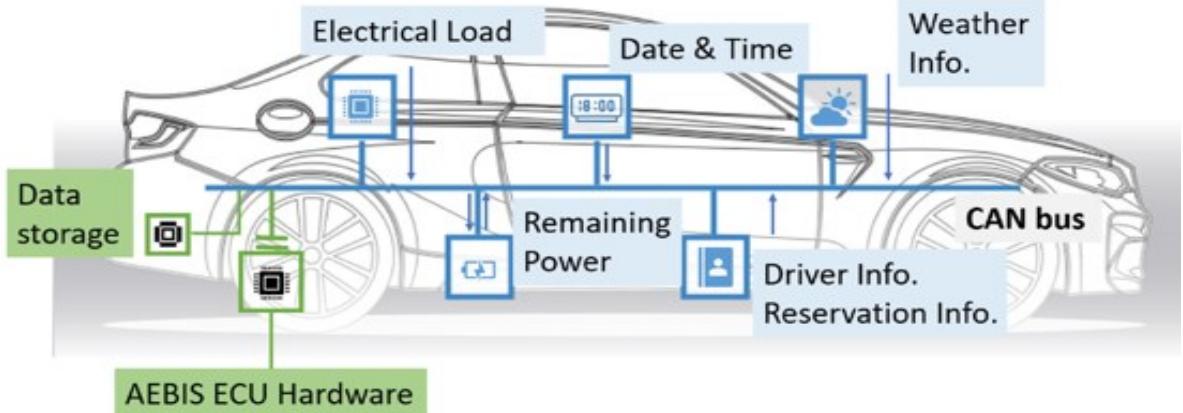


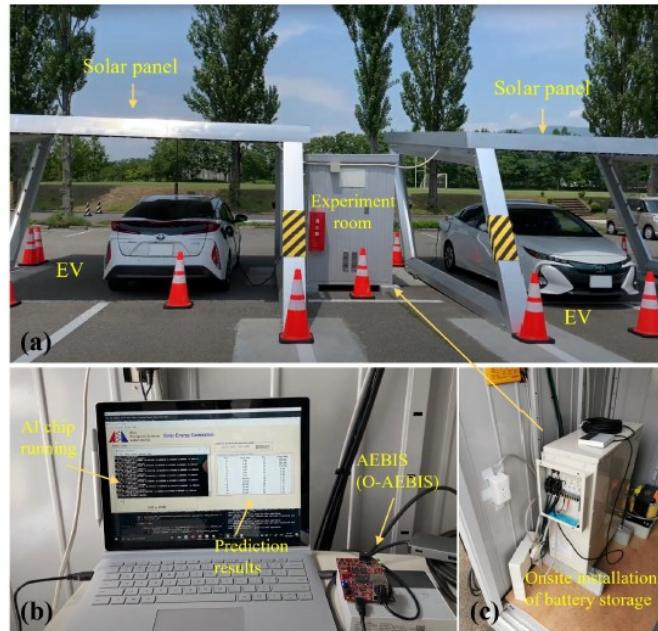
Fig. 2. Neural Network for Power Consumption Prediction of Electric Vehicle (EV).

| Name            | BRAM_18K        | DSP48E | FF    | LUT   |
|-----------------|-----------------|--------|-------|-------|
| Expression      | -               | -      | 0     | 493   |
| Instance        | -               | 5      | 414   | 950   |
| Memory          | 2               | -      | 320   | 20    |
| Multiplexer     | -               | -      | -     | 627   |
| Register        | -               | -      | 454   | -     |
| Total           | 2               | 5      | 1188  | 2090  |
| Available       | 120             | 80     | 35200 | 17600 |
| Utilization (%) | 1               | 6      | 3     | 11    |
| Weights         | Memory required |        |       |       |
| Weights         | 568 Bytes       |        |       |       |
| Biases          | 60 Bytes        |        |       |       |
| Inputs          | 44 Bytes        |        |       |       |
| Total           | 672 Bytes       |        |       |       |

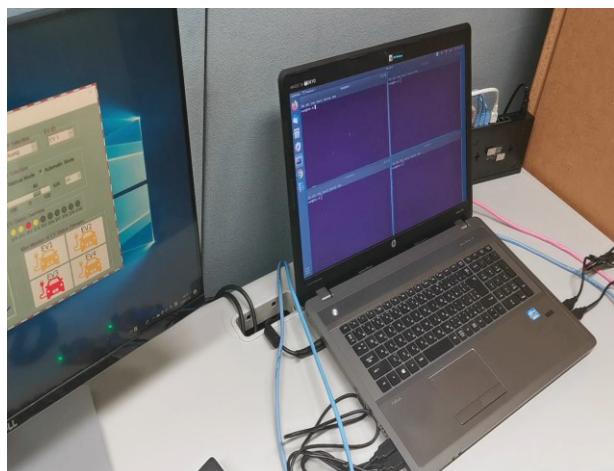
Fig. 6. Hardware complexity of power consumption prediction system on the Zynq-7010 FPGA. The system utilized 3% of the FF, 11% of the LUT, 6% of the DSP48, and approximately 1% 18k BRAM.

# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

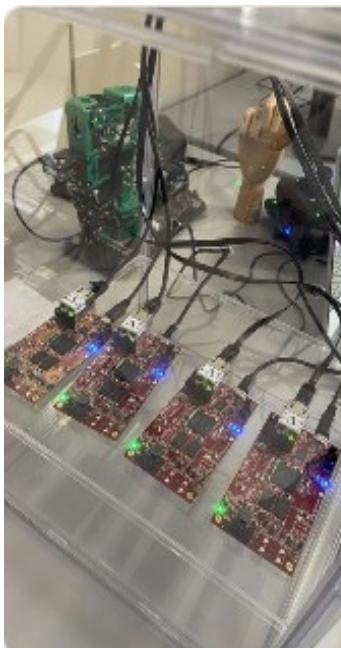
On-site Field Experiment, UoA, 2021



Software Tool – EV  
Charge/Discharge Status  
Display

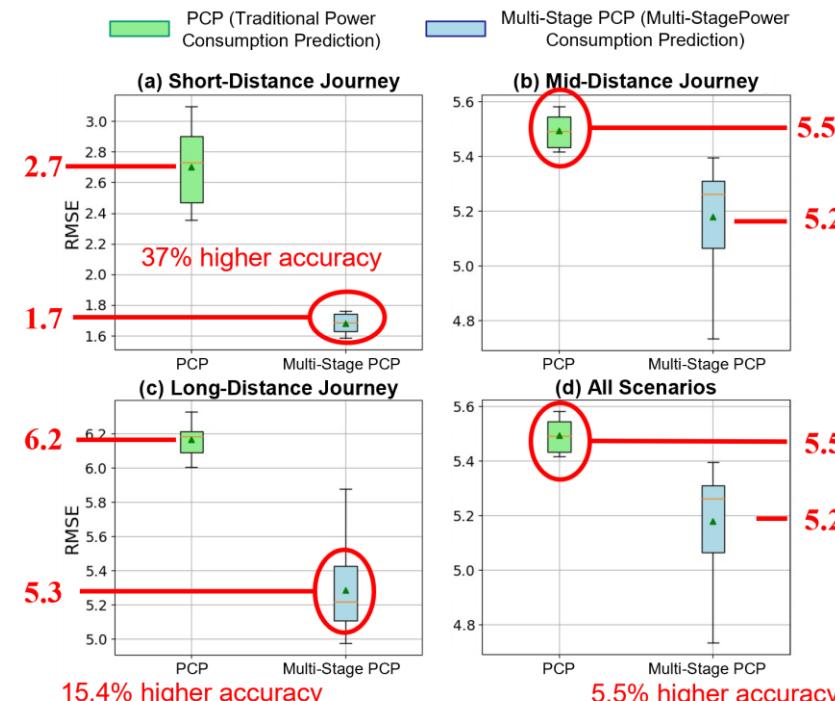


Hardware  
Experiments

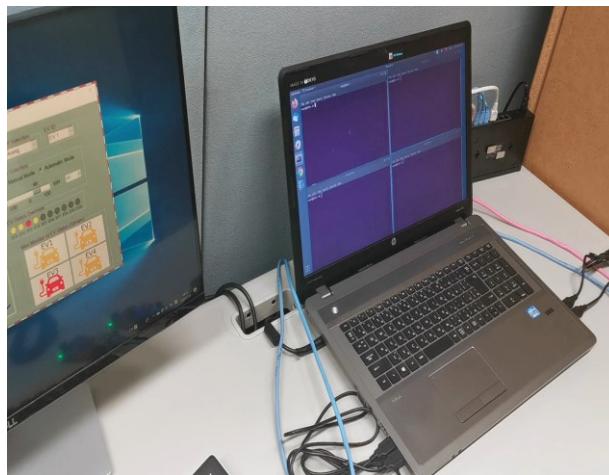


# Smart Solar Carport: Off-Grid Energy Storage with AI and EV

On-site Field Experiment, UoA, 2021



The multi-stage prediction method achieves better performance, increasing EV power consumption prediction accuracy by 5.5% across all scenarios compared to the baseline method.



## Cloud Map Prediction

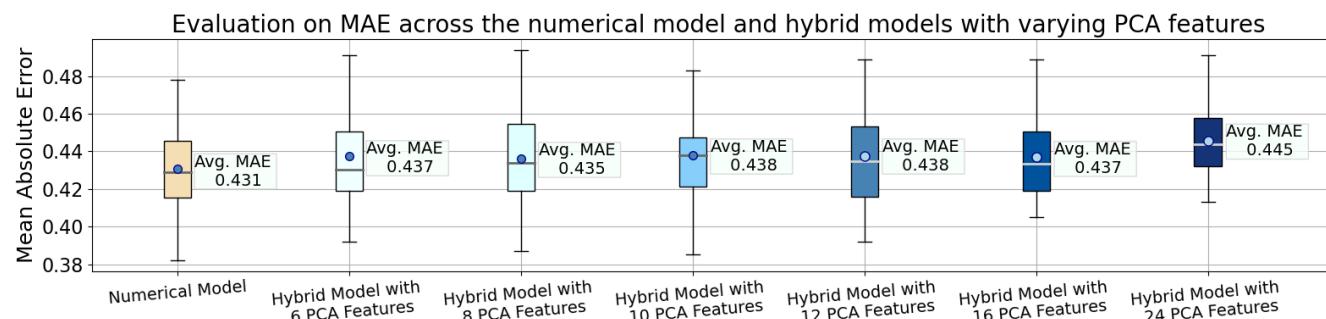
Table 2. Evaluation of the cloud prediction method using Fukushima cloud maps (comparative image pairs) [1].

| Forecast Interval | Avg. MSE | Avg. PSNR | Avg. SSIM |
|-------------------|----------|-----------|-----------|
| 30 minutes        | 277.30   | 23.75     | 0.893     |
| 1 hour            | 297.35   | 23.57     | 0.891     |
| 1.5 hours         | 309.49   | 23.53     | 0.892     |
| 2 hours           | 452.64   | 21.88     | 0.884     |

Table 3. Evaluation of the super-resolution-based cloud prediction method using Fukushima cloud maps (comparative image pairs) [1].

| Forecast Interval | Avg. MSE | Avg. PSNR | Avg. SSIM |
|-------------------|----------|-----------|-----------|
| 30 minutes        | 2056.39  | 16.52     | 0.909     |
| 1 hour            | 1906.75  | 16.87     | 0.914     |
| 1.5 hours         | 1863.41  | 16.68     | 0.916     |
| 2 hours           | 1578.94  | 17.89     | 0.926     |

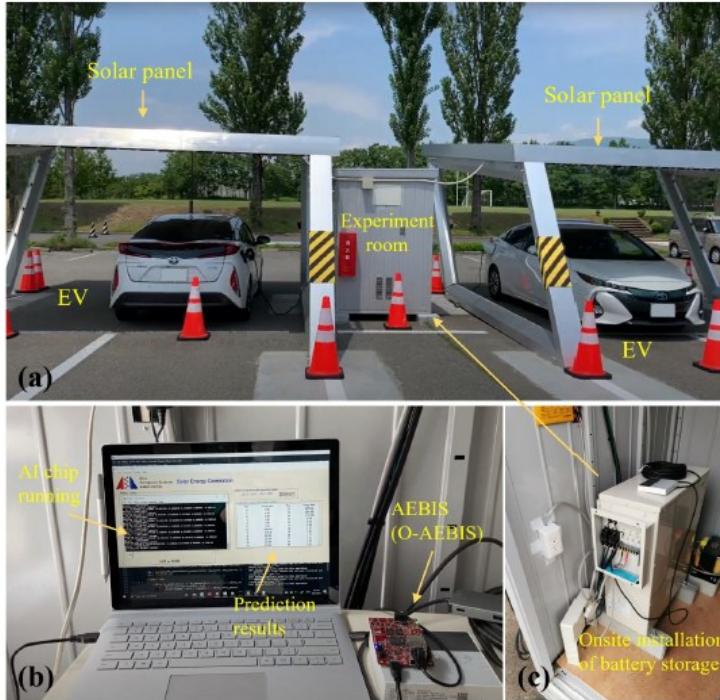
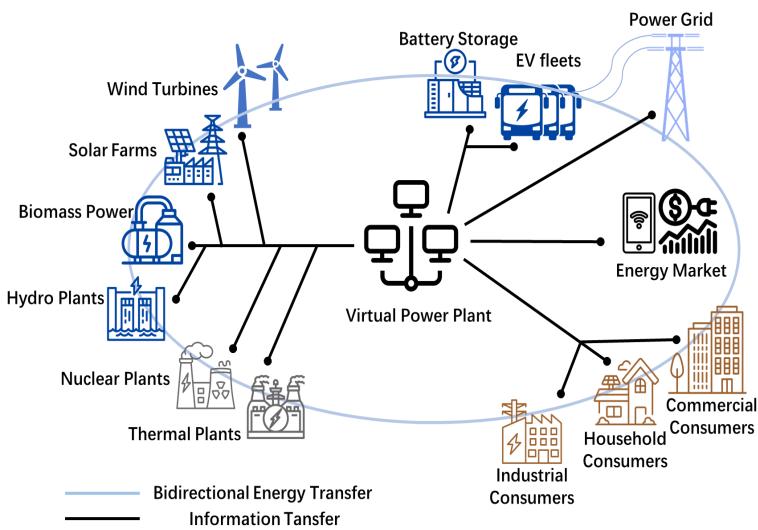
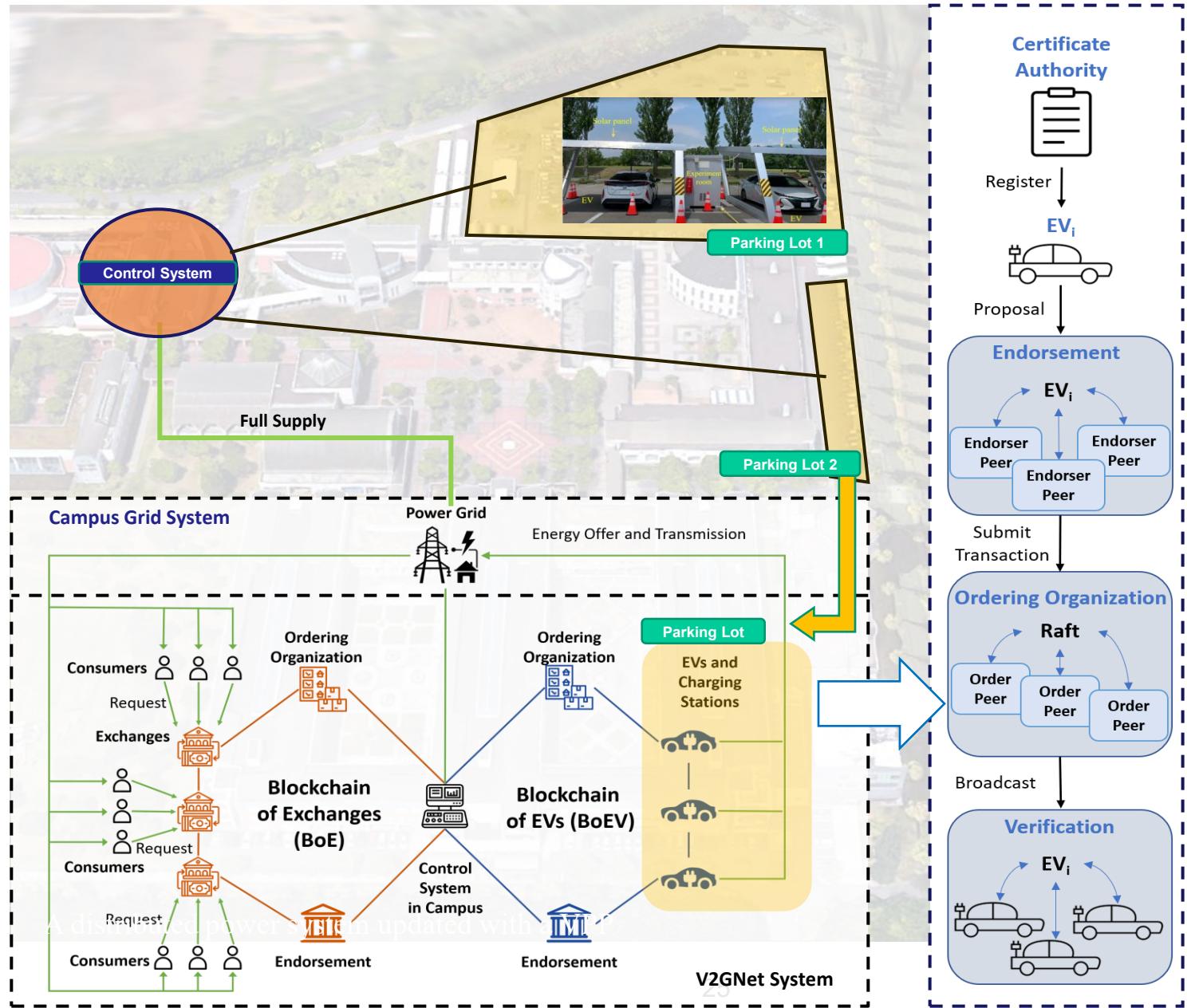
Robust performance of the cloud map prediction with high accuracy and structural similarity. The cloud map prediction benefits from super-resolution. Combining the cloud map with numerical meteorological data maintains the accuracy



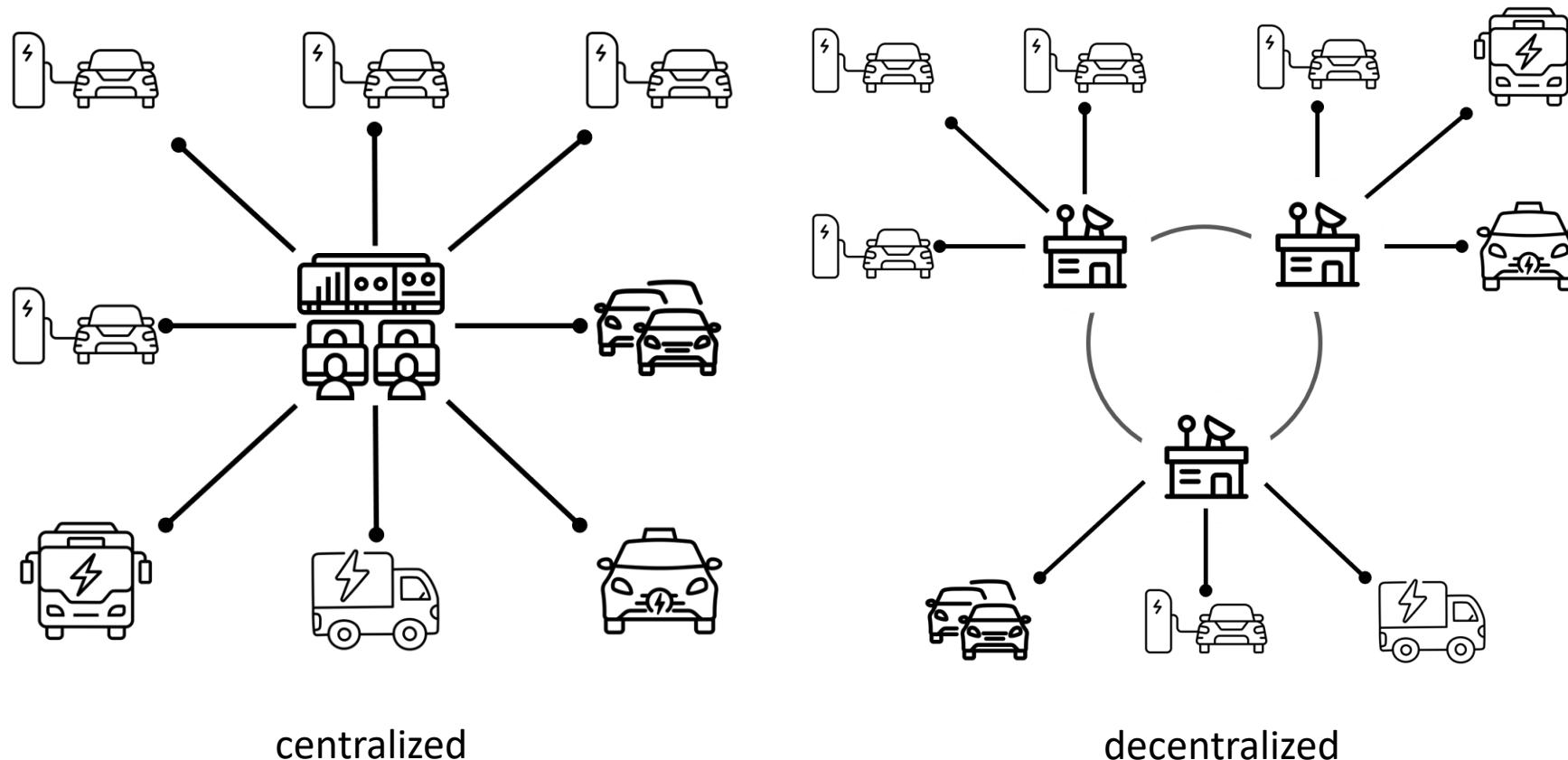
Solar Energy Generation Prediction

# AI Enabled Energy Trading in Distributed Ve2G Network

On-site Field Experiment, UoA, 2021

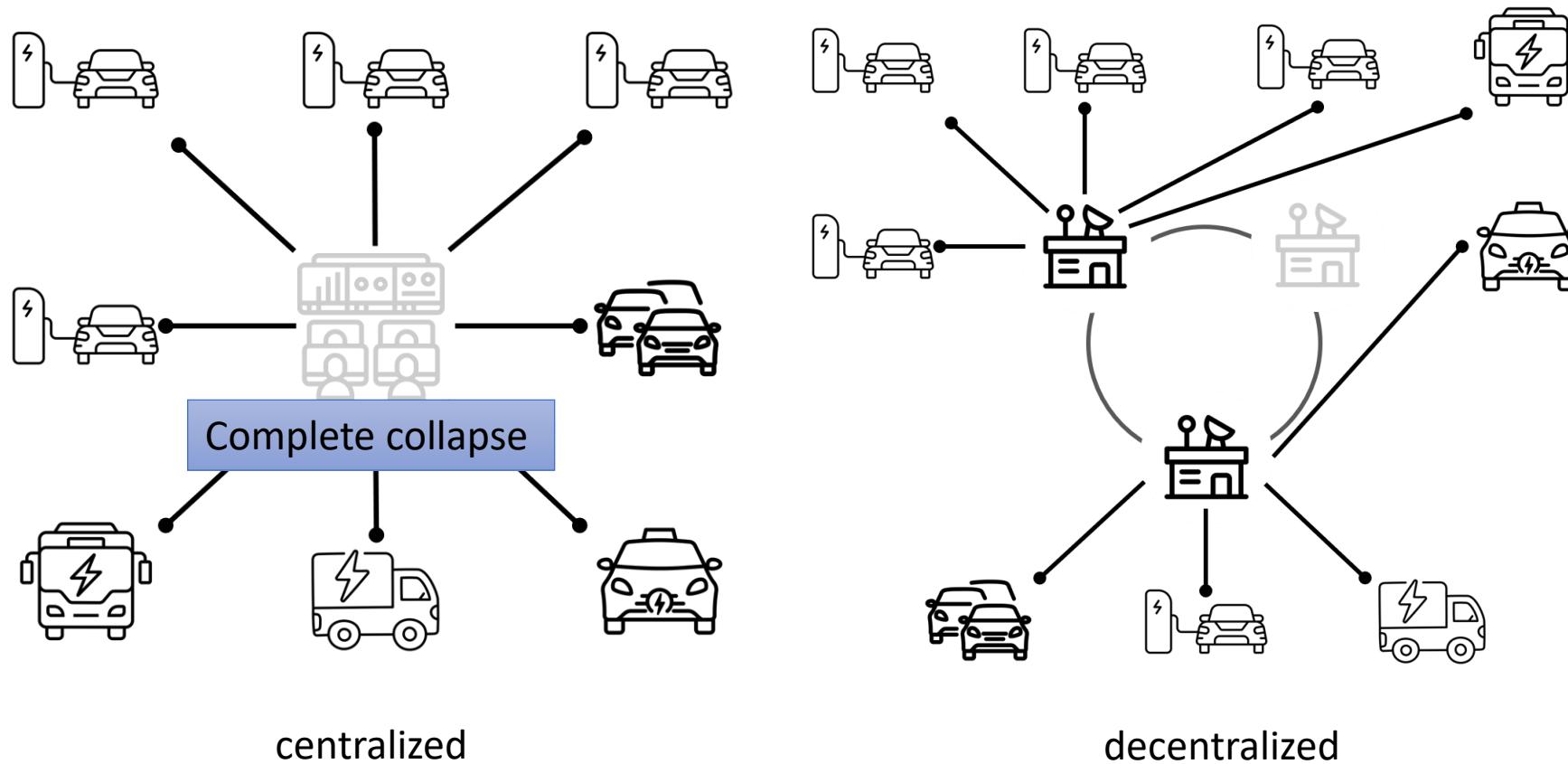


# V2G Energy Trading: Building Trust in the Grid



Centralized and decentralized energy trading system networks.  
Its objective is to optimize efficiency, security, privacy, and scalability.

# V2G Energy Trading: Building Trust in the Grid



Centralized and decentralized energy trading system networks. Its objective is to optimize efficiency, security, privacy, and scalability.

# V2G Energy Trading: Building Trust in the Grid

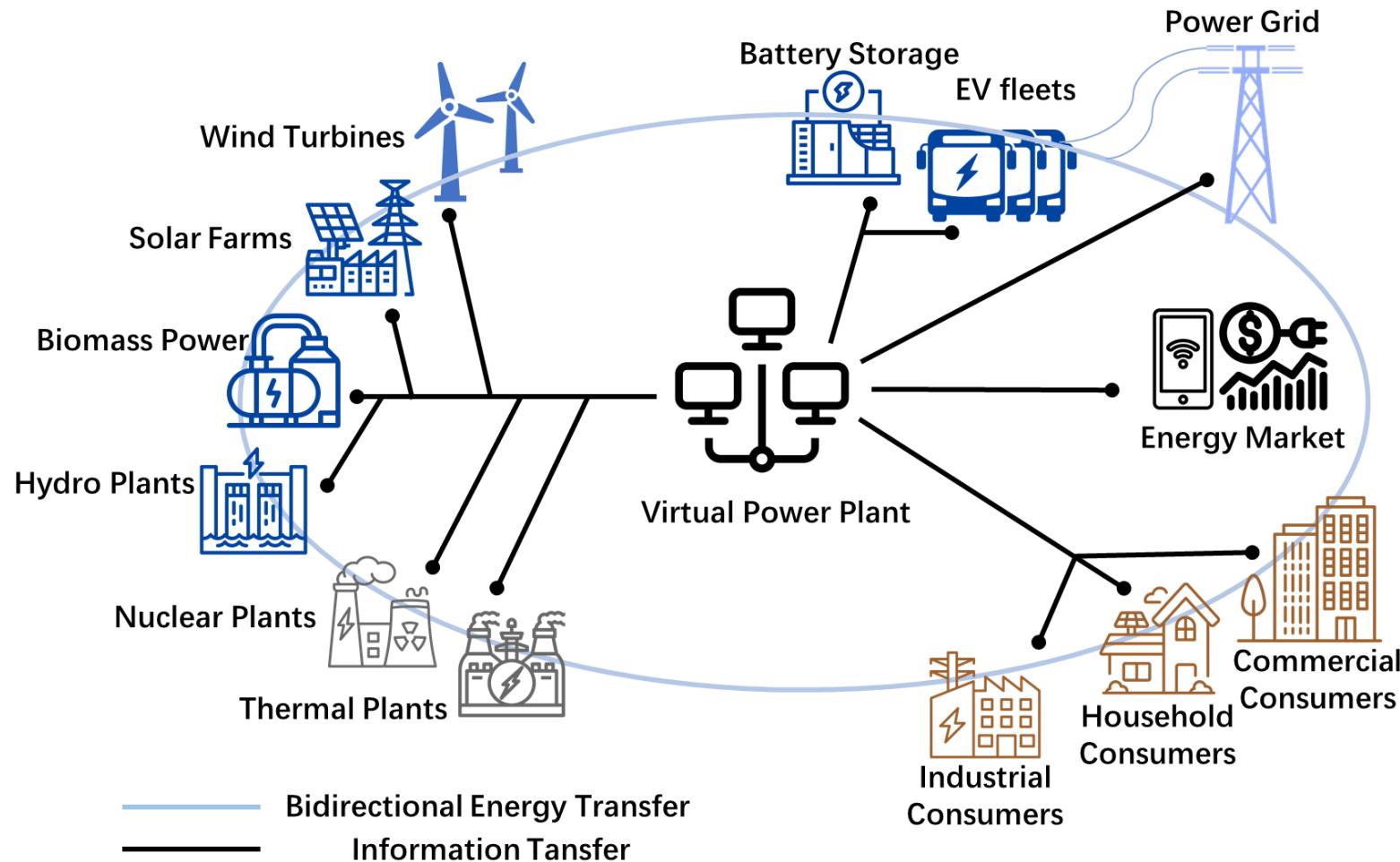


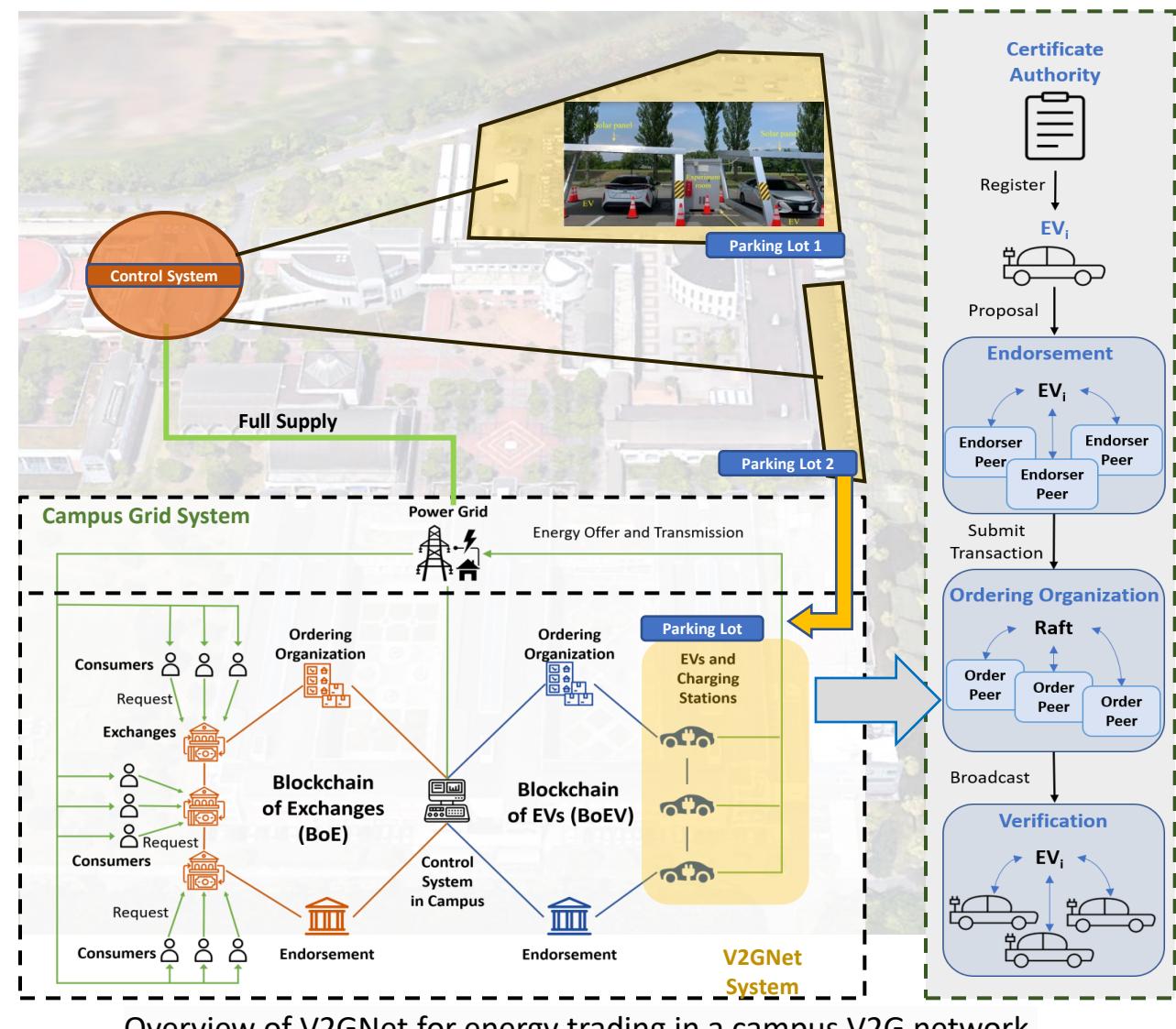
Illustration of a distributed power system updated with a VPP and energy storage departments.

The grid turns from the center of the system to a necessary ancillary part.

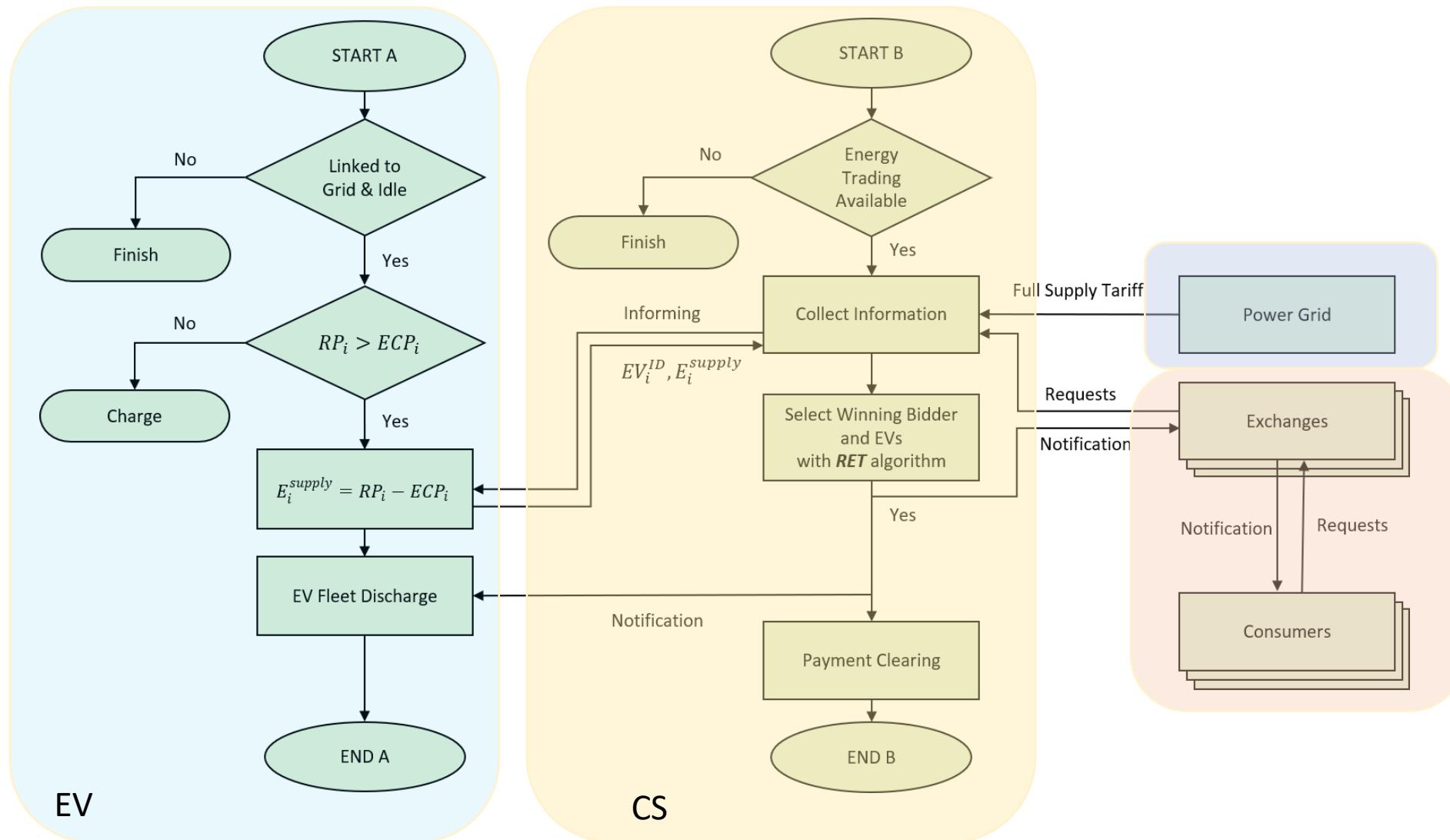
The VPP now serves as an information processing center, integrating the power grid, energy market, renewable and non-renewable resources, energy storage systems, and energy consumers.

# V2G Energy Trading: Building Trust in the Grid

- Each campus' V2G control system (CS) works as an information mediator between energy consumers and EV suppliers.
- Each consumer connects and submits the energy request to the energy exchange.
- In BoEV, the offer lists (EVs to CS) and notification of discharge tasks (CS to EVs) are transmitted.
- Only necessary trading data is uploaded to keep privacy and shorten the chaining latency.



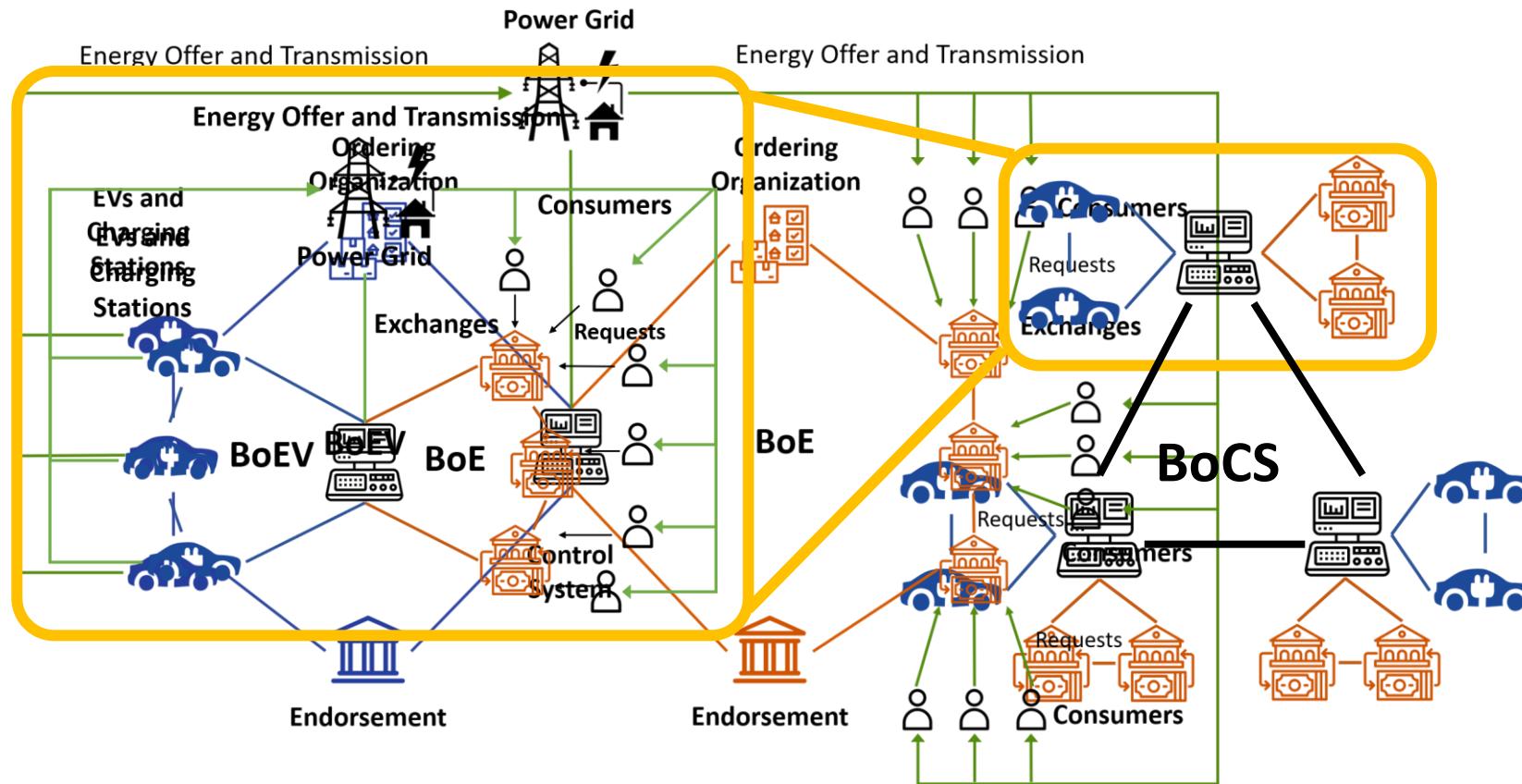
# V2G Energy Trading: Building Trust in the Grid



Flowchart for V2GNet Trading Algorithm.

benab@u-aizu.ac.jp

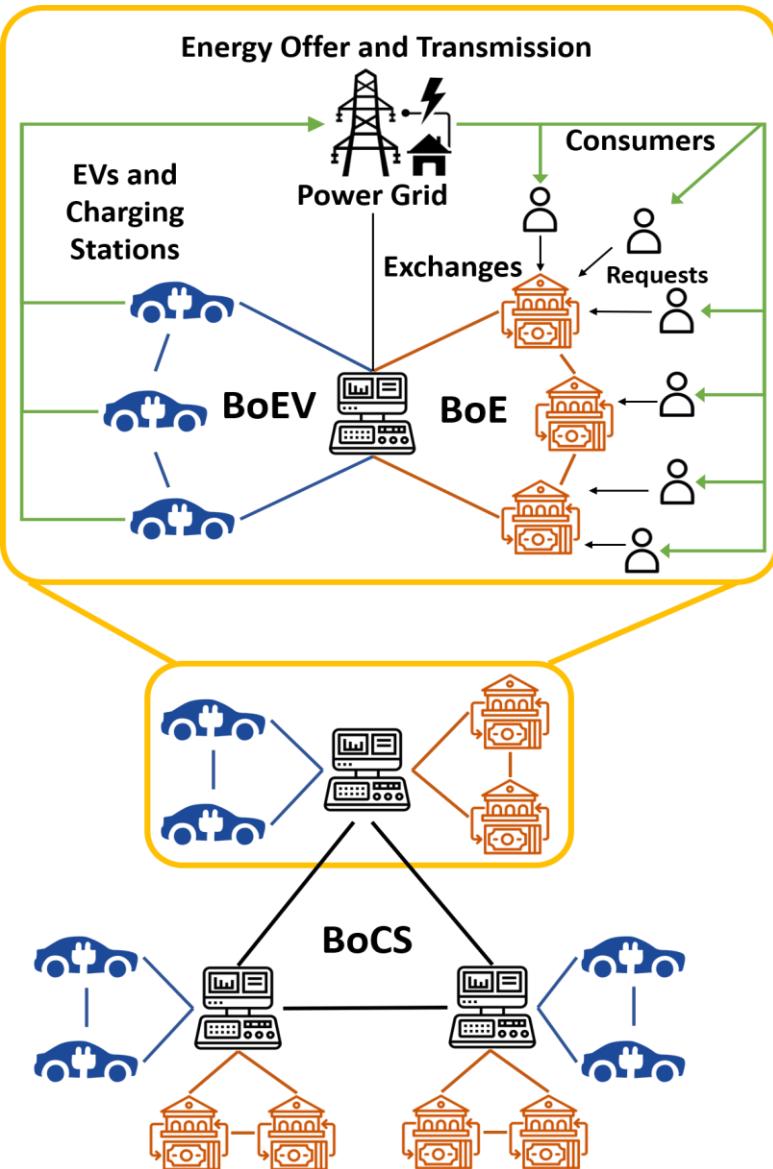
# V2G Energy Trading: Building Trust in the Grid



Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.

- ◆ The BoCS is where inter-campus energy trading is planned and recorded, and each CS is a node of the BoCS. Besides, each campus's CS serves as a blockchain connection between the BoEV and the BoE for that campus.

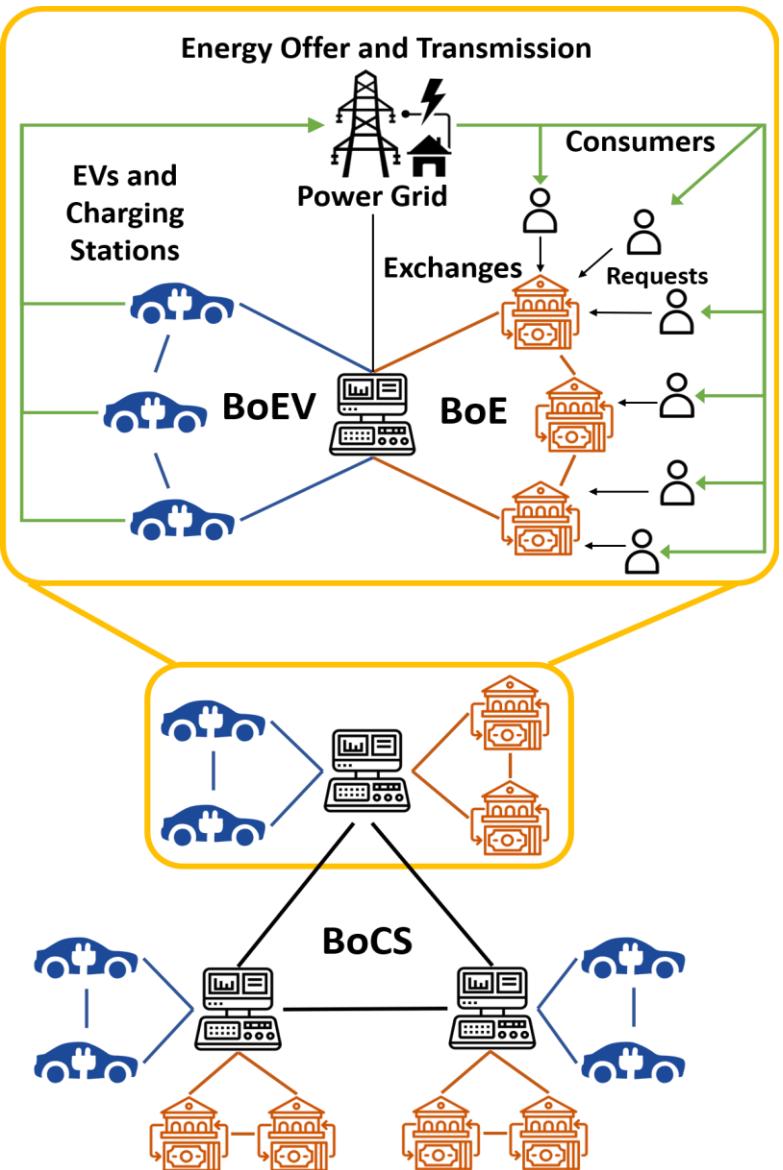
# V2G Energy Trading: Building Trust in the Grid



1. Upload unselected EV suppliers and energy requests.
2. Download the overall request list and EV supplier list.
3. Compete on trading planning SRET mechanism and uploading the outcome back to BoCS.
4. Download and record the new block from BoCS. Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.

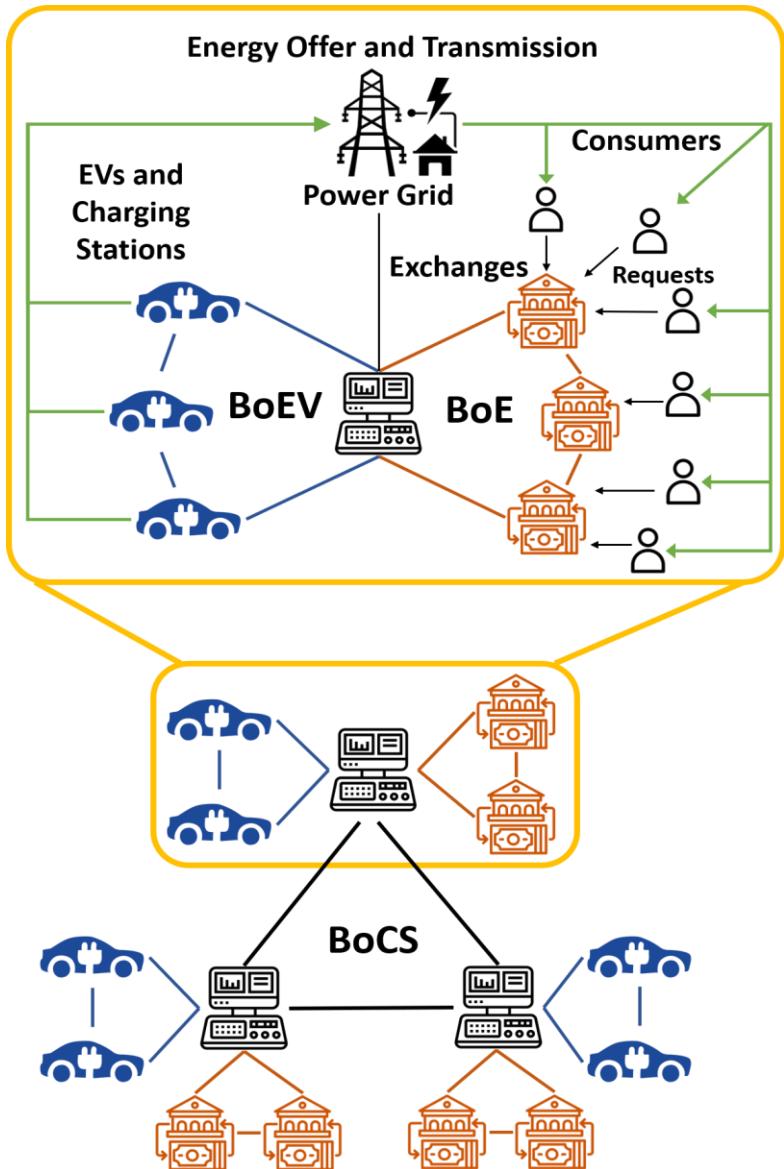
# V2G Energy Trading: Building Trust in the Grid



1. The initial step in BoCS begins once any CS completes and uploads the local trading plan to its BoE and BoEV. The CS packs the data for its unselected EVs and requests into a transaction, then broadcasts it on BoCS. Once enough transactions are collected within any pool, the corresponding CS dispatch them for endorsement and ordering, then package into a block. The block is broadcast across BoCS for verification.
2. Download the overall request list and EV supplier list.
3. Compete on trading planning SRET mechanism and uploading the outcome back to BoCS.
4. Download and record the new block from BoCS. Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.

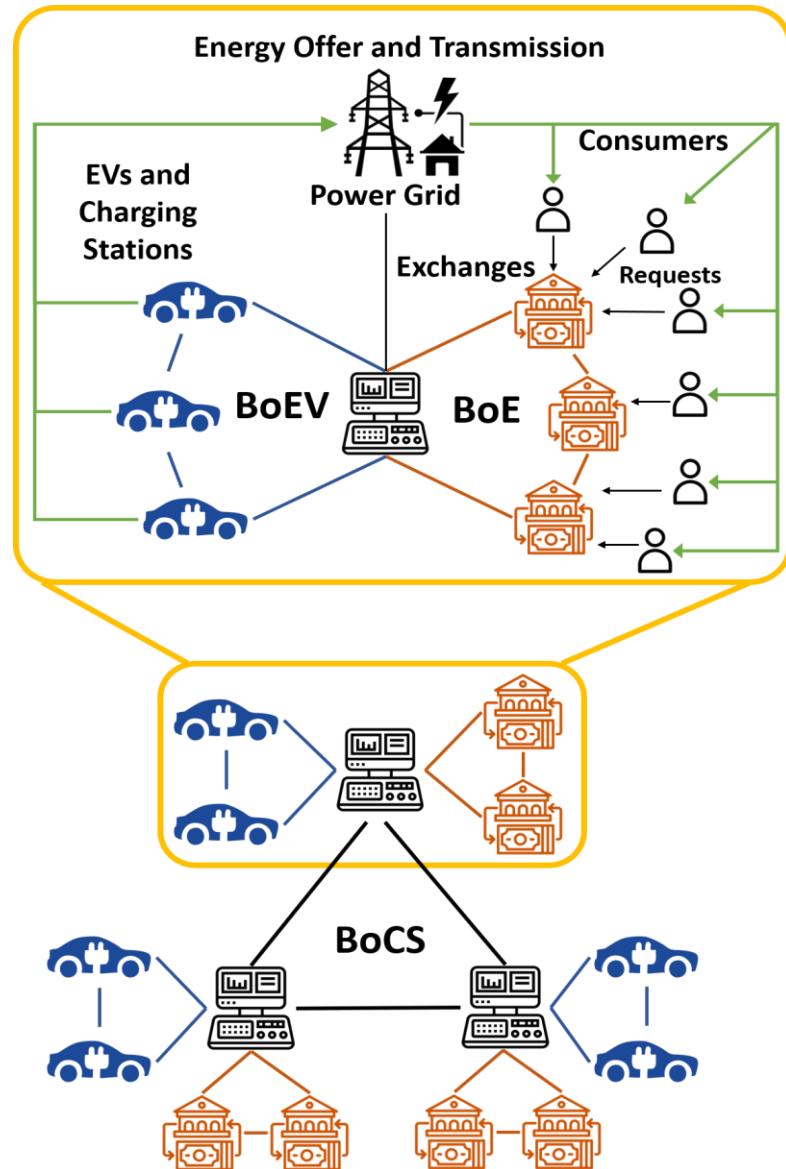
# V2G Energy Trading: Building Trust in the Grid



1. Upload unselected EV suppliers and energy requests.
2. **After the block is verified, each node of the BoCS proceeds to download the block, extracting the associated lists and consolidating these lists into an overall request list and an overall EV supplier list.**
3. Compete on trading planning SRET mechanism and uploading the outcome back to BoCS.
4. Download and record the new block from BoCS. Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.

# V2G Energy Trading: Building Trust in the Grid



1. Upload unselected EV suppliers and energy requests.
2. Download the overall request list and EV supplier list.
3. Compete on trading planning SRET mechanism and uploading the outcome back to BoCS.
4. **The new block is downloaded and permanently recorded by all CS nodes of BoCS network. From the block, each CS extracts the cross-campus energy trading outcomes and notifies the relevant consumers and EVs of their specific trading details accordingly.**

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.

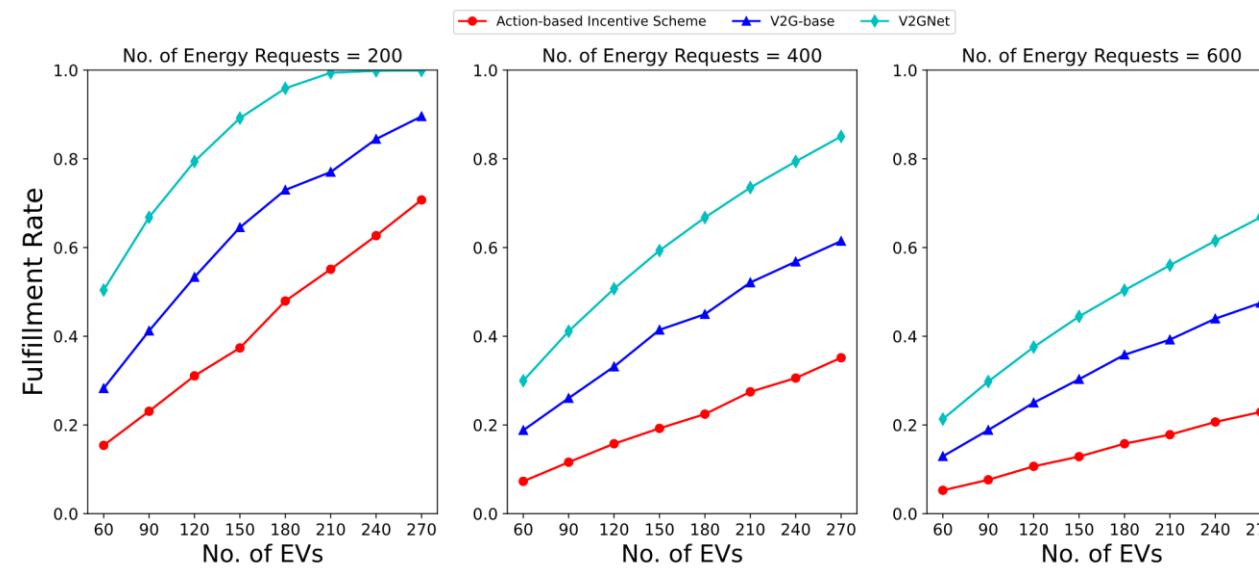
# V2G Energy Trading: Building Trust in the Grid

The number of requests and EVs is equal, and demand can be almost entirely covered

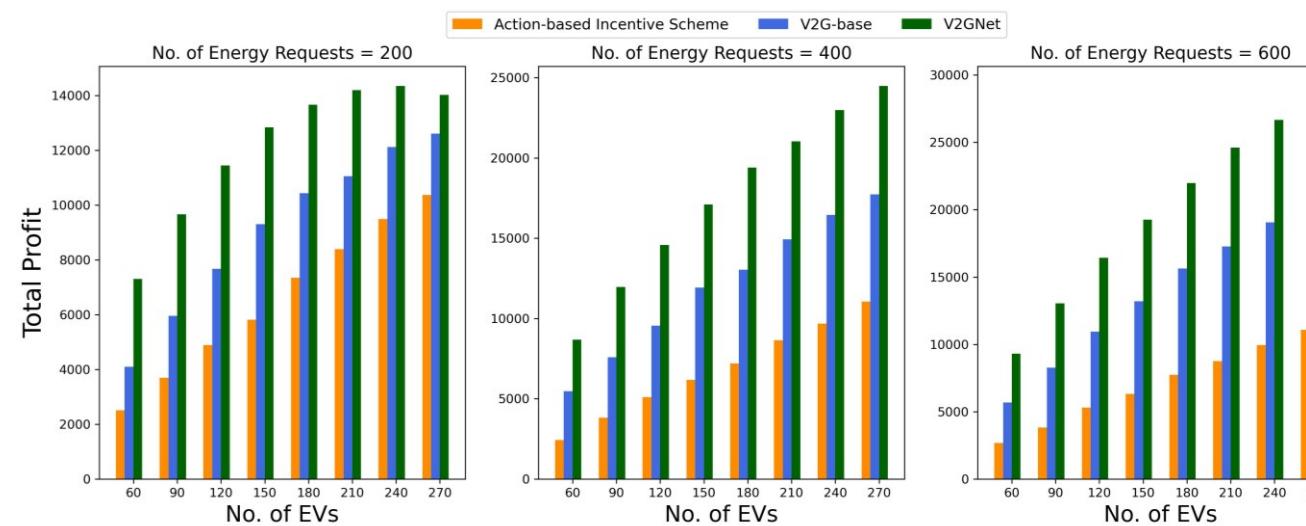
要求数とEVの台数は同数であり、需要はほぼ完全に賄うことができます。

The number of EVs is half, but they can still cover more than 60% of demand. EVの台数は半分ですが、それでも需要の60%以上を賄うことができます。

Achieves 45% more total profit of a single energy trading round, compared to the baseline methods. 基準手法と比較して、単一のエネルギー取引ラウンドにおいて総利益を45%多く達成します。



Evaluation of the fulfillment rate of a single energy trading round across three trading strategies.



An **action-based incentive scheme** in EV grid energy trading rewards electric vehicle (EV) owners or aggregators for their actual participation and actions in energy trading—such as charging, discharging, or providing grid services—rather than just for availability.

Evaluation of the total profit (JPY) of a single energy trading round across three trading strategies.

# Evaluation Results

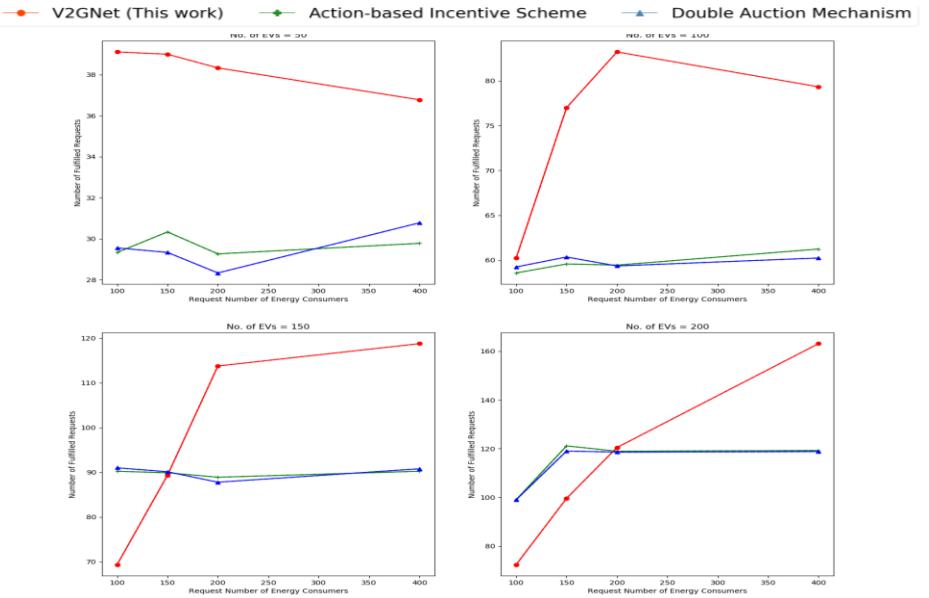
| Input Feature                                       | Value                   | Unit       |
|-----------------------------------------------------|-------------------------|------------|
| Discharge Power                                     | 0 to 10                 | kWh, Float |
| Charge Power                                        | 15                      | kWh, Int   |
| Driving Power                                       | 10                      | kWh, Int   |
| Driving Time Slot                                   | 20 to 22                | -, Float   |
| Charge Time Slot                                    | 20 to 21                | -, Float   |
| Request Time Slot                                   | 21 to 22                | -, Float   |
| No. of Energy Exchange                              | 3                       | -, Int     |
| No. of Malicious Exchanges                          | 1                       | -, Int     |
| No. of Malicious Consumers                          | 1, 5, 10, 20, 50        | -, Int     |
| EV State                                            | Idle, Charging, Driving | -, Int     |
| Battery Capacity                                    | 60                      | kWh, Int   |
| Requests Capacity                                   | 0 to 10                 | kWh, Float |
| Maximum No. of Requests from One Malicious Consumer | 10                      | -, Int     |
| Bid Price                                           | 22.39 to 42.84          | JPY, Float |

<sup>1</sup> The currency code for the Japanese Yen is JPY.

Table 3. The **total time consumption** of an energy trading round across four trading strategies:  
1) the action-based incentive scheme; 2) V2GNet; 3) double time boundaries scheme within V2GFTN; 4) single time boundary scheme within V2GFTN..

| Time Consumption (s) | No. of EVs                    |       |       |       |        |       |       |       |                                  |       |       |                                  |       |        |        |        |        |
|----------------------|-------------------------------|-------|-------|-------|--------|-------|-------|-------|----------------------------------|-------|-------|----------------------------------|-------|--------|--------|--------|--------|
|                      | Action-Based Incentive Scheme |       |       |       | V2GNet |       |       |       | Double Time Boundary (This Work) |       |       | Single Time Boundary (This Work) |       |        |        |        |        |
| 60                   | 90                            | 120   | 150   | 60    | 90     | 120   | 150   | 60    | 90                               | 120   | 150   | 60                               | 90    | 120    | 150    |        |        |
| No. of Requests      | 200                           | 1.79  | 3.36  | 5.88  | 8.54   | 4.45  | 6.75  | 7.33  | 9.49                             | 3.78  | 7.73  | 13.92                            | 21.65 | 7.47   | 19.44  | 43.67  | 73.92  |
|                      | 400                           | 1.84  | 3.37  | 5.84  | 8.53   | 4.21  | 7.37  | 9.49  | 10.56                            | 3.44  | 7.40  | 13.13                            | 21.09 | 7.25   | 19.90  | 41.10  | 73.44  |
|                      | 600                           | 1.97  | 3.26  | 5.78  | 8.59   | 6.71  | 8.26  | 7.55  | 10.02                            | 3.30  | 7.30  | 12.83                            | 20.39 | 7.12   | 19.50  | 43.03  | 71.76  |
| Time Consumption (s) | No. of EVs                    |       |       |       |        |       |       |       |                                  |       |       |                                  |       |        |        |        |        |
| 180                  | 210                           | 240   | 270   | 180   | 210    | 240   | 270   | 180   | 210                              | 240   | 270   | 180                              | 210   | 240    | 270    |        |        |
| No. of Requests      | 200                           | 12.48 | 17.09 | 22.15 | 29.87  | 14.04 | 19.22 | 25.62 | 30.50                            | 30.92 | 41.78 | 54.30                            | 66.23 | 113.90 | 176.27 | 249.86 | 340.09 |
|                      | 400                           | 12.31 | 16.72 | 21.67 | 28.22  | 17.42 | 19.34 | 22.60 | 29.45                            | 29.95 | 40.65 | 53.64                            | 69.04 | 119.70 | 167.19 | 253.91 | 375.00 |
|                      | 600                           | 12.39 | 16.59 | 25.52 | 28.91  | 12.97 | 16.92 | 22.07 | 30.12                            | 29.30 | 40.55 | 53.46                            | 77.80 | 117.84 | 176.44 | 248.36 | 338.12 |

The time consumption is the total time CS spend on trading planning for a whole energy trading round of the V2G system. In our hour-ahead V2G trading system, the upper limit of time consumption turns out to be 1 hour.



## V2GFTN Energy Trading Results : Time cost ratios

The multi-blockchain processing time makes the most of the overall time cost of V2GFTN. And getting notifications from cross-campus V2G trading on the BoCS takes more time than from V2G trading within a single campus from the CS. This is because the BoCS takes extra time to upload and download the data of the remaining EVs and requests.

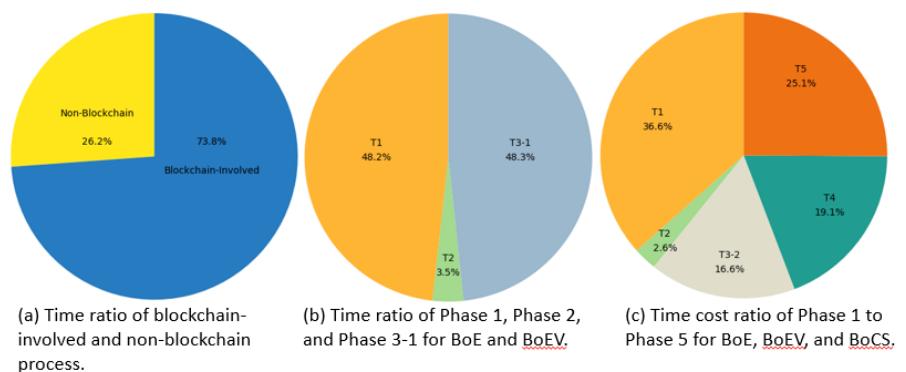


Figure 26. Comparative analysis of **time cost ratios** in different scenarios.

# Real-World Deployment 2: Distributed AI-Driven HW-SW Platform Transforming Medical Applications

# Distributed AI-Powered HW-SW Platform for Pneumonia Detection

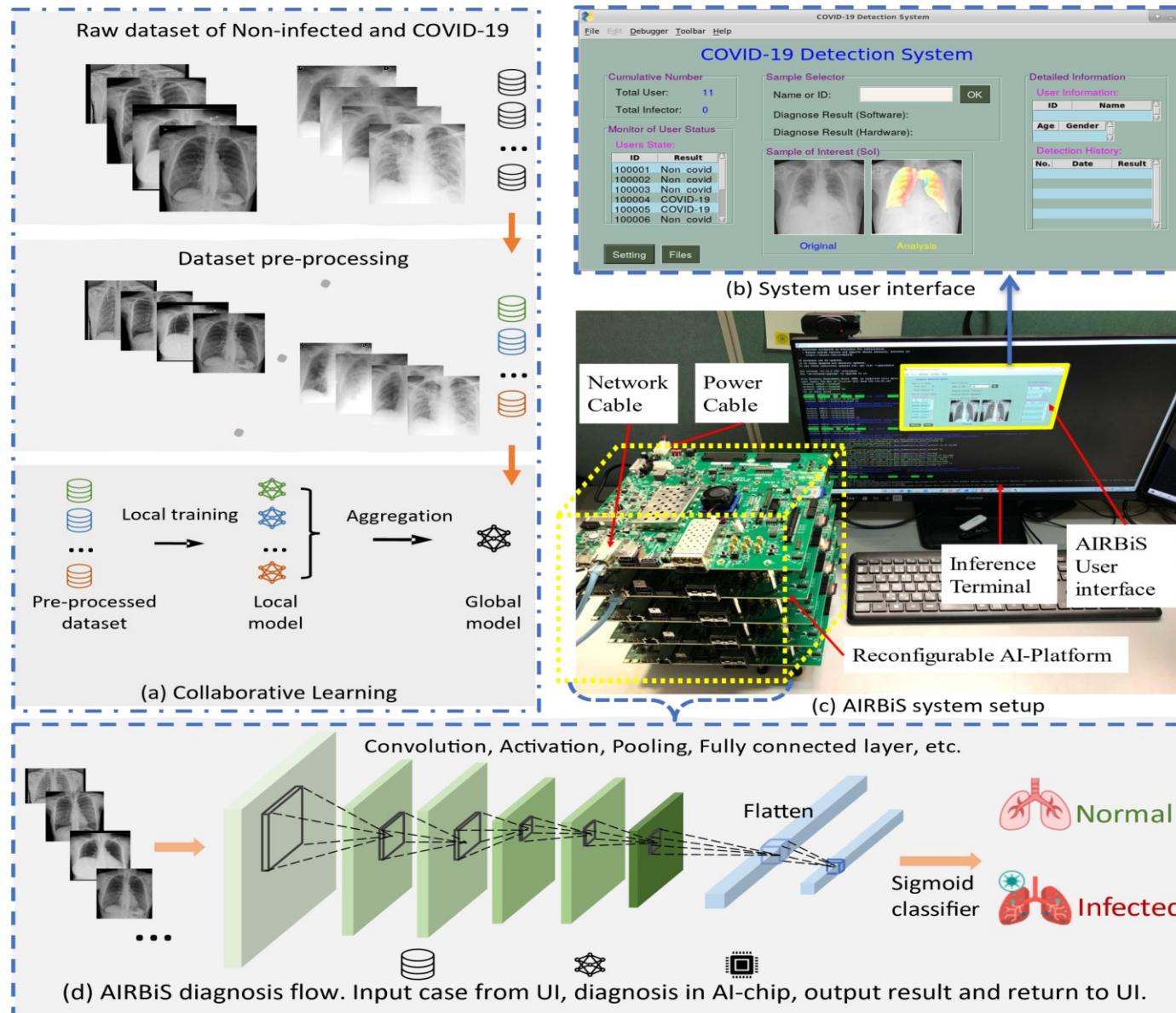


Table 7.3. FPGA Resource Utilization Estimates.

| Resource      | Utilization |        | Available |      | Utilization (%) |     |
|---------------|-------------|--------|-----------|------|-----------------|-----|
|               | ANN         | SNN    | ANN       | SNN  | ANN             | SNN |
| <b>LUT</b>    | 54,585      | 27,288 | 274,080   | 19.9 | 19.9            | 9.9 |
| <b>LUTRAM</b> | 3668        | 2048   | 144,000   | 2.5  | 1.28            |     |
| <b>FF</b>     | 53,035      | 37,098 | 548,160   | 9.7  | 6.77            |     |
| <b>BRAM</b>   | 824         | 0      | 912       | 90.4 | 0               |     |
| <b>DSP</b>    | 35          | 0      | 2520      | 1.4  | 0               |     |
| <b>BUFG</b>   | 4           | 18     | 404       | 1.0  | 4.45            |     |
| <b>MMCM</b>   | 1           | 0      | 4         | 25   | 0               |     |

Table 7.4. Hardware Complexity.

| Core/Parameter   | Area (mm <sup>2</sup> ) |        | Power (mW) |       |
|------------------|-------------------------|--------|------------|-------|
|                  | SNN                     | ANN    | SNN        | ANN   |
| Convolution core | 0.0748                  | 0.0755 | 0.007      | 0.011 |

Table 7.2. Dataset description.

| Label     | Class            | Train  | Test |
|-----------|------------------|--------|------|
| COVID     | COVID            | 2870   | 700  |
|           | COVID(Augmented) | 14,349 | -    |
| Non-COVID | Normal           | 9791   | 400  |
|           | Lung_Opacity     | 5762   | 250  |
|           | Viral_Pneumonia  | 1288   | 50   |
|           | Sum              | 34,060 | 1400 |

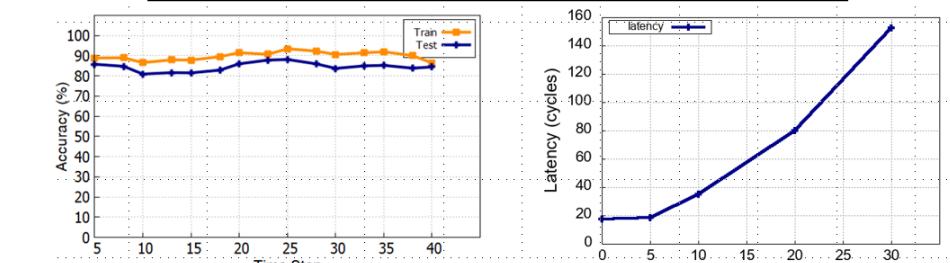


Figure 7.6. Accuracy and fault-rate evaluation result

# Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System

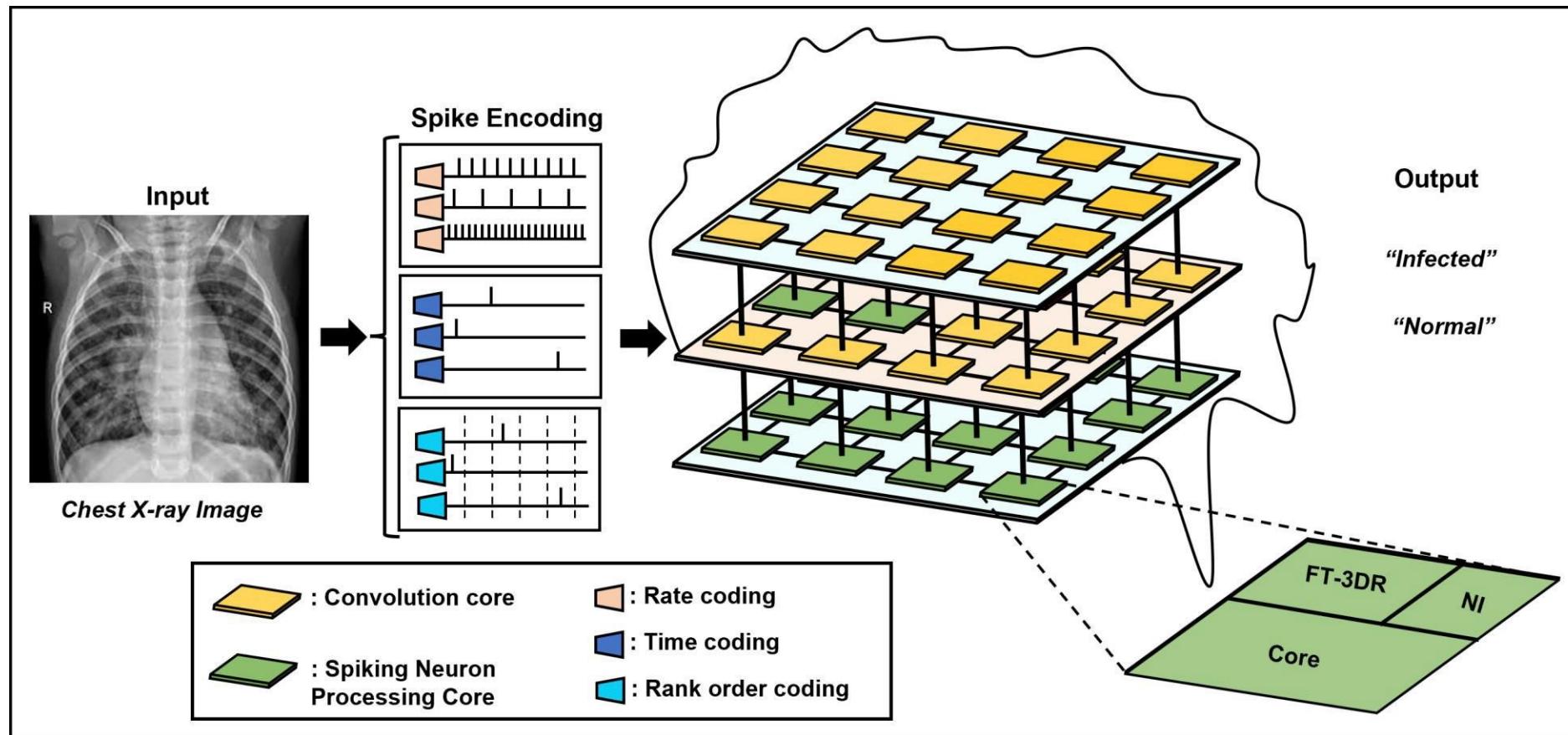


Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'S k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System

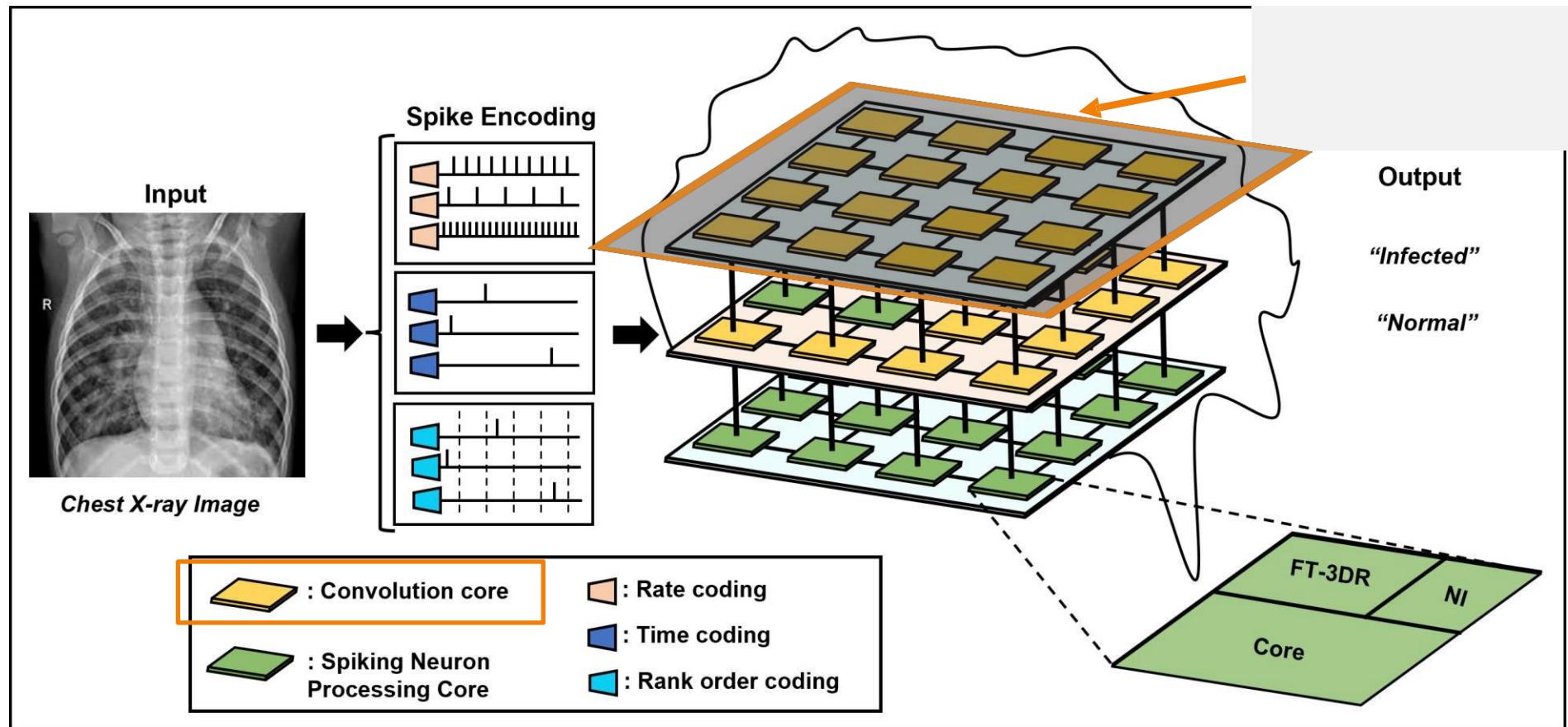


Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'S k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System

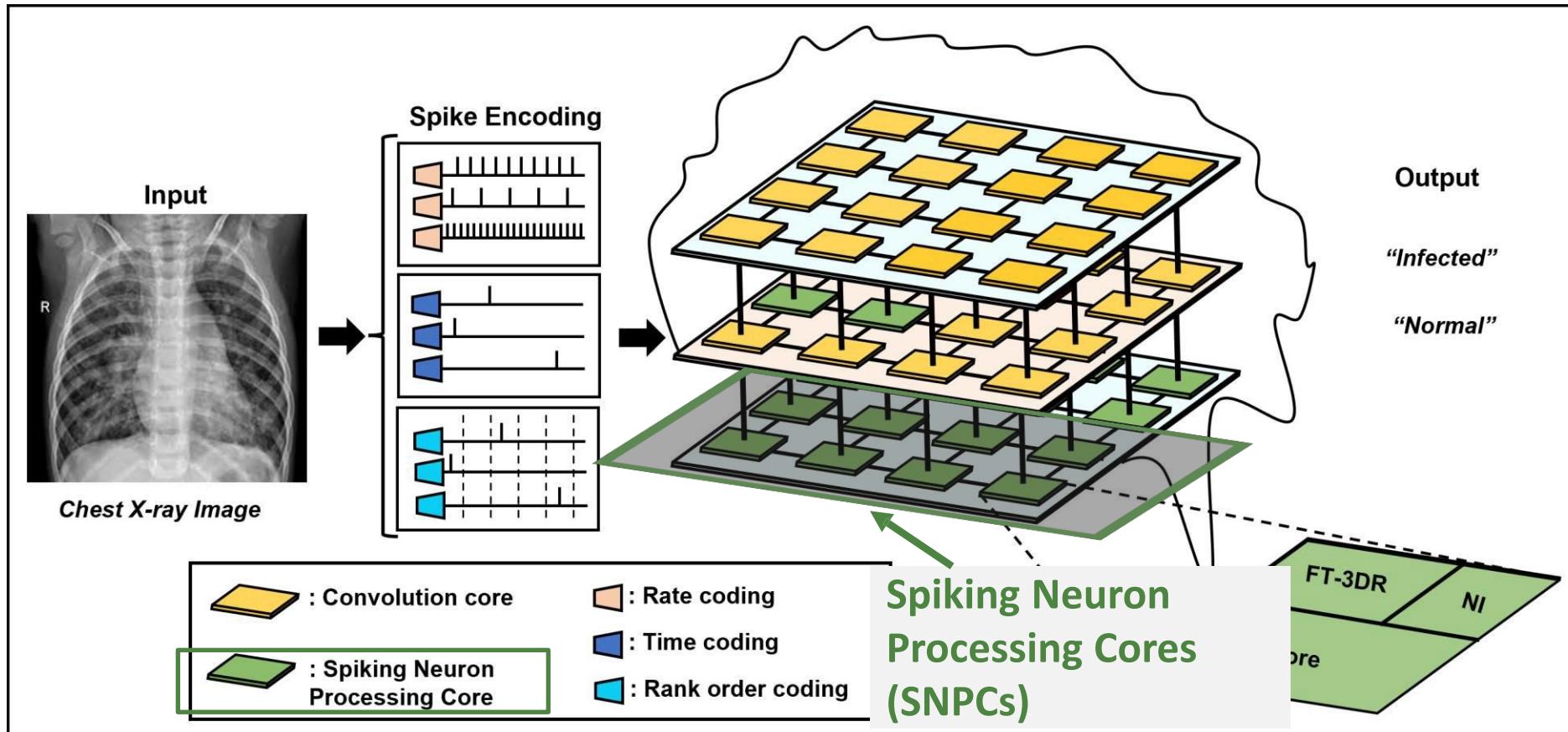


Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazeck Ben Abdallah. 'S k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System

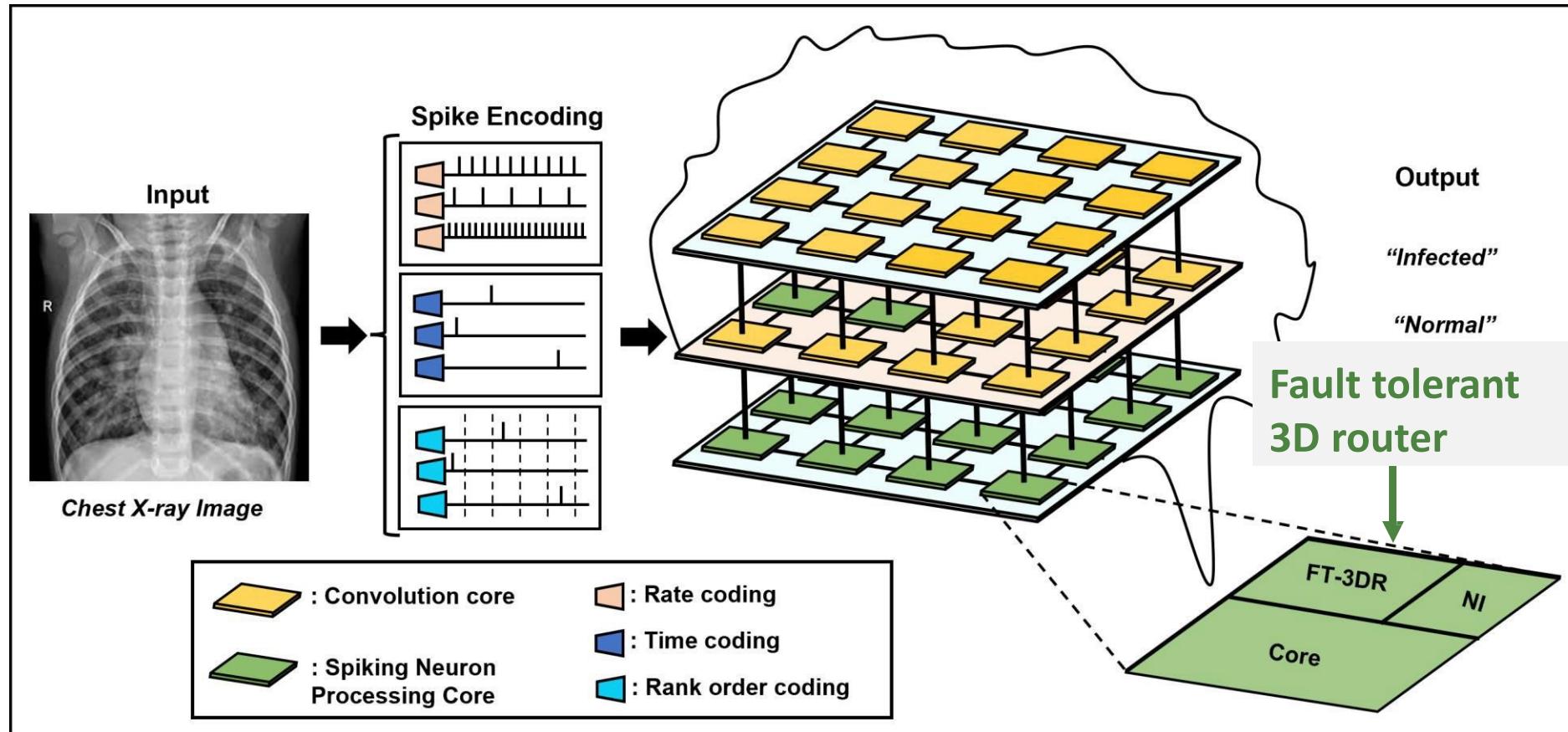


Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System

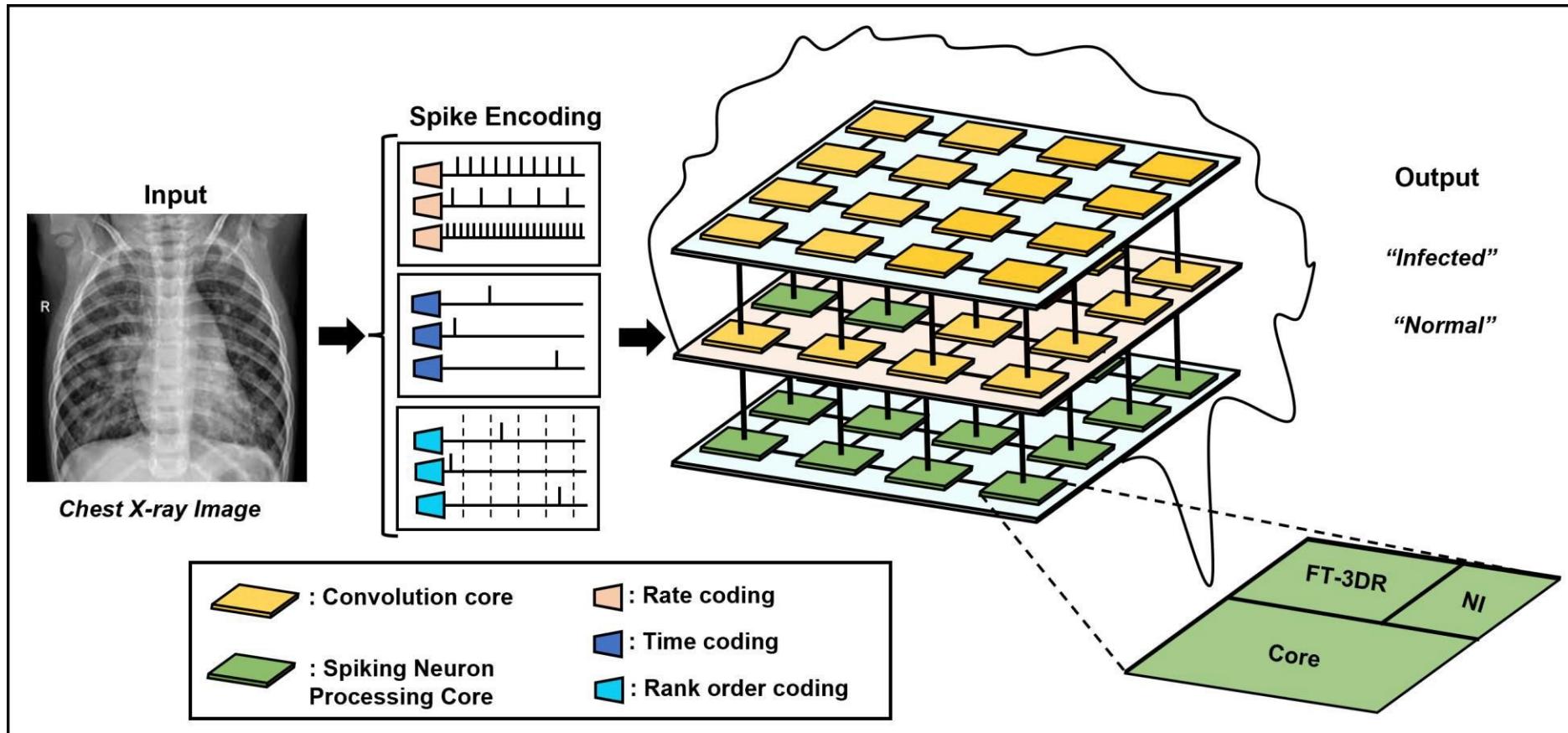


Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

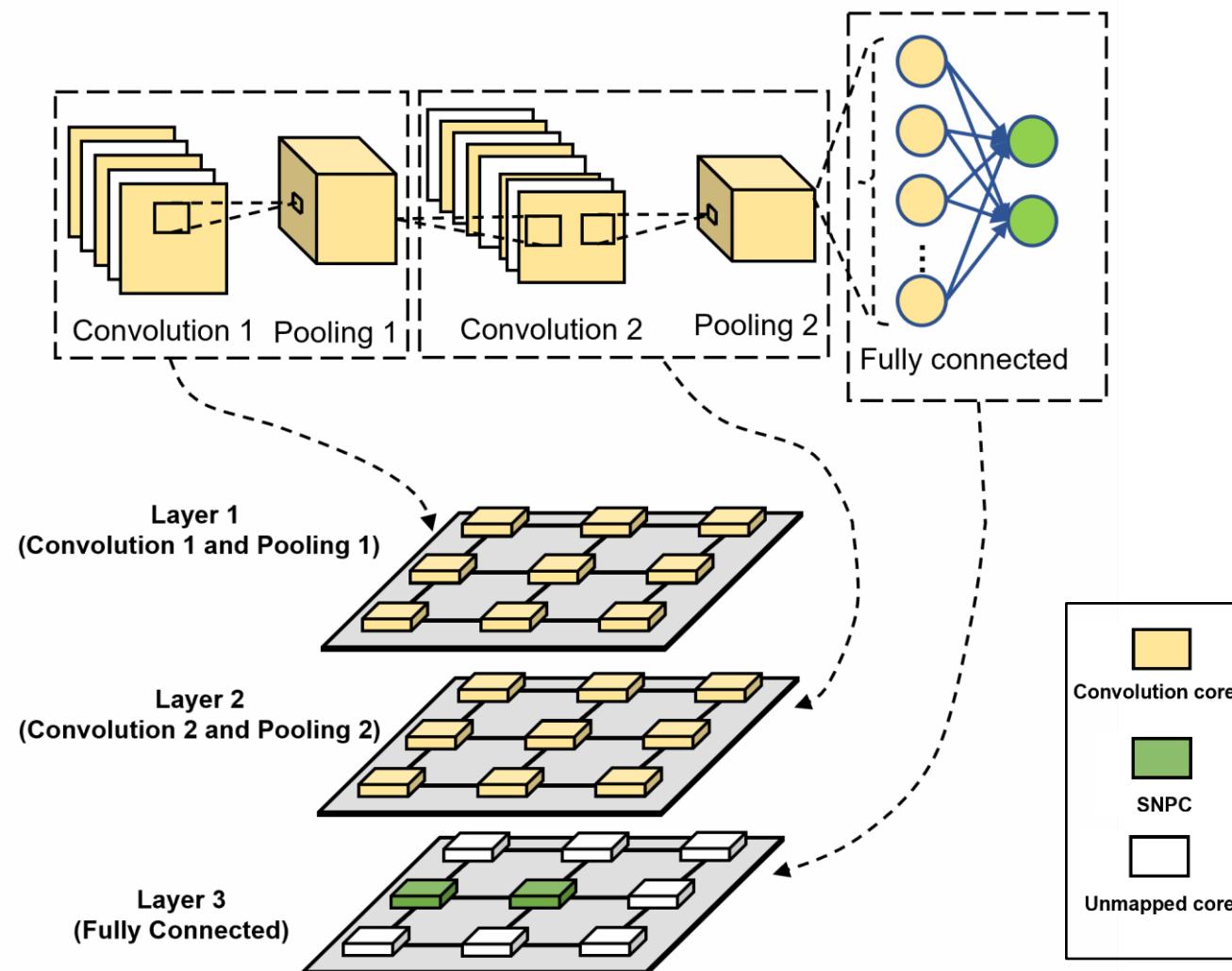


Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection', Electronics, vol. 11, no 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

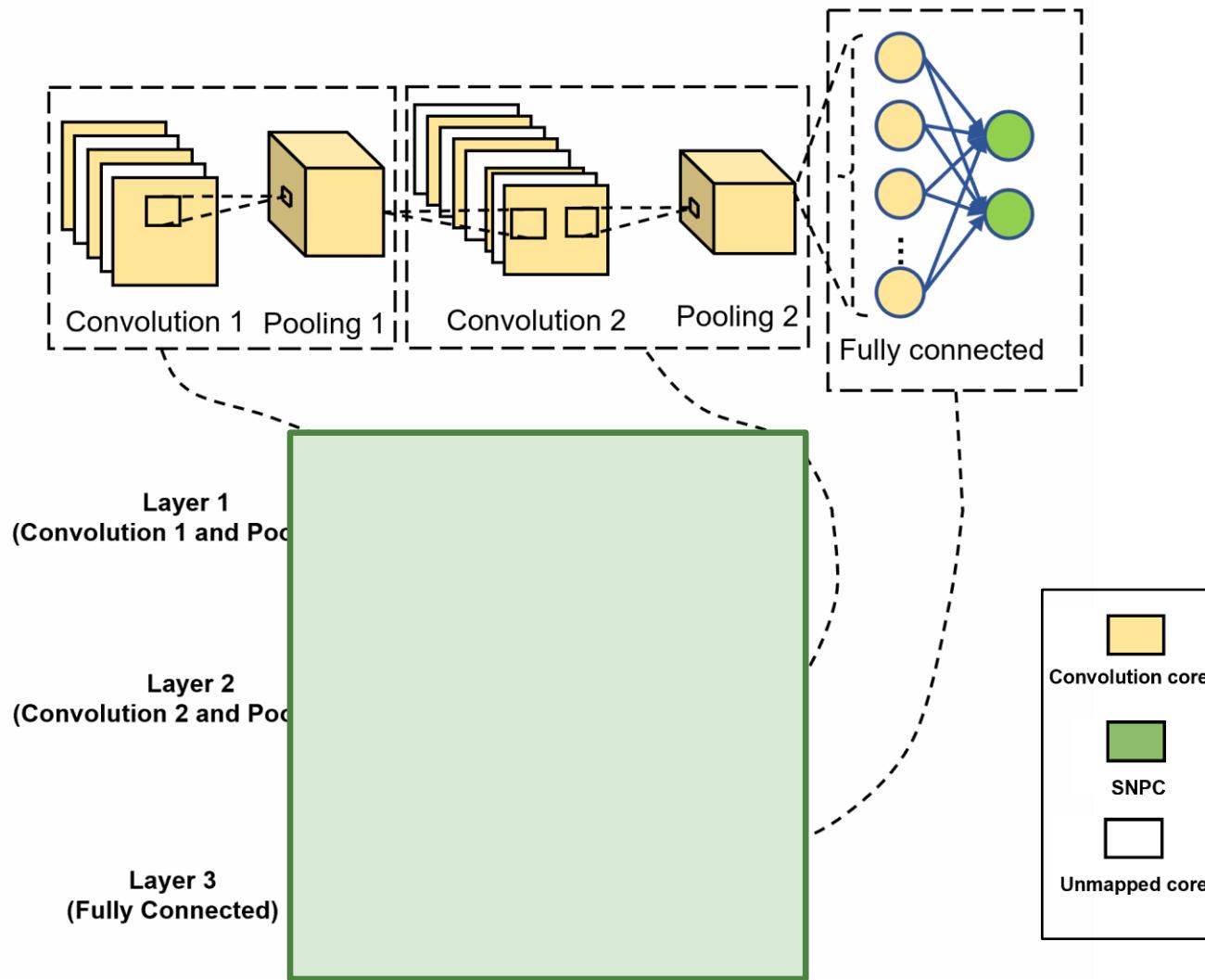


Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection', Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

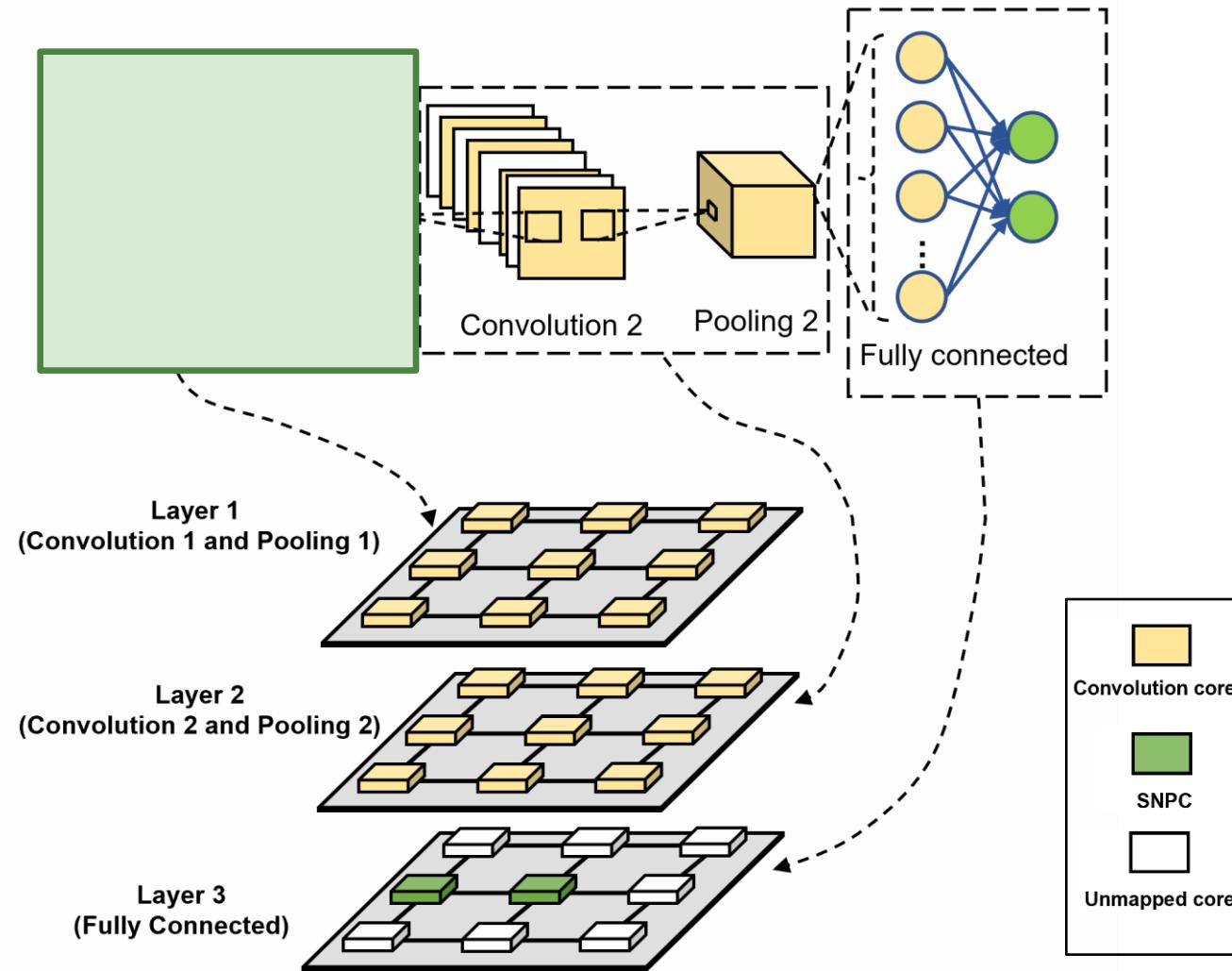


Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

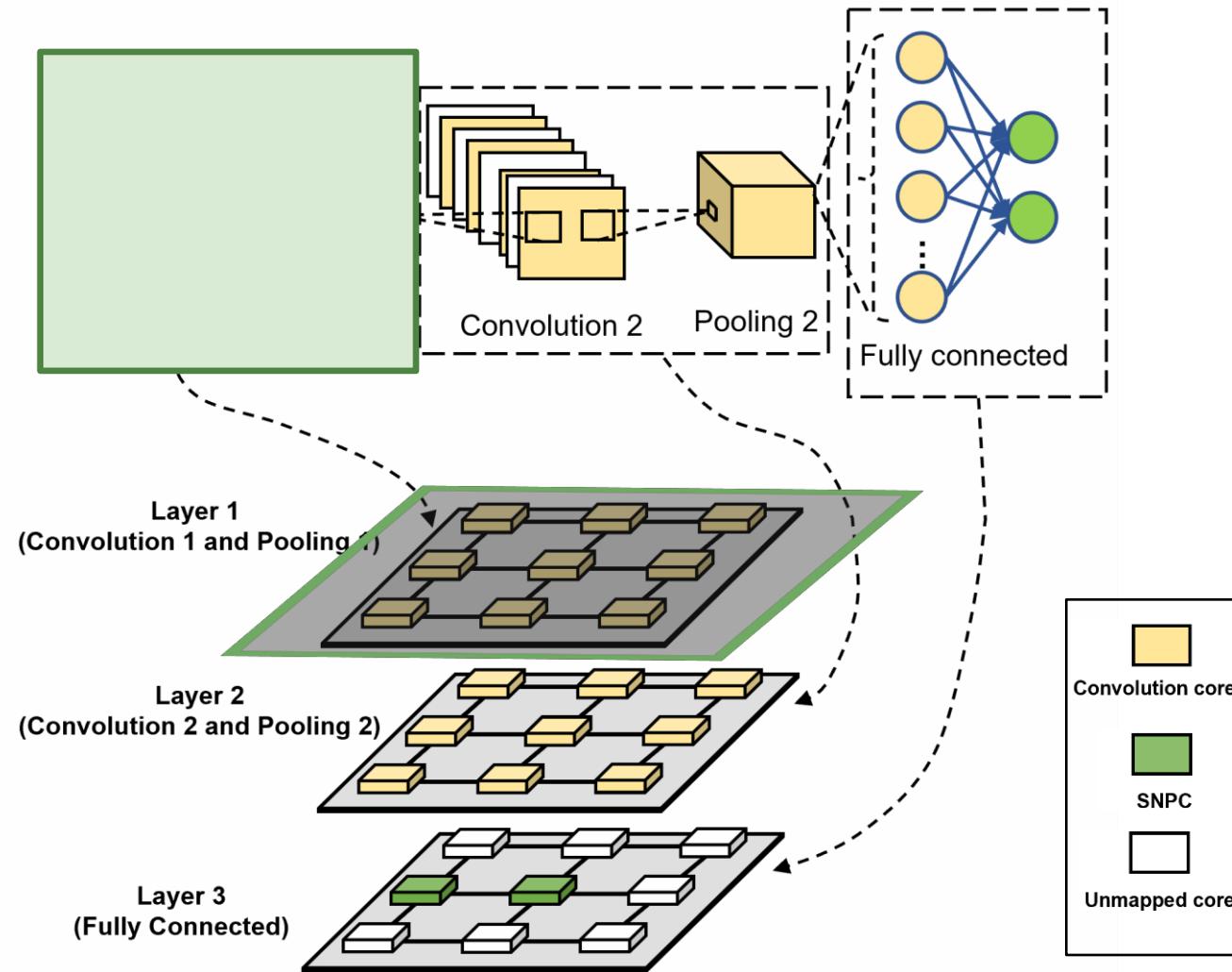


Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection', Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

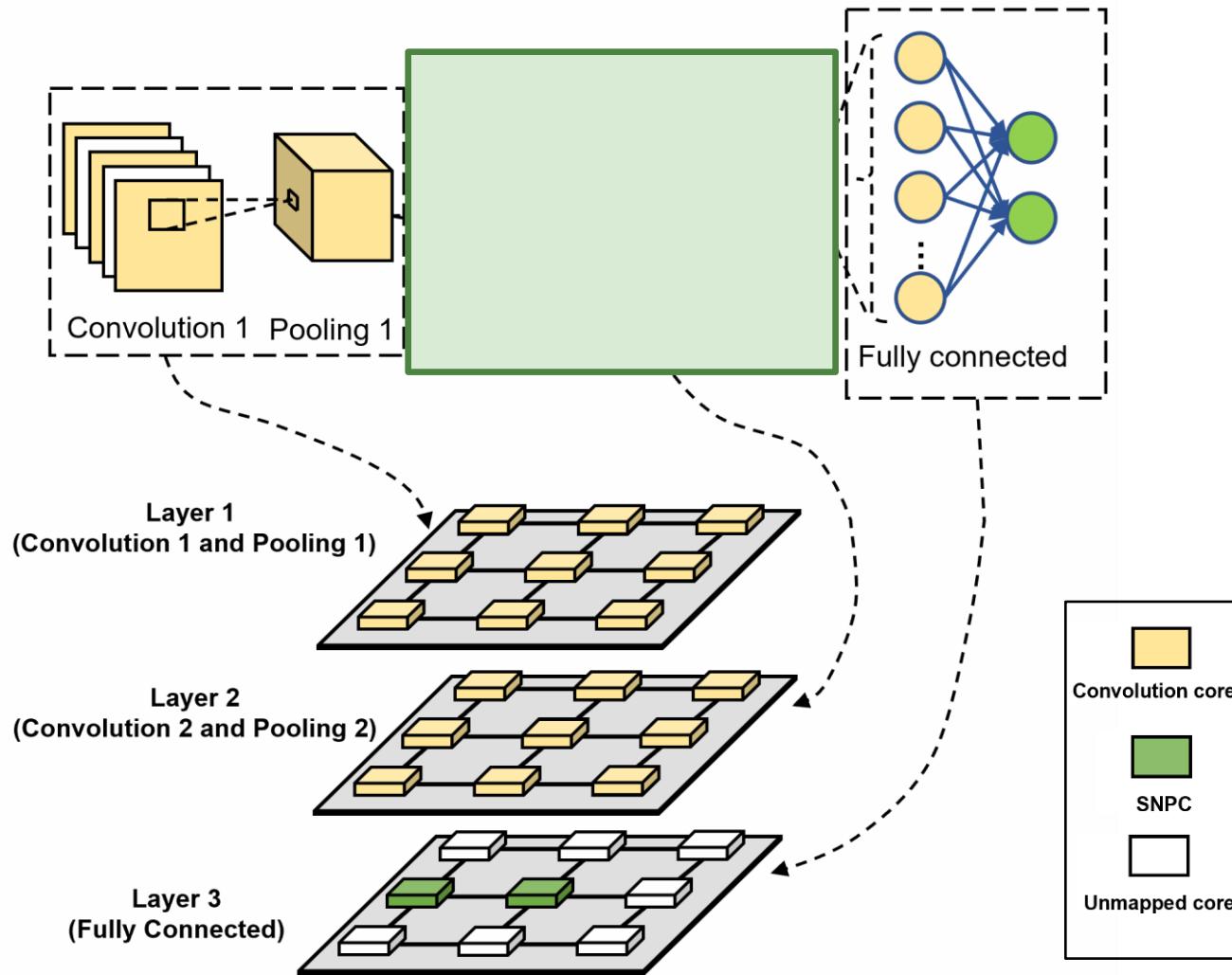


Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

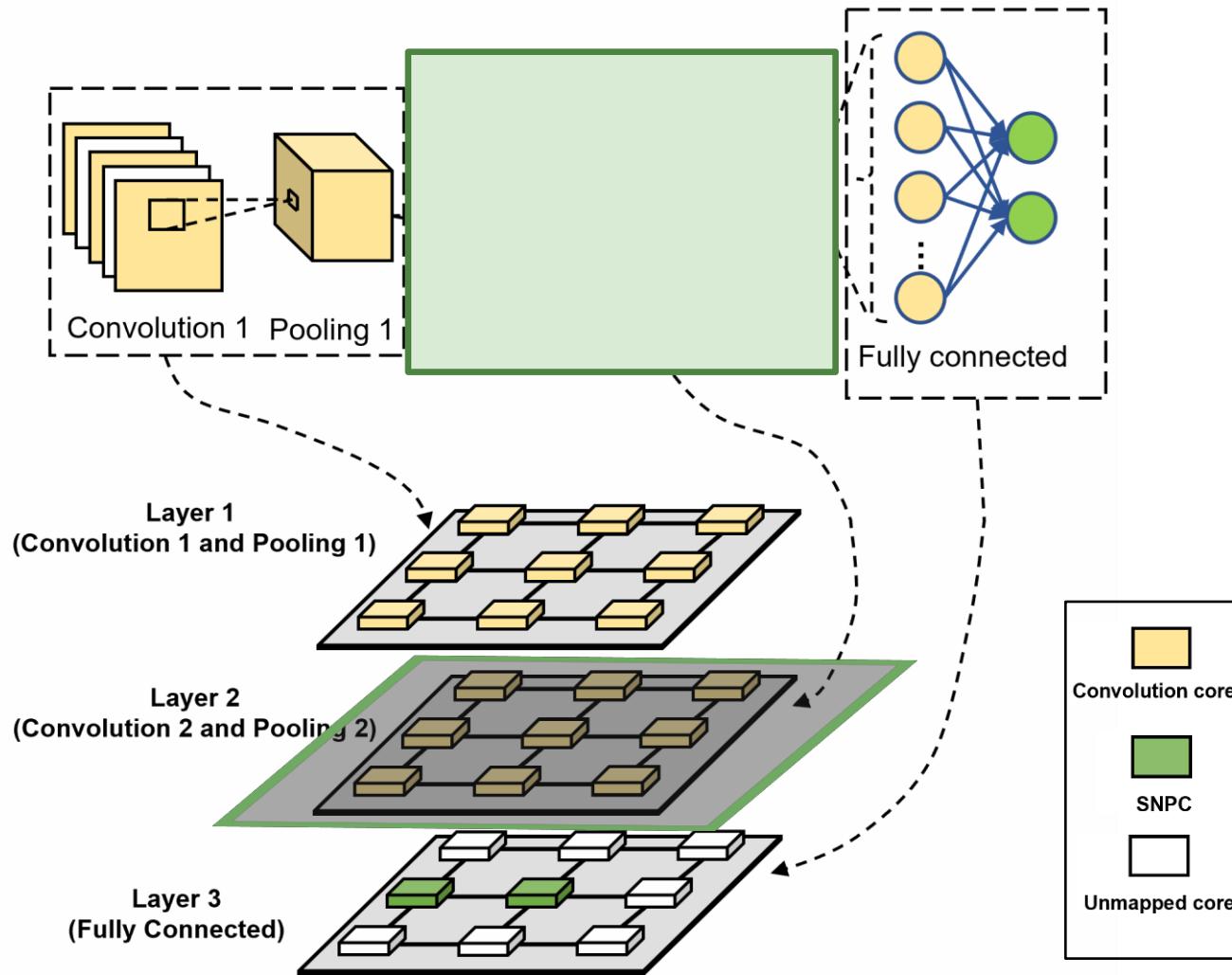


Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection', *Electronics*, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

# Mapping of SNN model on 3D-NoC-based neuromorphic system

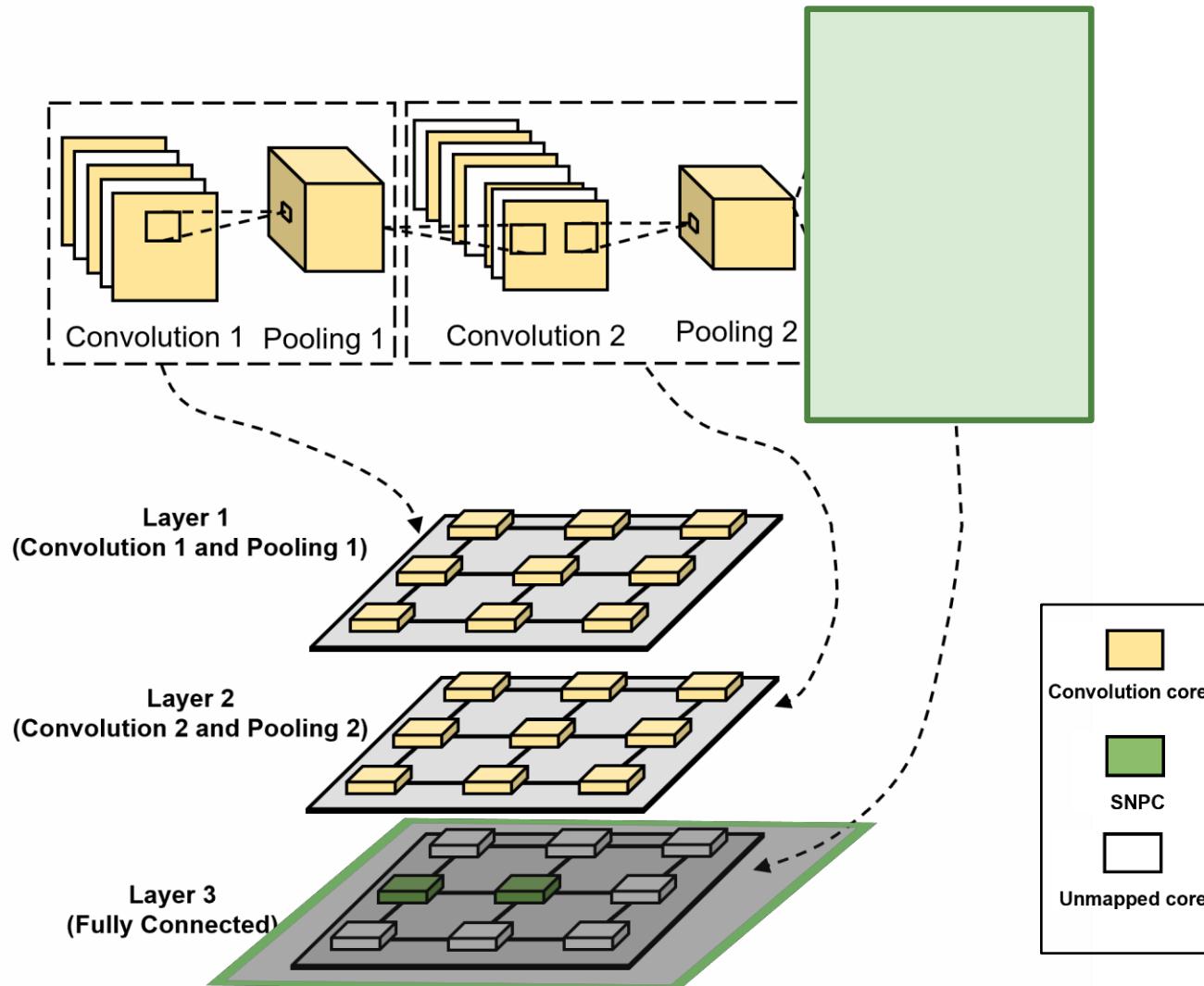


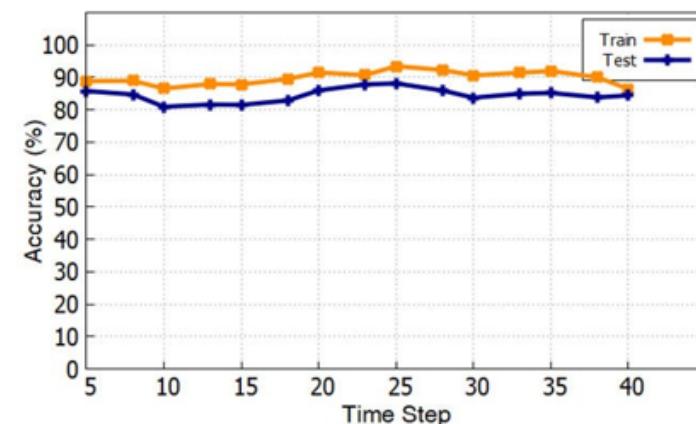
Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. 'Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection', *Electronics*, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

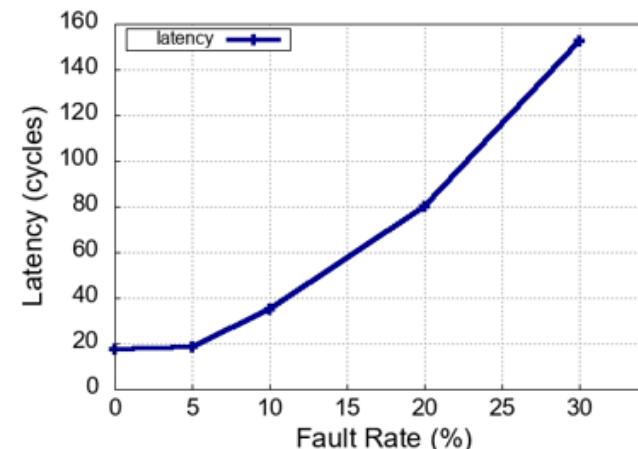
# Evaluation Result

Table 7.2. Dataset description.

| Label     | Class            | Train  | Test |
|-----------|------------------|--------|------|
| COVID     | COVID            | 2870   | 700  |
|           | COVID(Augmented) | 14,349 | -    |
| Non-COVID | Normal           | 9791   | 400  |
|           | Lung_Opacity     | 5762   | 250  |
|           | Viral_Pneumonia  | 1288   | 50   |
| Sum       |                  | 34,060 | 1400 |



(a) Detection accuracy over various time-steps.



(b) Detection Latency over various fault-rate.

Accuracy and fault-rate evaluation result.

| Core/Parameter   | Area (mm <sup>2</sup> ) |        | Power (mW)   |       |
|------------------|-------------------------|--------|--------------|-------|
|                  | SNN                     | ANN    | SNN          | ANN   |
| Convolution core | <b>0.0748</b>           | 0.0755 | <b>0.007</b> | 0.011 |

Result comparison with existing works.

| Works                  | Model | Platform | Dataset | Image Size | Accuracy |
|------------------------|-------|----------|---------|------------|----------|
| [fukuchi2022efficient] | SNN   | Software | X-ray   | 64 × 64    | 80.7%    |
| [kamal2021explainable] | SNN   | Software | X-ray   | 256 × 256  | 78%      |
| [che2020covid]         | ANN   | Software | X-ray   | 224 × 224  | 71.9%    |
| [wang2022efficient]    | ANN   | FPGA     | X-ray   | 256 × 256  | 94.4%    |
| This work              | SNN   | FPGA     | X-ray   | 64 × 64    | 88.43%   |

# Real-World Deployment 3: Distributed Anthropomorphic Robots Enabling Human-Centered Intelligent Machines

# Distributed Anthropomorphic Robots Enabling Human-Centered Intelligent Machines

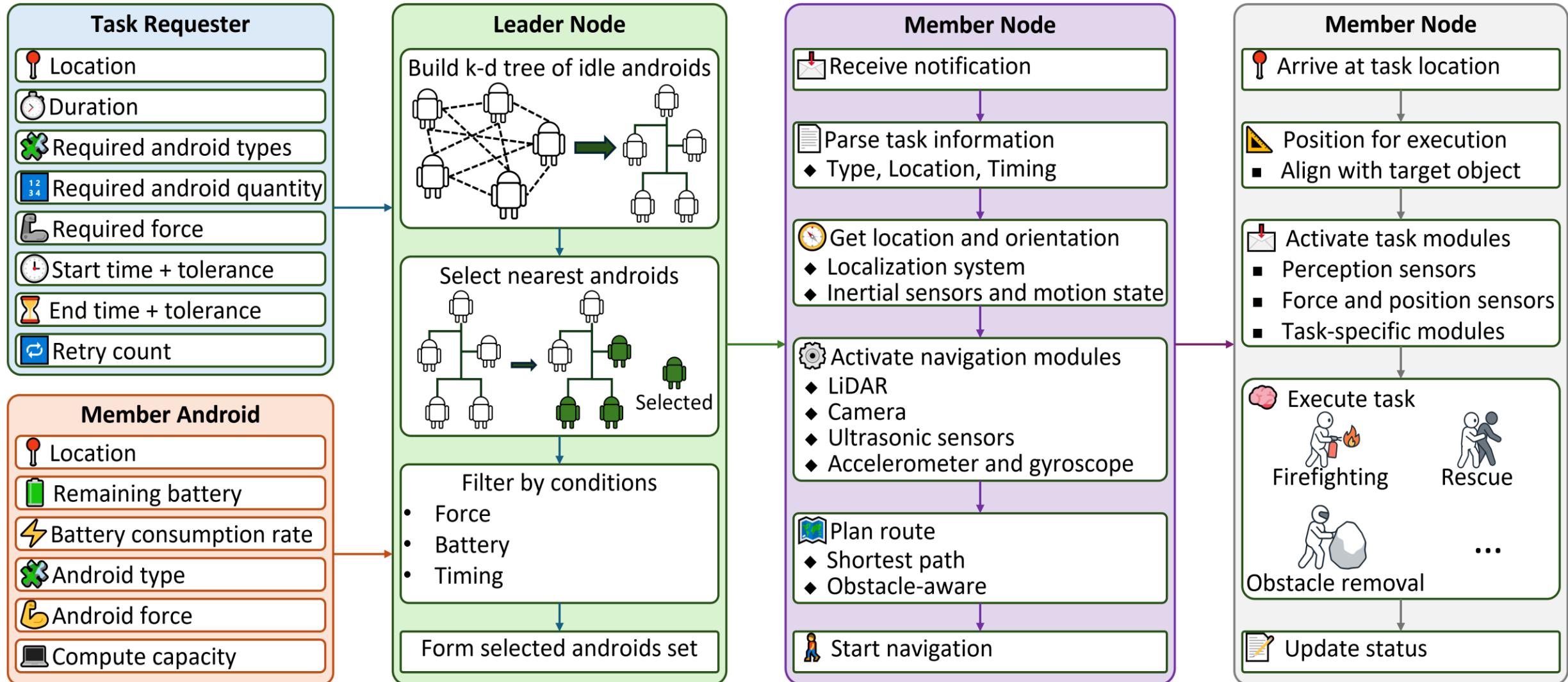


Fig. 1: Overview of the proposed distributed android coordination framework for critical missions.

# Distributed Anthropomorphic Robots Enabling Human-Centered Intelligent Machines

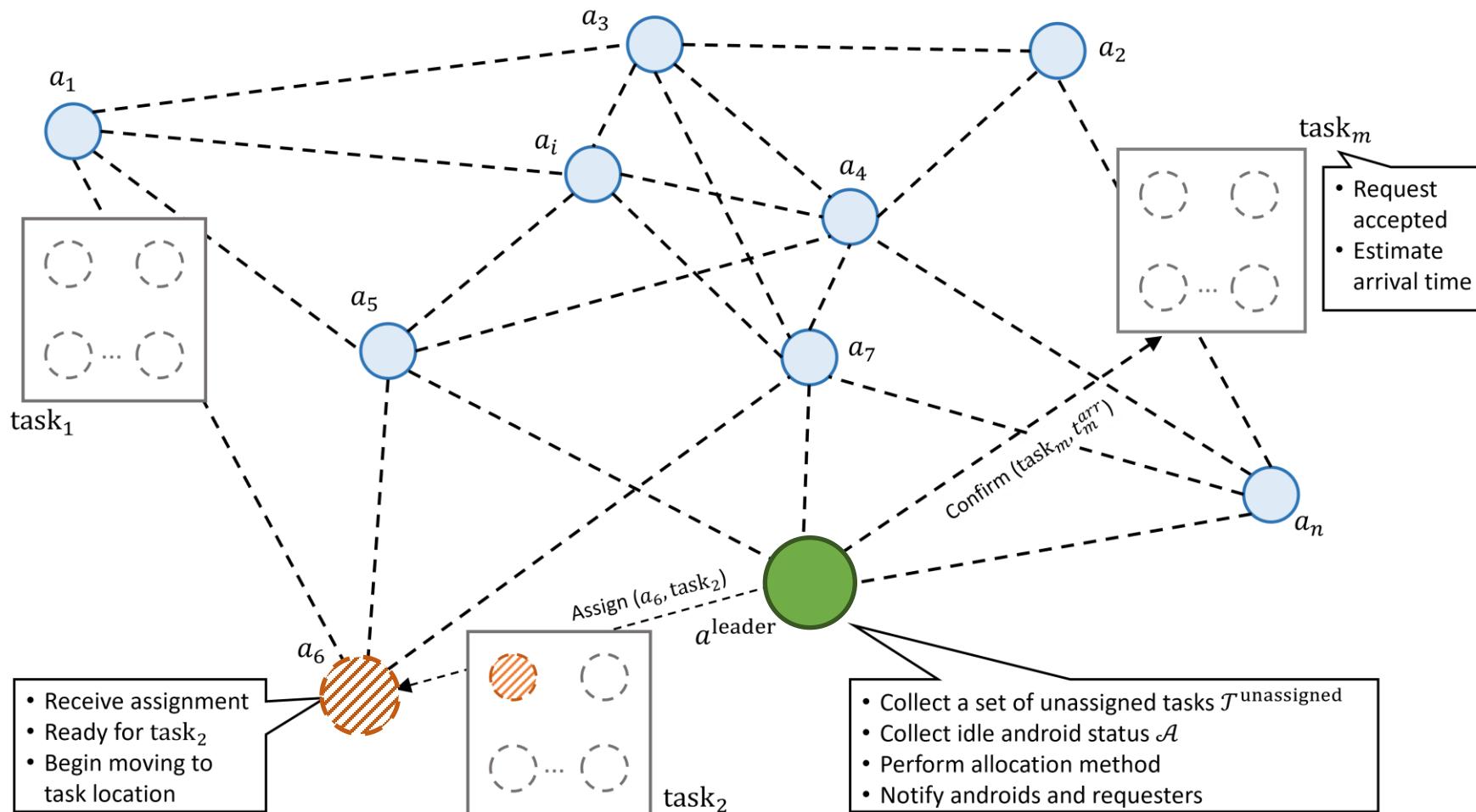


Fig. 2: Overview of the leader-based task assignment method for a distributed autonomous android system.

# Distributed Anthropomorphic Robots Enabling Human-Centered Intelligent Machines

## Preliminary Evaluation

- **Implementation**
  - Python 3.12
  - Bambu Lab P1S Combo 3D printer
- **Benchmarks**
  - **IRoT**
    - Type-based + Force-based + Battery-based
    - Without time-feasibility
  - **COHERENT**
    - Type-only based
- **Evaluation metric:**  
**Task fulfillment success rate:**  
**Ratio of tasks successfully assigned to androids to the total number of tasks**

**Table I. Configuration of Task Parameters Based on Spatiotemporal and Physical Requirements**

| Parameter           | Notation                    | Description                     | Value / Range                                             |
|---------------------|-----------------------------|---------------------------------|-----------------------------------------------------------|
| TaskID              | $j$                         | Unique ID per task              | 1 to number of tasks                                      |
| Location            | $l_j$                       | Task 2D coordinates             | (0, 0) to (99, 99)                                        |
| Duration            | $w_j$                       | Required task execution time    | 10-60 min                                                 |
| StartTime           | $t_j^{\text{start}}$        | Start time constraint           | 50% of tasks: 1 <sup>st</sup> to 360 <sup>th</sup> minute |
| StartTimeTolerance  | $t_j^{\text{start\_tol}}$   | Tolerance for delayed start     | 5-30 min                                                  |
| FinishTime          | $t_j^{\text{finish}}$       | End time constraint             | 50% of tasks: 11 <sup>th</sup> to 420 <sup>th</sup>       |
| FinishTimeTolerance | $t_j^{\text{finish\_tol}}$  | Tolerance for delayed finish    | 5-30 min                                                  |
| RetryCount          | $r_j$                       | Max retry attempts for task     | 1                                                         |
| RequiredType        | $\gamma$                    | Required android type           | ['A', 'B', 'C']                                           |
| RequiredNum         | $n_{j,\gamma}^{\text{req}}$ | Androids required for this type | 1-3                                                       |
| MinForcePerAndroid  | $f_{j,\gamma}^{\text{min}}$ | Min required force              | 1-10 N                                                    |

**Table II. Configuration of Android Parameters Based on Type, Force, and Battery Characteristics**

| Parameter           | Notation                | Description                              | Value / Range                   |
|---------------------|-------------------------|------------------------------------------|---------------------------------|
| AndroidID           | $i$                     | Unique ID per android                    | 1 to number of androids         |
| Location            | $p_i$                   | Android 2D coordinates                   | (0, 0) to (99, 99)              |
| Type                | $\gamma_i \in \Gamma$   | Android type / capability                | ['A', 'B', 'C']                 |
| Force               | $f_{i,\gamma}$          | Physical strength                        | 1-10 N                          |
| RemainingBattery    | $b_i$                   | Initial battery status                   | 10-120 min                      |
| TaskConsumptionRate | $\beta_i$               | Battery consumption rate to perform task | 0.8 for A, 1.0 for B, 1.2 for C |
| StepConsumptionRate | $\beta_i^{\text{move}}$ | Battery consumption per step             | 5% of full capacity             |

# Distributed Anthropomorphic Robots Enabling Human-Centered Intelligent Machines

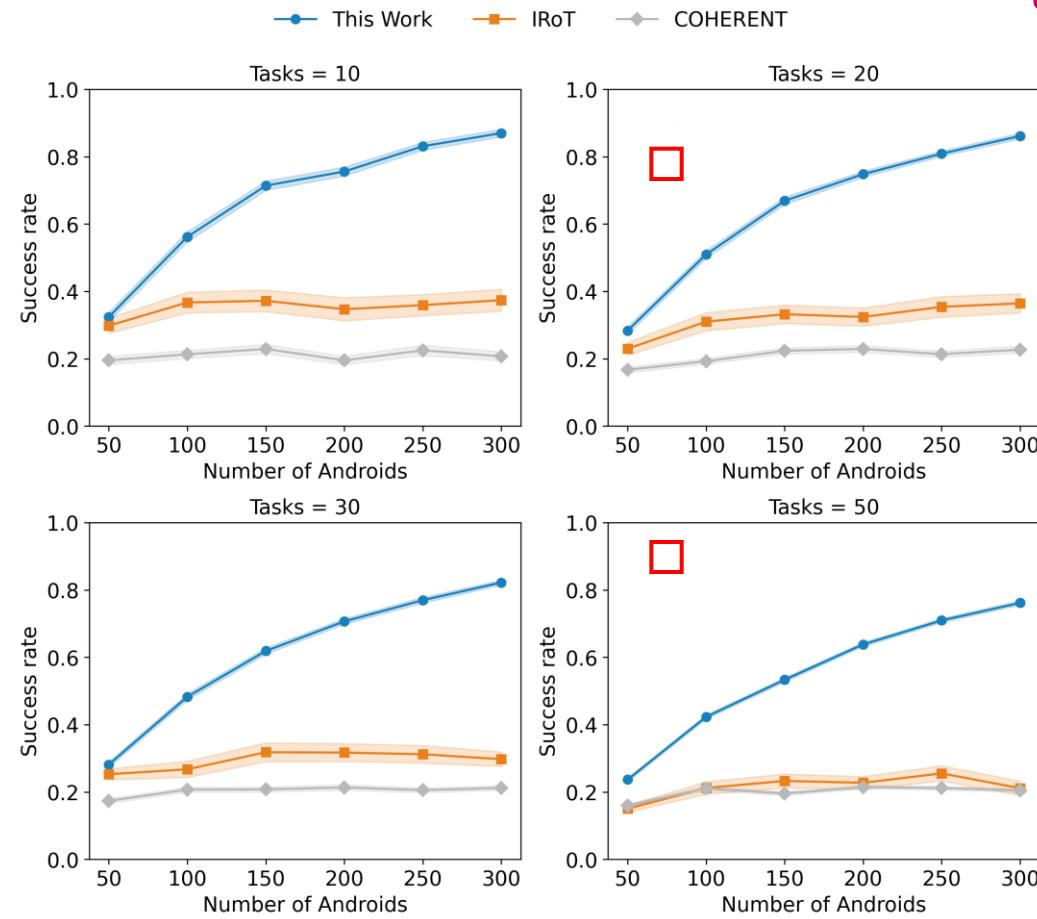


Fig. 4: Evaluation of the proposed method in terms of task fulfillment rate (with increasing number of androids)



(a) The developed android prototype. The prototype consists of articulated limb structures assembled from 3D-printed parts using modular joints. A wooden frame is temporarily used as the torso base to support initial mechanical integration and future component embedding.

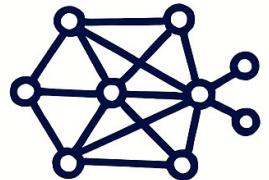
(b) AlzuHand: AlzuHand is a 3D-printed, low-cost prosthetic hand designed for EMG-based control with real-time feedback, a neuromorphic prosthetic hand with sensory-motor

<https://web-ext.u-aizu.ac.jp/misc/neuro-eng/aizuhand.html>

Achieved a success rate about  $2.0\times$  higher than existing approaches with 30 tasks and 100 androids and more than  $3.5\times$  higher with 50 tasks and 300 androids.

# Research Challenges & Opportunities

## Research Challenges & Opportunities



Algorithms for  
spiking control  
and planning



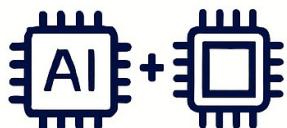
On-chip learning  
mechanisms



Distributed  
learning and  
consensus



Benchmarks for  
neuromorphic  
autonomous systems



Integration with  
classical AI and  
embedded platforms

- Algorithms for spiking control and planning
- On-chip learning mechanisms
- Distributed learning and consensus
- Benchmarks for neuromorphic autonomous systems
- Integration with classical AI and embedded platforms

# Agenda

- The Evolution of Autonomy
- Distributed Autonomous (DA) Systems
- Neuromorphic Computing
- DA + Neuromorphic Intelligence
- Applications and Case Studies
- Research Challenges
- Vision & Outlook

# Vising & Outlook

## ◆ Cognitive Ecosystems

- ✓ Intelligent agents, sensors, and environments working together with context-aware decisions, real-time adaptation, collaborative learning

## ◆ Self-Organizing • Adaptive • Resilient

- ✓ Systems that restructure, learn from sparse data, operate under uncertainty, and recover from failures

## ◆ Neuromorphic Autonomy: The Next Decade

- ✓ Convergence of neuromorphic computing + edge AI + embedded platforms enabling ultra-low-power, real-time autonomy for exploration, disaster response, smart infrastructure, defense

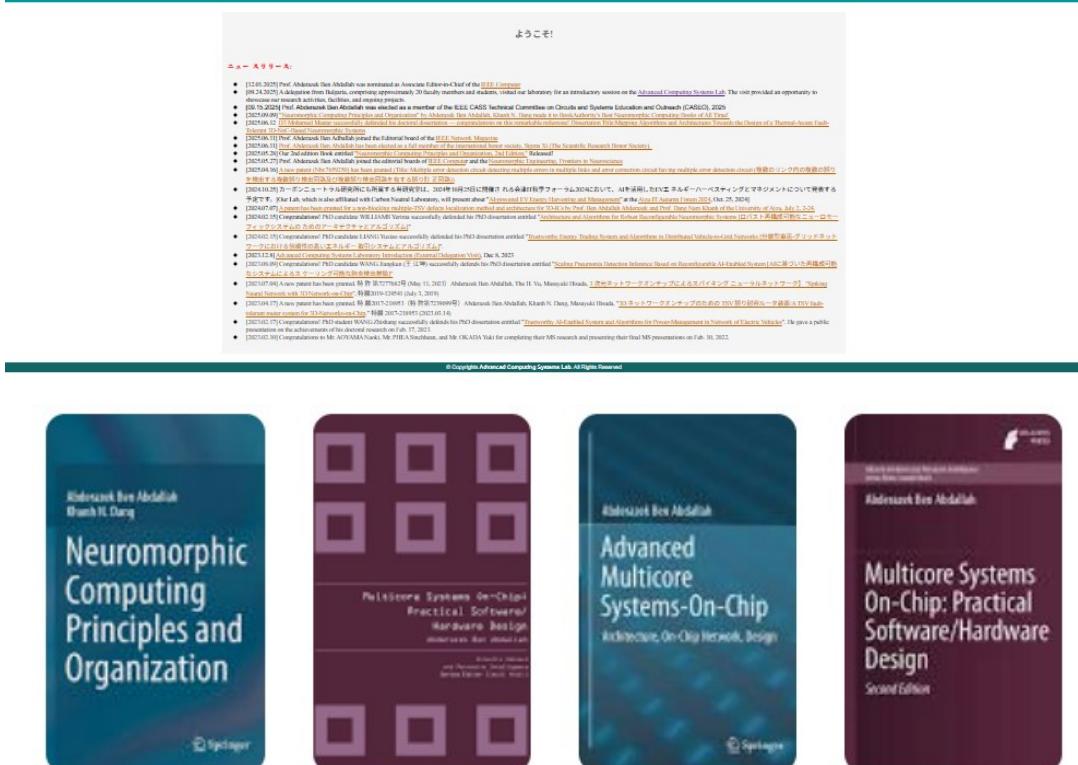
# Summary of Key Takeaways

- ✓ Autonomy is shifting from centralized to distributed architectures
- ✓ Neuromorphic computing brings efficiency and real-time responsiveness at the edge
- ✓ Their convergence enables scalable, adaptive, and resilient intelligent systems
- ✓ Demonstrated deployments: off-grid energy storage, V2G energy trading, anthropomorphic robots
- ✓ Neuromorphic-enabled distributed autonomy is no longer theoretical — it is already happening !

Thank you for your attention!



[www.u-aizu.ac.jp/misc/neuro-eng/](http://www.u-aizu.ac.jp/misc/neuro-eng/)



# Neuromorphic Computing Principles and Applications

# MULTICORE SYSTEMS ON-CHIP

2010

Advanced Multicore  
Multicore Systems On-  
Systems-On... Chip: Practi.  
2017 2013

Dr. Mark, Dr. ...  
their contribut

# Explore Our Books and Visit Our Lab Website!

## Acknowledgement:

Thank you to Dr. Dang, Dr. Z. Wang, and former lab members Dr. Mark, Dr. J. Wang, Dr. Vu, and all other lab members for their contributions to the research presented here.