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Why is Autonomy Shifting from Centralized to Distributed “?

 Centralized vs. distributed CENTRALIZED DISTRIBUTED
AUTONOMY AUTONOMY

autonomy

 Limitations of cloud-centric Al

» Real-world examples where v i @
distributed autonomy is essential @ ~~~~~~~~~ &
& & - &
e Multi-robot systems
Smart mobility Why autonomy is shifting from

centralized to distributed
« Environmental sensing networks



Architectural Principles of Distributed Autonomous Systems

Local perception and
decision-making
Peer-to-peer coordination

Emergent collective

behavior

Robustness and scalability
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Neuromorphic Computing

von Neumann architecture

Transistors switch in nanoseconds

Neuromorphic Computing

Neurons switch in milliseconds

Action
Potential
Inputs

Binary Input . Binary Output
32/64/128 bit CPU 32/64/128 bit
Memory

Up to GHz

<

01 01 01 0 1 0

Signal in von Neumann architecture

Serial computing, separated memory and
computing unit, and digital information
processing
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Signal in neuromorphic architecture

SNN: synaptic weights
and neuron behaviors
usually are not fixed

timing-dependent
ANN: The synaptic

weights and neuron
functions are static

P ' ) Action
e, N ™ »|  Potential

T Outputs

ot \( but evolve with

» Synapses \.’:

dynamics.
Near/In-memory
computing
Up to 1 kHz after training

and parallel computing/

In-memory computing, analog computing,




Neuromorphic Computing

Input Spikes

NEUROMORPHIC COMPUTING (from presynaptic neurons)

T T T

Weighted synapses

v v

| Neuron N4 I ¢ Integrates incoming spikes

v

Membrane Potential Over Time
(Integrate—and-Fire Model)

Potential
Threshold
SPIKING EVENT- LOW
NEURAL DRIVEN POWER
NETWORKS

Incoming spikes
raise potential




Neuromorphic Computing

Event-Driven Phenomena in Spiking
Neural Networks

Stimulus detected

Event-Driven Behavior of a Spiking
Neural Network

\ .
Silent
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Threshold
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> Events
@i

Time detected ——>
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Time
Event ’ //
SPIINGNEURAL  puent. Low HIGH POWER LOW POWER
NETWORKS DRIVEN POWER

SNNs operate only when events occur—specifically, when a neuron receives a spike, and

1ts membrane potential crosses a threshold. This 1s fundamentally different from traditional
neural networks, which process data continuously across all neurons.



Neuromorphic Computing

Time-Driven vs. Event-Driven Neuron

ACtIVIty Feature ANN (Time-Driven) SNN (Event-Driven)
ARTIFICIAL SPIKING NEURAL
NEURAL NETWORK NETWORK Neuron Activation Confinuous Sparse

O Computation Trigger Clock cycles Input spikes
O Memory Access Frequent On-demand
O Power Consumption High Low

‘1’ Time
O_}Q Biological Plausibility Low High

Event
HIGH POWER LOW POWER

ANN:S s process data in fixed time steps across all neurons, regardless of
whether meaningful input is present.

SNNs only activate neurons when an input spike occurs—computation
is triggered by events, not time.

=» SNNs avoid unnecessary computation, saving energy.




Sparsity in Neural Networks

@ (b) ( *  Only 0.5% to 2% of neurons in the neocortex are
Dense neural network Sparse neural network Sparse SNN . . .
' 20 active at any time [Lennie 2003 ]

3
o

Only 1% to 5% of connections exist between two
KX sety connected layers in the neocortex and 30% of those

connections change every few days [Holmgren
2003]
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Neuron Learning & AER

o Learning rules based on STDP specify changes in synaptic strength depending on the
time interval between each pair of presynaptic and postsynaptic events.

€ o Ifthe presynaptic neuron fire before
] ire [/ [® the postsynaptic neuron within a
E =5 preceding 2o0ms, LTP occurs
w | o O o | 5 .
£ 20 % g “ o Ifthe presynaptic neuron fire after the
input ~ target ,s%’ f postsynaptic neuron within the
-6 .
Atpre-post(Ms) following 20ms, LTD occurs
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Low-power 3D-NoC-Baded Neuromorphic SoC
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Fig. 5: System architecture: (a) 3DNoC-SNN organization, (b) Multicast
router architecture (MC-3DR), (¢) Spiking neuron processing core {(SNPC).
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NASH node Power (mW) 66.16 | 66.63 | 66.50 | 66.84 | 68.22 70.10
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Distributed Autonomy + Neuromorphic Intelligence

CONVERGENCE

DISTRIBUTED AUTONOMY + NEUROMORPHIC

@ INTELLIGENCE




Distributed Autonomy + Neuromorphic Intelligence

How neuromorphic principles enhance distributed agents

How Neuromorphic Principles
Enhance Distributed Agents

LOW
POWER

® 2 [
REAL-TIME b 7@
LOCAL
SENSING  “ TT PROCESSIN
Distrucuebistnuadet Agents

v Event-Driven Computation

v" Spiking Neural Networks
(SNNs

v" Local Learning and
Adaptation)

Feature Traditional Agent Neuromorphic Agent
Computation Model Conftinuous Event-driven

Power Consumption High Ultra-low

Learning Centralized Local & adaptive
Communication Bandwidth-heavy Sparse & efficient
Scalability Limited High

v' Low-Power Hardware Integrator
v" Scalable Decentralized
Intelligence




Applications and Case Studies

Robotics and swarm

intelligence

Robotics and swarm

intelligence

Environmental monitoring

Space and planetary

exploration Robotics and Environmental Defense and
swarm intelligence  monitoring security
systems

Defense and security

systems




Real-World Deployment 1:

Intelligent Off-Grid
Energy Storage Powered
by Distributed EV

Autonomy




Smart Solar Carport: Off-Grid Energy Storage with Al and EV

Vision and Motivation/E > 3 > & S
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Smart Solar Carport: Off-Grid Energy Storage with Al and EV

System Overview

Sol | “'ﬁ Battery management system

olar panels -_ﬁ [ —

Average efficiency: ==‘ A | Cloud server
20-22% efficient. N T E - ‘ A

Upload data to

@ I the cloud ®" i
Store & Record harvested ; e B
energy amount
Inference server @
Read and transmit data
O L/\\MccuWeather -
S
@ Transmit a) weather information in the
Weather API past (used for model training) and b) @
future weather forecast (used for model . .
. Predict the solar energy generation and
inference)

‘§ display the result on the UlI.
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Software tool for solar power
generation prediction
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Smart Solar Carport: Off-Grid Energy Storage with Al and EV

System Overview
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Workflow of solar energy generation prediction using cloud maps and numerical weather data.




Smart Solar Carport: Off-Grid Energy Storage with Al and EV

Input
Layer
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368 x 288

Sequential-Based Cloud Map Model

Flatten
Layer

Convolutional
Layer
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2
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Vector Size
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128 units

Cloud Map

VGG-16 Feature

Extractor Model

5x 11 x 512 16
Cloud
Feature
Vector

Extract Principal
Information via PCA

-0.11
0.12
-0.81
0.92

Length of
16
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v 368 x 288

(2) The predicted cloud map is an image, which
needs to be converted to a vector. We use principle

component analysis to extract key information from

the cloud map and convert it into a vector.

Workflow of solar energy gene
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Local Weather
Data Collection
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Wind
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Predicted
Energy
Generation
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Hybrid Solar
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E
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(1) Using past sequence of
cloud maps to forecast future
cloud maps (30 min, up to 2
hours)

(3) We collect weather data in
numerical format, to be

Humidity | 70%

Weather | Sunny

tion predictionusing cloud maps and numerical we

Ground truth

her data.

» integrated with cloud map
(already converted into
vectors rather than image)

For cloud map: Japan Meteorological Agency, “Weather Satellite Himawari,” accessed Nov. 25, 2025, https://www.jma.go.jp/bosai/map.html
For weather data: Japan Meteorological Agency, ‘“Historical weather data,” accessed Nov. 25, 2025, https://www.data.jma.go.jp/risk/obsdl/index.php



Smart Solar Carport: Off-Grid Energy Storage with Al and EV

System Overview 2. EV Power Consumption Prediction
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Smart Solar Carport: Off-Grid Energy Storage with Al and EV
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Fig. 1. Virtual Power Plant {(\VPP): (a) conventional VPP
agegregator, (b) AEBIS, (c) optimized AEBIS (O-AEBIS).
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Fig. 5. A demonstration of the energy management system based on
our system named AEBIS and its optimized version O-AEBIS.
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Fig. 2. Neural Network for Power Consumption
Prediction of Electric Vehicle (EV).

MName BERAM_18Kk | DSP48SE | FF LUT

Expression - - 0 493

Instance - 3 414 950

Memory 2 - 320 20

Multiplexer - - - 627

Register - - 454 -
~Total 2 5 1188 | 2000 |
| Available 120 30 | 35200 | 17600

Utilization (%) | 1| 6 3 11

Weights Memory required

Weights 5368 Bytes

Biases 60 Bytes

Inputs 44 Bytes

Total 672 Bytes

Fig. 6. Hardware complexity of power consumption
prediction system on the Zyng-7010 FPGA. The system

utilized 3% of the FF, 11% of the LUT, 6% of the D5P48,
and approximately 1% 18k BRAM.



Smart Solar Carport: Off-Grid Energy Storage with Al and EV

On-site Field Experiment, UoA, 2021
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Smart Solar Carport: Off-Grid Energy Storage with Al and EV

On-site Field Experiment, UoA, 2021 PCP (Traditional Power Multi-Stage PCP (Multi-StagePower .
i o £ el Consumption Prediction) — Consumption Prediction) Cloud Map Prediction
(a) Short-Distance Journey (b) Mid-Distance Journey Table 2. Evaluation of the cloud prediction method using Fukushima
5.6 cloud maps (comparative image pairs) [1].
30 E] 5.5
2 7&_ 5.4 Forecast Interval Avg. MSE  Ave. PSNR  Avg. SSIM
26
_ W, 521 30 minutes 277.30 2375 0.893
- B = g — 52 1 hour 297.35 23.57 0.891
A 2'0 37% higher accuracy - 1.5 hours 309.49 23.53 0.892
173 2 hours 452.64 21.88 0.884
1.7 176 : 3| , 4.8
' PGP Mulli Slage PCP PeP Mulli Slage PCP Table 3. Evaluation of the super-resolution-based cloud prediction
(c) Long-Distance Journey (d) All Scenarios method using Fukushima cloud maps (comparative image pairs) [1].
5.6
6.2 .ﬁL—I;I.Il‘ @ 55 Forecast Interval  Avg. MSE  Avg. PSNR  Avg. SSIM
i o 30 minutes 2056.39 16.52 0.909
w58 - — 59 1 hour 1906.75 16.87 0914
= 56 : 1.5 hours 1863.41 16.68 0916
o 5o 2 hours 1578.94 17.89 0926
53 =
&0 4.8 ) .
' : : Robust performance of the cloud map prediction
PCP Multi-Stage PCP PCP Multi-Stage PCP . ) ) ) .
15.4% higher accuracy 5.5% higher accuracy with high accuracy and structural similarity. The
The multi-stage prediction method achieves better performance, cloud map prediction benefits from super-resolution.
increasing EV power consumption prediction accuracy by 5.5% Combining the cloud map with numerical
across all scenarios compared to the baseline method. meteorological data maintains the accuracy
Evaluation on MAE across the numerical model and hybrid models with varying PCA features
2 0.48 1
T lar Ener
9 0.46 v MAE Sola e 8y
2 044 Avg. MAE H/.wg. MAE Avg. MAE Avg. MAE Avg. MAE e Generation
0 Avg. MAE 0.437 0.435 0.438 0.438 0.437 ..
2 042 0.431 T Prediction
§ 0.40 1
= 0.381 T

cal Model - odel with | Model with 1 Model with 1 Model with 4 Model with 4 Model with
Numenca| Mo prid Mode prid Mode prid Mode brid Mode rid Mode rid Mode!
Hys PCA Features H g PCA Features Hlo PCA Features H 12 PCA Features H 1% PCA Features Hzet PCA Features

[Japan Meteorological Agency, “Weather Satellite Himawari,” accessed Nov. 25, 2025, https://www.jma.go.jp/bosai/map.html



Al Enabled Energy Trading in Distributed Ve2G Network

On-site Field Experiment, UoA, 2021
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V2G Energy Trading: Building Trust in the Grid
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Centralized and decentralized energy trading system networks.
Its objective is to optimize efficiency, security, privacy, and scalability.



V2G Energy Trading: Building Trust in the Grid
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Centralized and decentralized energy trading system

networks. Its objective is to optimize efficiency, security,
privacy, and scalability.



V2G Energy Trading: Building Trust in the Grid
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Illustration of a distributed power system updated with a VPP and energy storage departments.

The grid turns from the center of the system to a necessary ancillary part.

The VPP now serves as an information processing center, integrating the power grid, energy market,
renewable and non-renewable resources, energy storage systems, and energy consumers.



V2G Energy Trading: Building Trust in the Grid

» Each campus’ V2G control system (CS)
works as an information mediator
between energy consumers and EV
suppliers.

» Each consumer connects and submits
the energy request to the energy
exchange.

> In BoEV, the offer lists (EVs to CS) and
notification of discharge tasks (CS to EVs)
are transmitted.

» Only necessary trading data is uploaded
to keep privacy and shorten the chaining
latency.
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Overview of V2GNet for energy trading in a campus V2G network.



V2G Energy Trading: Building Trust in the Grid
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€ The BoCS is where inter-campus energy trading is planned and recorded, and each CS is a node of the BoCS. Besides,
each campus’s CS serves as a blockchain connection between the BoEV and the BoE for that campus.
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. The initial step in BoCS begins once any CS

completes and uploads the local trading plan to its
BoE and BoEV. The CS packs the data for its
unselected EVs and requests into a transaction,
then broadcasts it on BoCS. Once enough
transactions are collected within any pool, the
corresponding CS dispatch them for endorsement
and ordering, then package into a block. The block
is broadcast across BoCS for verification.
Download the overall request list and EV supplier
list.

Compete on trading planning SRET mechanism and
uploading the outcome back to BoCS.

Download and record the new block from BoCS.
Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.
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BoCS proceeds to download the block,
extracting the associated lists and consolidating
these lists into an overall request list and an
overall EV supplier list.

Compete on trading planning SRET mechanism
and uploading the outcome back to BoCS.
Download and record the new block from BoCS.
Arrange energy trading accordingly.
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Compete on trading planning SRET mechanism
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. The new block is downloaded and permanently

recorded by all CS nodes of BoCS network. From
the block, each CS extracts the cross-campus
energy trading outcomes and notifies the
relevant consumers and EVs of their specific
trading details accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet.



V2G Energy Trading: Building Trust in the Grid

The number of requests and
EVs is equal, and demand
can be almost entirely
covered

ZREBEEVD BEUL R
ThHhY., FEEIFIFIIERE
ICHE> 2N TEET,

The number of EVs is half,
but they can still cover more
than 60% of demand.
EVD B #ILH9DTT A
ZTNTHHEEZDE0% A L
2O ZENTEET,

Achieves 45% more total
profit of a single energy
trading round, compared to
the baseline  methods.
EEFLERL T, H
—DIRIIF—E5T7 Y
Y RIiZEWTHRAEE
45% % <ZERL L £9,

1.0

o
®

Fulfillment Rate

o
N

0.0

o
o

—8— Action-based Incentive Scheme  —&— V2G-base  —#— V2GNet
No. of Energy Requests = 200 No. of Energy Requests = 400 No. of Energy Requests = 600
0.8 0.8
Evaluation of the fulfillment rate of a
061 061 single energy trading round across
three trading strategies.
0.4 0.4
0.2 0.2 1 /
60 90 120 150 180 210 240 270 60 90 130 1%0 160 210 240 270 0 60 90 120 150 180 210 240 270 An action-based incentive scheme in
No. of EVs No. of EVs No. of EVs . . .
EV grid energy trading rewards electric
vehicle (EV) owners or aggregators for
i Action-based Incentive Scheme E V2G-base I V2GNet

No. of Energy Requests = 200

14000 4

12000 4

10000

8000

6000 H

Total Profit

4000 4

2000 4

60

90

120 150 180 210 240 270

No. of EVs

No. of Energy Requests = 400

. oty a0 their actual participation and actions

25000 4

20000 4

15000 4

10000 +

5000 1

60

90

120 150 180 210 240 270

No. of EVs

30000 4

25000 4

20000

15000

10000 4

5000 4

in energy trading—such as charging,
discharging, or providing grid
services—rather than just for
availability.

Evaluation of the total profit (JPY) of a
single energy trading round across
three trading strategies.

60 90 120 150 180 210 240 270

No. of EVs

Y. Liang, Z. Wang and A. B. Abdallah, "V2GNet: Robust Blockchain-Based Energy Trading Method and Implementation in Vehicle-to-Grid Network," in IEEE Access, 2022
.Liang, Z. Wang and A. B. Abdallah, "Robust Vehicle-to-Grid Energy Trading Method Based on Smart Forecast and Multi-Blockchain Network," in IEEE Access, 2024




Evaluation Results

Input Feature Value Unit
Discharge Power 0to 10 kWh, Float
Charge Power 15 kWh, Int
Driving Power 10 kWh, Int
Driving Time Slot 20to0 22 -, Float
Charge Time Slot 20 to 21 -, Float
Request Time Slot 21 to 22 -, Float
No. of Energy Exchange 3 -, Int

No. of Malicious Exchanges 1 -, Int

No. of Malicious Consumers 1,5, 10, 20, 50 -, Int

EV State Idle, Charging, Driving | -, Int
Battery Capacity 60 kWh, Int
Requests Capacity 0to 10 kWh, Float
Maximum No. of Requests 10 Int

from One Malicious Consumer ’

Bid Price 22.39t0 42.84 JPY, Float

! The currency code for the Japanese Yen is JPY.

Table 3. The total time consumption of an energy trading round across four trading strategies:
1) the action-based incentive scheme; 2) V2GNet; 3) double time boundaries scheme within
V2GFTN; 4) single time boundary scheme within V2GFTN..

Tame No. of EVs
. - Action-Based Double Time Boundary Single Time Boundary
Consumption (3) Incentive Scheme V26Nt (This Work) N S CThis W k)
L] 120) 150 il Bl 120 150 ] R 120 150 1] B 1200 1500
No. of 200 1.79 336 388 | B34 445 | 6.3 733 [ 949 378 773 [ 1392 ] 21.65 TA7 19.44 4367 7393
. 400 LR 337 |58 [RS8 [ 43T 737 940 11056 | 340 T 740 [ 13032100 735 1900 4010 7344
Requests 97 T 336 T 578 [ 859 [ 677 [ 526 735 1002 [ 330 [ 730 [ 1283 (209 T 702 1950 | 4308 T 71,76
Mo, ol EVs
Time Action-Based VIGNel Double Time Boundary Single Tame Boundary
Consumption (5) Incentive Scheme - (This Work) (This Waork)
180 210 240 Ry[1] 180 210 240 270 180 210 240 270 180 210 230 270
No. of 20K} T2A8 T [ 2205 [ 08T [ T304 [ 1933 1 3562 | 3050 | 00T [ 178 [ 5430 | a0 33 [ 11300 [ 17627 | 23986 | 34009
Requests ELN] 1231 [ 16.72 2];_{!? R TT4T 11954 | 22.60 | 2045 | 2995 _-i[].ﬁf! _53.6-1 0904 | T19.70 | T67.19 [ 25391 | 375.00
600 | 1230 | 1650 | 2557 | 2801 [ 12097 | 1692 | 2207 | 3007 | 2930 | 4055 | 5346 | T7.80 | [T784 | 17648 [ 24836 | 33812

The time consumption is the total time CS spend on trading planning for a whole energy

trading round of the V2G system. In our hour-ahead V2G trading system, the upper limit of

time consumption turns out to be 1 hour.

*— V2GNet (This work)
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V2GFTN Energy Trading Results : Time cost ratios

The multi-blockchain processing time makes the most of the overall time cost of V2GFTN.
And getting notifications from cross-campus V2G trading on the BoCS takes more time than
from V2G trading within a single campus from the CS. This is because the BoCS takes extra
time to upload and download the data of the remaining EVs and requests.
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(a) Time ratio of blockchain-
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Figure 26. Comparative analysis of time cost ratios in different scenarios.
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Distributed Al-Powered HW-SW Platform for Pneumonia Detectlon

Table 7.3. FPGA Resource Utilization Estlmates

! e s s R - : : Utilization S - Utilization (%)

" COVID-19 Detection System ! Resource : ; - Available — ; :

E Gumulative Number —— rSample Selector ———————————————— Detailed lnlon:nanuni . AN N SN N . AN N X S N N

! :ﬁm : :.I-mganI::.-m Uﬁ:lnluw:-;r;. . : LUT - 54,585 27,288 274‘080 ...... 199 99
! el B e “.. 1 LUTRAM 3668 2048 144,000 25 g 1.8

; LTI ] e I FF__ 53035. .. 37,098. ..548160. . . . 9.7 677
! : BRAM 824 0 912 :90.4 0

| I DSP 35 : 0 o 2520 14 0:

! = ctem user interface A& BUFG 4" 18 404 1.0 445

MMCM 1 -0 : 4 - 25 0

Core/ Parameter Area (mmz) Power (mW)
"SNN_ANN SNN - ANN
0.0748 0.0755  0.007  0.011

Convolutlon core

Local training @ Aggregation

1 i — e - AIRBiS -
3 @ $ ; pierf Table 7.2. Dataset description.
Pre-processed Local Global e e e label . ........ .. . Class- . ....... ... Traih-- - ... .. Tast. ... ...
| dataset model model coviD "~ covip 2870 . 200
I Resoifpiistlcnl-Eladony _ COVID(Augmented) . 14349 . - .
] Collaborative Learning ; : . Normal 9791 : 400
! (a) | Semmms= o= === (c) AIRBIS system setu : - :
___________________________ (c) AIRBIS system setup ' Non-COVID: Lung_Opacity 5762 . 250
Convolution, Activation, Pooling, Fully connected layer, etc I ' Viral_Pneumania 1288 ' 50
1 Sum 34,060 1400
pav o I : . 160 .
l A Norm aI I = 140 Tatency —|—
1 F - 120 '
°
Sigmoid (%) ! p i g 100
= = 80
classifier Infected ! i B
[ s 2w
| [ 5 a0
1 L 20 ,
(d) AIRBIS diagnosis flow. Input case from Ul, diagnosis in Al-chip, output result and return to Ul I L T T R N R I
———————————————————————————————————————— =i Tlmestep

Fault Rate (%)
(a) Detection accuracy over various time-steps (b) Detection Latency over various fault-rate

Figure 7.6. Accuracy and fault-rate evaluation result
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Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection,
Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.
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24, p. 4157, 2022. doi: 10.3390/electronics11244157.
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Evaluation Result

Table 7.2. Dataset description.

Label Class Train Test
COVID COVID 2870 700
COVID(Augmented) 14,349 -
Non-COVID Normal 9791 400
Lung_Opacity 5762 250
Viral_Pneumonia 12883 50
Sum 34,060 1400
160 latency g
L | Wi Sansisd g vy |~ = 140
v E 120
& 70f C 100
Z 60} 8
g 5ol = 80
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T St Fault Rate (%)

(a) Detection accuracy over various time-steps.

Accuracy and fault-rate evaluation result.

Core/Parameter Area (mm?2) Power (mWw)
C uti SNN ANN SNN ANN
onvolution core
0.0748 0.0755 0.007 0.011
Result comparison with existing works.

Works Model Platform Dataset Image Size  Accuracy
[fukuchi2022efficient] SNN Software X-ray 64 X 64 80.7%
[kamal2021explainable] SNN Software X-ray 256 x 256 78%
[che2020covid] ANN Software X-ray 224 x 224 71.9%
[wang2022efficient] ANN FPGA X-ray 256 x 256 94.4%
This work SNN FPGA X-ray 64 x 64 88.43%

(b) Detection Latency over various fault-rate.
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Distributed Anthropomorphic Robots Enabling Human-Centered
Intelligent Machines
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Fig. 1: Overview of the proposed distributed android coordination framework for critical missions.
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Fig. 2: Overview of the leader-based task assignment method for a distributed autonomous android system.
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Table I. Configuration of Task Parameters Based on Spatiotemporal and Physical Requirements

Preliminary Evaluation

* Type-only based
Evaluation metric:

Task fulfillment success
rate:
Ratio of tasks
successfully assigned to
androids to the total
number of tasks

] Parameter Notation Description Value / Range
* Im P lementation TaskID Jj Unique ID per task 1 to number of tasks
* Python3.12 Location lj Task 2D coordinates (0, 0) to (99, 99)
e Bambu Lab P1S Combo 3D Duration A Required task execution time 10-60 min
printer StartTime tftart Start time constraint 50% of tasks: 15t to 360" minute
: start_tol _ ;
Benchmarks StartTimeTolerance t; - Tolerance for delayed start 5-30 min
. IRoT FinishTime tjf”“Sh End time constraint 50% of tasks: 11t to 420t
+  Type-based + Force- FinishTimeTolerance tjﬁniSh—tO] Tolerance for delayed finish 5-30 min
based + Battery- RetryCount r Max retry attempts for task 1
based RequiredType 1 Required android type [‘A’, ‘B’, ‘C’]
* Witho'u.t time- RequiredNum n;'}e/q Androids required for this type 1-3
eS8y MinForcePerAndroid f min Min required force I-10N
O COHERENT LY

Table Il. Configuration of Android Parameters Based on Type, Force, and Battery Characteristics

Parameter Notation Description Value / Range

AndroidID i Unique ID per android 1 to number of androids
Location D; Android 2D coordinates (0, 0) to (99, 99)

Type y; ET Android type / capability [‘A’, ‘B’, ‘C’]

Force fi,}f Physical strength 1-10 N

RemainingBattery b; Initial battery status 10-120 min
TaslConsumptionRate B; Battery consumption rate to perform task 0.8 for A, 1.0 for B, 1.2 for C
StepConsumptionRate preve Battery consumption per step 5% of full capacity

Configuration of task and android parameters
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rate (with increasing number of androids) embedding

Achieved a success rate about 2.0 X higher than existing approaches with 30 tasks
and 100 androids and more than 3.5 % higher with 50 tasks and 300 androids.
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Research Challenges & Opportunities
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Vising & Outlook

+ Cognitive Ecosystems

v'Intelligent agents, sensors, and environments working together with
context-aware decisions, real-time adaptation, collaborative learning

+ Self-Organizing ® Adaptive e Resilient
v'Systems that restructure, learn from sparse data, operate under
uncertainty, and recover from failures

o Neuromorphic Autonomy: The Next Decade

v'Convergence of neuromorphic computing + edge Al + embedded
platforms enabling ultra-low-power, real-time autonomy for exploration,
disaster response, smart infrastructure, defense



Summary of Key Takeaways

v’ Autonomy is shifting from

brings efficiency and real-time responsiveness at

the edge

Their convergence enables intelligent

systems

Demonstrated deployments: off-grid energy storage, V2G energy trading,

anthropomorphic robots

—itis

already happening !
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