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Why is Autonomy Shifting from Centralized to Distributed ? 

• Centralized vs. distributed 

autonomy

• Limitations of cloud-centric AI

• Real-world examples where 

distributed autonomy is essential

• Multi-robot systems

• Smart mobility

• Environmental sensing networks
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Architectural Principles of Distributed Autonomous Systems

• Local perception and 

decision-making

• Peer-to-peer coordination

• Emergent collective 

behavior

• Robustness and scalability
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• SNN: synaptic weights 

and neuron behaviors 

usually are not fixed 

but evolve with 

timing-dependent 

dynamics.

• ANN:  The synaptic 

weights and neuron 

functions are static 

after training

Neuromorphic Computing

Serial computing, separated memory and 
computing unit, and digital information 
processing

In-memory computing, analog computing,
and parallel computing/

Transistors switch in nanoseconds Neurons switch in  milliseconds



Neuromorphic Computing
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SNNs operate only when events occur—specifically, when a neuron receives a spike, and 

its membrane potential crosses a threshold. This is fundamentally different from traditional 

neural networks, which process data continuously across all neurons.

Neuromorphic Computing
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ANNs process data in fixed time steps across all neurons, regardless of 

whether meaningful input is present.

SNNs only activate neurons when an input spike occurs—computation 

is triggered by events, not time.

➔ SNNs avoid unnecessary computation, saving energy.

Neuromorphic Computing
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Sparsity in Neural Networks

12/01/2022

1

0

Illustration of sparsity in neural network

• Only 0.5% to 2% of neurons in the neocortex are 

active at any time [Lennie 2003] 

• Only 1% to 5% of connections exist between two 

connected layers in the neocortex and 30% of those 

connections change every few days [Holmgren 

2003]  

Digital silicon neuron implementation 10benab@u-aizu.ac.jp



⚫ Learning rules based on STDP specify changes in synaptic strength depending on the 

time interval between each pair of presynaptic and postsynaptic events.

⚫ If the presynaptic neuron fire before 
the postsynaptic neuron within a 
preceding 20ms, LTP occurs

⚫ If the presynaptic neuron fire after the 
postsynaptic neuron within the 
following 20ms, LTD occurs 

Neuron Learning & AER

Address-event 

representation (AER) 

protocol
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Low-power 3D-NoC-Baded Neuromorphic SoC 

Evaluation Result

Area analysis of a 

NASH node

Design complexity comparison of NASH and Baseline nodes
https://web-ext.u-aizu.ac.jp/misc/neuro-eng/nash.htm

Deployment on Aizu Hand and Anthropomorphic Robot
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Distributed Autonomy + Neuromorphic Intelligence
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Distributed Autonomy + Neuromorphic Intelligence

How neuromorphic principles enhance distributed agents

✓ Event-Driven Computation

✓ Spiking Neural Networks 

(SNNs

✓ Local Learning and 

Adaptation)

✓ Low-Power Hardware Integrator

✓ Scalable Decentralized 

Intelligence
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Applications and Case Studies

• Robotics and swarm 

intelligence

• Robotics and swarm 

intelligence

• Environmental monitoring

• Space and planetary 

exploration

• Defense and security 

systems
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Real-World Deployment 1: 
Intelligent Off-Grid 

Energy Storage Powered 
by Distributed EV 

Autonomy
16benab@u-aizu.ac.jp



Smart Solar Carport: Off-Grid Energy Storage with AI and EV

Vision and Motivation/ビジョンと動機

PVの発電予測/PV 

power generation 

forecast

SOC予測/SOC of 
charge forecast

ステーション帰着予測/Station 
return prediction

充放電/Charge/discharge

需要の
ピーク発生時/When 
peak demand occurs

PV余剰/PV 
Surplus

充放電

カーシェアリング需要予測
/Car sharing demand forecast

カーシェアリング需要予
測/Car sharing demand 

forecast

Renewable Energy
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Solar panels
Average efficiency: 
20–22% efficient.

Store  & Record  harvested 

energy  amount

Cloud server

Battery management system

Upload data  to 

the cloud 

Inference server

Weather API
Transmit a) weather information in the 

past (used for model training) and b) 

future weather forecast (used for model 

inference)

Software tool for solar power 

generation prediction 

Read and transmit data

Predict the solar energy generation and 

display the result on the UI. 

System Overview 

Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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1. PVの発電予測/PV power generation forecast

Workflow of solar energy generation prediction using cloud maps and numerical weather data. 

System Overview 

Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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Workflow of solar energy generation prediction using cloud maps and numerical weather data. 

(1) Using past sequence of 
cloud maps to forecast future 
cloud maps (30 min, up to 2 
hours)

A sequence 
of cloud 
maps

(2) The predicted cloud map is an image, which 
needs to be converted to a vector. We use principle 
component analysis to extract key information from 
the cloud map and convert it into a vector.

(3) We collect weather data in 
numerical format, to be 
integrated with cloud map 
(already converted into 
vectors rather than image)

For cloud map: Japan Meteorological Agency, “Weather Satellite Himawari,” accessed Nov. 25, 2025, https://www.jma.go.jp/bosai/map.html

For weather data: Japan Meteorological Agency, “Historical weather data,” accessed Nov. 25, 2025, https://www.data.jma.go.jp/risk/obsdl/index.php

Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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2. EV Power Consumption Prediction

EV Power Consumption Prediction

System Overview 

EV discharge period

Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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Software Tool – EV 

Charge/Discharge Status 

Display

Hardware 

Experiments

Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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The multi-stage prediction method achieves better performance, 
increasing EV power consumption prediction accuracy by 5.5% 
across all scenarios compared to the baseline method.

Solar Energy 
Generation 
Prediction

Table 2. Evaluation of the cloud prediction method using Fukushima 
cloud maps (comparative image pairs) [1].

Cloud Map Prediction

Table 3. Evaluation of the super-resolution-based cloud prediction 
method using Fukushima cloud maps (comparative image pairs) [1].

Robust performance of the cloud map prediction 
with high accuracy and structural similarity. The 
cloud map prediction benefits from super-resolution. 
Combining the cloud map with numerical 
meteorological data maintains the accuracy

[Japan Meteorological Agency, “Weather Satellite Himawari,” accessed Nov. 25, 2025, https://www.jma.go.jp/bosai/map.html

Smart Solar Carport: Off-Grid Energy Storage with AI and EV
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AI Enabled Energy Trading in Distributed Ve2G Network

25

Figure 2. Illustration of Smart and Secure 

Energy Trading Method and System Project. 

(Source: https://web-ext.u-

aizu.ac.jp/misc/neuro-eng/aebis.html)

Parking Lot 1

Parking Lot 2

Full Supply

Campus Grid System

V2GNet System

Control System

Parking Lot 

A distributed power system updated with a VPP 
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centralized decentralized

Centralized and decentralized energy trading system networks.
Its objective is to optimize efficiency, security, privacy, and scalability. 

V2G Energy Trading: Building Trust in the Grid 

26benab@u-aizu.ac.jp



centralized decentralized

Complete collapse 

Centralized and decentralized energy trading system 
networks. Its objective is to optimize efficiency, security, 
privacy, and scalability. 

V2G Energy Trading: Building Trust in the Grid 
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Illustration of a distributed power system updated with a VPP and energy storage departments. 
The grid turns from the center of the system to a necessary ancillary part. 
The VPP now serves as an information processing center, integrating the power grid, energy market, 
renewable and non-renewable resources, energy storage systems, and energy consumers.

V2G Energy Trading: Building Trust in the Grid 
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➢ Each campus’ V2G control system (CS) 
works as an information mediator 
between energy consumers and EV 
suppliers.

➢ Each consumer connects and submits 
the energy request to the energy 
exchange.

➢ In BoEV, the offer lists (EVs to CS) and 
notification of discharge tasks (CS to EVs) 
are transmitted.

➢ Only necessary trading data is uploaded 
to keep privacy and shorten the chaining 
latency.

Parking Lot 1

Parking Lot 2

Full Supply

Campus Grid System

V2GNet 
System

Control System

Parking Lot 

Overview of V2GNet for energy trading in a campus V2G network.

V2G Energy Trading: Building Trust in the Grid 
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Flowchart for V2GNet Trading Algorithm.

EV CS

V2G Energy Trading: Building Trust in the Grid 
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BoCS

◆ The BoCS is where inter-campus energy trading is planned and recorded, and each CS is a node of the BoCS. Besides, 
each campus’s CS serves as a blockchain connection between the BoEV and the BoE for that campus. 

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet. 

V2G Energy Trading: Building Trust in the Grid 
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1. Upload unselected EV suppliers and energy 
requests. 

2. Download the overall request list and EV 
supplier list. 

3. Compete on trading planning SRET mechanism 
and uploading the outcome back to BoCS. 

4. Download and record the new block from BoCS. 
Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet. 

V2G Energy Trading: Building Trust in the Grid 
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1. The initial step in BoCS begins once any CS 
completes and uploads the local trading plan to its 
BoE and BoEV. The CS packs the data for its 
unselected EVs and requests into a transaction, 
then broadcasts it on BoCS. Once enough 
transactions are collected within any pool, the 
corresponding CS dispatch them for endorsement 
and ordering, then package into a block. The block 
is broadcast across BoCS for verification. 

2. Download the overall request list and EV supplier 
list. 

3. Compete on trading planning SRET mechanism and 
uploading the outcome back to BoCS. 

4. Download and record the new block from BoCS. 
Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet. 

V2G Energy Trading: Building Trust in the Grid 
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1. Upload unselected EV suppliers and energy 
requests. 

2. After the block is verified, each node of the 
BoCS proceeds to download the block, 
extracting the associated lists and consolidating 
these lists into an overall request list and an 
overall EV supplier list. 

3. Compete on trading planning SRET mechanism 
and uploading the outcome back to BoCS. 

4. Download and record the new block from BoCS. 
Arrange energy trading accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet. 

V2G Energy Trading: Building Trust in the Grid 
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1. Upload unselected EV suppliers and energy 
requests. 

2. Download the overall request list and EV 
supplier list. 

3. Compete on trading planning SRET mechanism 
and uploading the outcome back to BoCS. 

4. The new block is downloaded and permanently 
recorded by all CS nodes of BoCS network. From 
the block, each CS extracts the cross-campus 
energy trading outcomes and notifies the 
relevant consumers and EVs of their specific 
trading details accordingly.

Overview of the proposed blockchain of campus control systems (BoCS) among campuses based on the CS of each V2GNet. 

V2G Energy Trading: Building Trust in the Grid 
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Y. Liang, Z. Wang and A. B. Abdallah, "V2GNet: Robust Blockchain-Based Energy Trading Method and Implementation in Vehicle-to-Grid Network," in IEEE Access, 2022

.Liang, Z. Wang and A. B. Abdallah, "Robust Vehicle-to-Grid Energy Trading Method Based on Smart Forecast and Multi-Blockchain Network," in IEEE Access, 2024

The number of requests and 
EVs is equal, and demand 
can be almost entirely 
covered
要求数とEVの台数は同数
であり、需要はほぼ完全
に賄うことができます。

The number of EVs is half, 
but they can still cover more 
than 60% of demand.
EVの台数は半分ですが、
それでも需要の60%以上
を賄うことができます。

Achieves 45% more total 
profit of a single energy 
trading round, compared to 
the baseline methods.
基準手法と比較して、単
一のエネルギー取引ラウ
ンドにおいて総利益を
45％多く達成します。

Evaluation of the fulfillment rate of a 
single energy trading round across 
three trading strategies.

Evaluation of the total profit (JPY) of a 
single energy trading round across 
three trading strategies.

An action-based incentive scheme in 
EV grid energy trading rewards electric 
vehicle (EV) owners or aggregators for 
their actual participation and actions 
in energy trading—such as charging, 
discharging, or providing grid 
services—rather than just for
availability.

V2G Energy Trading: Building Trust in the Grid 
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Evaluation Results

Table 1. Data Configuration for V2GNet 

Simulation
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Real-World Deployment 2:
Distributed AI-Driven 

HW–SW Platform 
Transforming Medical 

Applications
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Figure 7.3. Architecture of spiking neuron processing core

Distributed AI-Powered HW-SW Platform for Pneumonia Detection
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Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System 

Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S  k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, 

Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

40benab@u-aizu.ac.jp



Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System 

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S  k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, 

Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.
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Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Spiking Neuron
Processing Cores
(SNPCs)

Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System 

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S  k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, 

Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.
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Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Fault tolerant
3D router

Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System 

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S  k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, 

Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.
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Figure 7.1. High level view of 3D-NoC-based neuromorphic pneumonia detection system.

Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘S  k -Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia , Detection, 

Electronics, vol. 11, no. 24, p. 4157, 2022. doi: 10.3390/electronics11244157.

Architecture of 3D-NoC-based Neuromorphic Pneumonia Detection System 
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Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection’, Electronics, vol. 11, no.

24, p. 4157, 2022. doi: 10.3390/electronics11244157.

Mapping of SNN model on 3D-NoC-based neuromorphic system 
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Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection’, Electronics, vol. 11, no.

24, p. 4157, 2022. doi: 10.3390/electronics11244157.

Mapping of SNN model on 3D-NoC-based neuromorphic system 

46benab@u-aizu.ac.jp



Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection’, Electronics, vol. 11, no.

24, p. 4157, 2022. doi: 10.3390/electronics11244157.

Mapping of SNN model on 3D-NoC-based neuromorphic system 
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Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection’, Electronics, vol. 11, no.

24, p. 4157, 2022. doi: 10.3390/electronics11244157.
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Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.
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Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.

Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection’, Electronics, vol. 11, no.
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Figure 7.5. Layer-based mapping of SNN model on 3D-NoC-based neuromorphic system.
Related Journal Paper: Jiangkun Wang, Ogbodo Mark Ikechukwu, Khanh N. Dang, and Abderazek Ben Abdallah. ‘Spike-Event X-ray Image Classification for 3D-NoC-Based Neuromorphic Pneumonia Detection’, Electronics, vol. 11, no.

24, p. 4157, 2022. doi: 10.3390/electronics11244157.

Mapping of SNN model on 3D-NoC-based neuromorphic system 
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Evaluation Result
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Real-World Deployment 3: 
Distributed 

Anthropomorphic 
Robots Enabling 
Human-Centered 

Intelligent Machines
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Distributed Anthropomorphic Robots Enabling Human-Centered 
Intelligent Machines

Fig. 1: Overview of the proposed distributed android coordination framework for critical missions. 54benab@u-aizu.ac.jp



Fig. 2: Overview of the leader-based task assignment method for a distributed autonomous android system.

Distributed Anthropomorphic Robots Enabling Human-Centered 
Intelligent Machines
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Configuration of task and android parameters

Table I. Configuration of Task Parameters Based on Spatiotemporal and Physical Requirements

Parameter Notation Description Value / Range

TaskID j Unique ID per task 1 to number of tasks

Location Task 2D coordinates (0, 0) to (99, 99)

Duration Required task execution time 10-60 min

StartTime Start time constraint 50% of tasks: 1st to 360th minute

StartTimeTolerance Tolerance for delayed start 5-30 min

FinishTime End time constraint 50% of tasks: 11th to 420th 

FinishTimeTolerance Tolerance for delayed finish 5-30 min

RetryCount Max retry attempts for task 1

RequiredType Required android type [‘A’, ‘B’, ‘C’]

RequiredNum Androids required for this type 1-3

MinForcePerAndroid Min required force 1-10 N

Parameter Notation Description Value / Range

AndroidID i Unique ID per android 1 to number of androids

Location Android 2D coordinates (0, 0) to (99, 99)

Type Android type / capability [‘A’, ‘B’, ‘C’]

Force Physical strength 1-10 N

RemainingBattery Initial battery status 10-120 min

TaslConsumptionRate Battery consumption rate to perform task 0.8 for A, 1.0 for B, 1.2 for C

StepConsumptionRate Battery consumption per step 5% of full capacity

Table II. Configuration of Android Parameters Based on Type, Force, and Battery Characteristics

Preliminary Evaluation
• Implementation

• Python 3.12

• Bambu Lab P1S Combo 3D 
printer

• Benchmarks
• IRoT

• Type-based + Force-
based + Battery-
based

• Without time- 
feasibility

• COHERENT
• Type-only based

• Evaluation metric:
Task fulfillment success 
rate: 
Ratio of tasks 
successfully assigned to 
androids to the total 
number of tasks

Distributed Anthropomorphic Robots Enabling Human-Centered 
Intelligent Machines

56benab@u-aizu.ac.jp



Achieved a success rate about 2.0× higher than existing approaches with 30 tasks 
and 100 androids and more than 3.5× higher with 50 tasks and 300 androids. 

Fig. 4: Evaluation of the proposed method in terms of task fulfillment 
rate (with increasing number of androids)

Distributed Anthropomorphic Robots Enabling Human-Centered 
Intelligent Machines

57
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Research Challenges & Opportunities 

• Algorithms for spiking control and 

planning

• On-chip learning mechanisms

• Distributed learning and 

consensus

• Benchmarks for neuromorphic 

autonomous systems

• Integration with classical AI and 

embedded platforms
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Agenda

• The Evolution of Autonomy

• Distributed Autonomous (DA) Systems

• Neuromorphic Computing

• DA  + Neuromorphic Intelligence

• Applications and Case Studies

• Research Challenges

• Vision & Outlook
59
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◆ Cognitive Ecosystems
✓Intelligent agents, sensors, and environments working together with 

context-aware decisions, real-time adaptation, collaborative learning

◆  Self-Organizing • Adaptive • Resilient
✓Systems that restructure, learn from sparse data, operate under 

uncertainty, and recover from failures

◆ Neuromorphic Autonomy: The Next Decade
✓Convergence of neuromorphic computing + edge AI + embedded 

platforms enabling ultra-low-power, real-time autonomy for exploration, 
disaster response, smart infrastructure, defense

Vising & Outlook

60benab@u-aizu.ac.jp



✓ Autonomy is shifting from centralized to distributed architectures 

✓ Neuromorphic computing brings efficiency and real-time responsiveness at 

the edge 

✓ Their convergence enables scalable, adaptive, and resilient intelligent 

systems 

✓ Demonstrated deployments: off-grid energy storage, V2G energy trading, 

anthropomorphic robots 

✓ Neuromorphic-enabled distributed autonomy is no longer theoretical — it is 

already happening !

Summary of Key Takeaways

60benab@u-aizu.ac.jp



www.u-aizu.ac.jp/misc/neuro-eng/

Thank you for your attention!  

Explore Our Books and 

Visit Our Lab Website!

61benab@u-aizu.ac.jp
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