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Abstract

Perfect polyphase sequences are famous for its variety of applications.
We are interested in mathematical aspects of such sequences. Since they
are defined intrinsically, it is important to reveal the structure of the set
of such sequences.

This paper fully characterizes perfect p-phase sequences of length p for
an odd prime p. The characterization is given as the equivalence between
the following two conditions (1) and (2) for a p-phase sequence {an}p−1

n=0

with an = ωp
fn for 0 ≤ n ≤ p− 1, where ωp denotes a primitive p-th root

of unity:

(1) {an} is perfect,

(2) fn is a quadratic polynomial in n.

The complete proof is described.
To analyze the structure of the set of such sequences, some easy trans-

formations of the set are defined. For an arbitrary such sequence {an}p−1
n=0,

it is shown that there exists transformation χ such that χ is a composition

of the easy transformations and χ({an}p−1
n=0) = {ωn2

}p−1
n=0.

keywords: perfect sequence, polyphase sequence, p-phase sequence,
root of unity, residue ring, parameterization

1 Introduction

A perfect polyphase sequence is known as perfect root-of-unity sequence (PRUS),
perfect N -array sequence, perfect N -phase sequence. It is one of the important
research theme of sequence design and is introduced in [1], which is published as
a comprehensive text book of sequence design. Frank sequences, Chu sequences
and another sequences are introduced in it as a perfect polyphase sequence. So
the history of the research of perfect polyphase sequences can be trace back
to the days of Frank[2] or Chu[3]. Much research has been done since then.
A lot of methods to build it are proposed[6], and many properties have been
revealed[7, 4] There are still a lot of application of perfect polyphase sequences.
Many recent papers in this field seems to begin with samples of their appli-
cations. For example, synchronization, communication schemes ( DS/SSMA,
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FH/SSMA ) navigation (GPS, GALILEO), pulse-compression RADAR, active-
SONAR, etc. are listed out in [4, 5]

We are interested in the mathematical aspects of perfect polyphase se-
quences. Perfect sequences or polyphase sequences are defined intrinsically,
i.e. these sequences are defined as sequences which satisfy several equalities. It
seems to be difficult to treat them.

We think that parameterization of such sequences are promising, to avoid
such kind of difficulties. We tried to parameterize several types of sequences.
We tried to parameterize a perfect sequence. Expanding the theory of discrete
Fourier analysis, we succeeded to parameterize the set of perfect sequences of
a general case[9, 10]. We could not parameterize the set of perfect polyphase
sequences by using a similar method. We succeeded in parameterizing it with
a completely different approach in the case of an odd prime length.

According to the result, arbitrary perfect polyphase sequence of odd prime
length are expressed by the exponential function and a quadratic form. Prepar-
ing terminologies, symbols and definitions , we describe the result.

1.1 Terminologies

Z,Q,R,C, are the ring of integers, the field of rational numbers, the field of
real numbers and the field of complex numbers, respectively. i is an imaginary
unit, i.e. i =

√
−1 ∈ C. Let z = x + iy ∈ C be a complex number where

x, y ∈ R. The complex conjugate of z is expressed as z∗, i.e. z∗ = x− iy.
Let A be a set. idA is the identity mapping of A. |A| is the number of

elements belonging to A. Let R be a ring and X be an indeterminate. R[X] is
the polynomial ring of X over R.

Let N,m, n be integers such that N > 1. ωN = e
2πi
N is a N -th root of unity.

In the case N is obvious, N is abbreviated and we simply write ω. Z/NZ is
a quotient ring of Z by the ideal NZ. n is an image of n by the canonical
projection map Z → Z/NZ. [m,n] is the greatest common divisor of m and n.
If m is positive, we define the factorial of m as m! = m · (m − 1) · · · 2 · 1. If
m ≥ n ≥ 0, the binomial coefficient mCn is defined as follows;

mCn =
m!

(m− n)!n!

In the case of the calculation in Z/NZ, it should be treated as a quotient of
integers and should not be treated as a quotient of elements of Z/NZ, since
there is a possibility that (m − n)!n! ≡ 0 mod N . ZN and Z×

N are subsets of
Z defined as follows;

ZN = {m ∈ Z|0 ≤ m ≤ N − 1} = {0, 1, 2, · · · , N − 1},
Z×

N = {m ∈ ZN |[m,N ] = 1}.
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1.2 Definitions and the main theorem

Definition. A sequence of length N is an array of complex numbers indexed
by ZN and is denoted as follows;

{a0, a1, · · · , aN−1}, {an}N−1
n=0 , {an}0≤n≤N−1, {an}n∈ZN

, where an ∈ C.

This means that an is uniquely determined for each n ∈ ZN . From this, a
sequence can be viewed as a mapping from ZN to C. In the case that the range
of the index set is obvious, we abbreviate the index set and simply write it as
{an}.
Definition. A periodic autocorrelation function of {an}N−1

n=0 is defined as fol-
lows;

ACF ({an}, l) =
N−l−1∑
m=0

am+la
∗
m +

N−1∑
m=N−l

am+l−Na∗m.

Since ZN is a complete representative system of Z/NZ, a sequence can
be treated as a map from Z/NZ to C. So, a sequence can be described as
{an}n∈Z/NZ

1 and an autocorrelation function ACF ({an}, l) is expressed as
follows;

ACF ({an}, l) =
∑

m∈Z/NZ

am+la
∗
m.

Definition. A sequence {an}N−1
n=0 is called perfect when its autocorrelation

function is impulsive, that is, autocorrelation function ACF ({an}, l) satisfies
the following property.

ACF ({an}, l)
{

= 0 if l ̸≡ 0 mod N
̸= 0 if l ≡ 0 mod N

Definition. Let M be a positive integer. A sequence {an}N−1
n=0 is called an

M -phase sequence or a polyphase sequence of M -th root of unity, if an
M = 1

for all n ∈ ZN .

Definition. Let {an}N−1
n=0 be a M -phase sequence, then an is given by ωM

fn ,
where fn ∈ Z/MZ. The sequence {fn}N−1

n=0 is called the exponent of {an}N−1
n=0 .

Using these words we describe the main theorem of the article.

Theorem 1 (main theorem). Let p be an odd prime and {an}p−1
0 be a p-phase

seqence of length p with exponent {fn}p−1
n=0. Then the following two conditions

are equivalent

(i) {an}p−1
n=0 is perfect

(ii) fn is quadratic polynomial in n

The proof of the theorem will be shown in the following section. After the
proof, we describe the structure of the set of perfect polyphase sequence of odd
prime length. The description is justified by the main theorem.

1Formally, we should write an. But this style seems to be unsightly and we are convinced
that the style written in the text will not cause confusion.
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2 Proof of the main theorem

ωp is abbreviated to ω. Generally, an equality in Z/pZ should be represented as
m ≡ n mod (p). Since there are a lot of equality in Z/pZ, in this section, we
abbreviate ′′ mod (p)′′ and simply describe as m ≡ n if there is no confusion.

Since (ii)=⇒ (i) is obvious, we focus on proving (i)=⇒(ii).
To handle fn, we use the following lemma.

Lemma 1. Let p be an odd prime integer and fn be an arbitrary elenet of Z/pZ.
Then, there exists a polynomial F (X) ∈ Z[X] which satisfies that F (n) ≡ fn
for all n ∈ Z/pZ and the degree of F (X) is p− 1 or less.

The proof of the lemma is shown in the appendix.

According to the Lemma 1, there is a polynomial F (X) ∈ Z[X] such that

F (X) =

k∑
j=0

cjX
j ck ̸= 0, F (n) ≡ fn,

where k is a degree of F (X).

If ck ≡ 0, we can retake

k−1∑
j=0

cjX
j as F (X). By repeating this operation,

we can assume that ck ̸≡ 0. In the case of k = 2, it is easy to show that the
sequence {an} = {ωF (n)} is a perfect polyphase sequence of length p, and in
the case of k = 1 or 0, it is obvious that the sequence {an} = {ωF (n)} is not a
perfect polyphase sequence of length p. Let us consider the case of k ≥ 3.

Let θ(l) be an autocorrelation function of {an}, i.e.

θ(l) = ACF ({an}, l) =
∑

n∈Z/pZ

an+la
∗
n =

∑
n

ωF (n+l)−F (n)

where l ∈ Z/pZ. θ(l) is expressed as a linear combination of ω0 = 1, ω1, ω2, · · · , ωp−1

by non negative integer coefficients. If {an} is perfect and polyphase, then

θ(l) =

{
0 if l ̸≡ 0
p if l ≡ 0

Suppose that
∑p−1

j=0 bjω
j = 0, where bj ∈ Z. Since ω is a primitive p-th root of

unity, all coefficients are same each other, i.e. b0 = b1 = · · · = bp−1. We find an
equality of sets as follows;

{Gl(0), Gl(1), · · · , Gl(p− 1)} = {0, 1, · · · , (p− 1)}

where Gl(X) = F (X+ l)−F (X). Then we obtain equalities in Z/pZ as follows;∑
n∈Z/pZ

Gl(n)
m ≡

∑
n∈Z/pZ

nm for arbitrary m.

To calculate the right hand side, we use the following lemma.

6



Lemma 2. Let p be an odd prime integer and d be a positive integer. We
define a mapping B from Z to Z/pZ as follows;

B(d) ≡
∑

n∈Z/pZ

nd.

Then,

B(d) ≡
{

−1 if d ≡ 0 mod (p− 1)
0 if d ̸≡ 0 mod (p− 1)

The proof of the lemma is shown in the appendix.

According to Lemma 2, if 1 ≤ m ≤ p − 2, the right side is equal to 0,
therefore, ∑

n∈Z/pZ

Gl(n)
m ≡ 0,

for all l and m such that 1 ≤ l ≤ p − 1 and 1 ≤ m ≤ p − 2. Based on the
definition of Gl(X), left hand side is calculated as follows;∑

n∈Z/pZ

Gl(n)
m ≡

∑
n∈Z/pZ

(F (n+ l)− F (n))m

≡
∑
n

 k∑
j=0

cj((n+ l)j − nj)

m

.

Since l is prime to p, lp−1 ≡ 1 and the mapping n ≡ ly is a one to one mapping
from Z/pZ to Z/pZ for each l. Therefore;

∑
n∈Z/pZ

Gl(n)
m ≡

∑
y∈Z/pZ

 k∑
j=1

cj((ly + l)j − (ly)j)

m

≡
∑
y

m∏
ξ=1

 k∑
jξ=1

cjξ((y + 1)jξ − yjξ)ljξ


≡

p−2∑
j=0

Am,j l
j ≡ 0,

where

Am,j ≡
∑
y

∑
1≤jξ≤k∑

jξ≡j mod (p−1)

m∏
ξ=1

cjξ
(
(y + 1)jξ − yjξ

)
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These equations are expressed as a system of linear equations as follows;
10 11 12 · · · 1p−2

20 21 22 · · · 2p−2

30 31 32 · · · 3p−2

...
...

...
. . .

...
(p− 1)0 (p− 1)1 (p− 1)2 · · · (p− 1)p−2




Am,0

Am,1

Am,2

...
Am,p−2

 ≡


0
0
0
...
0


The matrix appeared in the left side is a Vandermonde matrix and it is easily
shown that its determinant ̸≡ 0. Finally we obtained following equalities.

Am,j ≡ 0, (1)

for all m and j such that 1 ≤ m ≤ p − 2 and 0 ≤ j ≤ p − 2. We determine m
according to k. It will be shown that a fact conflict with (1) occurs for such m
if k ≥ 3.

Letm1 be the maximal integer which satisfies km1 < p, i.e. m1 is determined
by the following inequalities;

km1 < p < k(m1 + 1).

Since k ≥ 3, 2m1 ≤ 2
3km1 < 2p

3 ≤ p − 1. So, A2m1,j = 0 for all j such that
0 ≤ j ≤ p− 2.

To calculate A2m1,j , let’s consider the system of equations and inequalities
of j1, j2, · · · , j2m1 given by

j1 + j2 + · · ·+ j2m1
≡ j mod (p− 1)

1 ≤ j1 ≤ k
· · ·
1 ≤ j2m1

≤ k
0 ≤ j ≤ p− 2

. (2)

We take j such that the solution of (2) contains (j1, j2, · · · , j2m1
) = (k, k, · · · , k︸ ︷︷ ︸

2m1

).

Let’s consider the case of k ̸ |(p − 1). Since k ̸ |(p − 1), km1 < p − 1.
If 2km1 ≥ p − 1, set j0 = 2km1 − p + 1, otherwise set j0 = 2km1. Then,
0 ≤ j ≤ p− 2, so A2m1,j0 ≡ 0.

On the other hand, the solution of consists in (j1, j2, · · · , j2m1
) = (k, k, · · · , k)

and positive integer solution of j1 + j2 + · · ·+ j2m1 = j0. Since A2m1,j0 is a sum
of terms corresponding to the solution, A2m1,j0 is expressed as follows;

A2m1,j0 ≡ ck
2m1

∑
y

((y + 1)k − yk)2m1

+
∑
y

∑
1≤j1,··· ,j2m1

≤k∑
jξ=j0

cj1 · · · cj2m1

2m1∏
ξ=1

((y + 1)jξ − yjξ).
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To calculate the second term, we evaluate the degree of the polynomial in

y inside of
∑

y of it. Since the degree =

2m1∑
ξ=1

(jξ − 1) = j0 − 2m1 < p − 1 the

second term is equal to 0 because of the Lemma 2. To calculate the first term,
we use the following lemma.

Lemma 3. Suppose that k is an integer such that k ≥ 3. Let m1 be an integer
which satisfies km1 < p < k(m1 + 1). Then,∑
y∈Z/pZ

(
(y + 1)k − yk)

)2m1 ≡
{

(−1)m1+1
2m1

Cm1
· km1

Cp−1−km1
if k ̸ |(p− 1)

(−1)m1+1
2m1Cm1 if k|(p− 1)

The proof of the lemma is shown in the appendix.
Finally,

A2m1,j0 ≡ (−1)m1+1ck
2m1

2m1
Cm1

· km1
Cp−1−km1

Since 2m1 < km1 < p, 2m1Cm1 ̸≡ 0 and km1Cp−1−km1 ̸≡ 0. This contradicts
the equation (1).

Next, we treat the case of k|(p − 1) . Since k|(p − 1) , km1 = p − 1. We
consider j = 0. Since maximal value of j1+ · · ·+ j2m1

is 2km1 = 2(p−1), Then,
the solution of (2) consists in (j1, j2, · · · , j2m1) = (k, k, · · · , k) and positive
integer solution of j1 + j2 + · · ·+ j2m1 = p− 1. Since A2m1,0 is a sum of terms
corresponding to the solution, it is expressed as follows;

A2m1,0 ≡ ck
2m1

∑
y

((y + 1)k − yk)2m1

+
∑
y

∑
1≤j1,··· ,j2m1

≤k∑
jξ=p−1

cj1 · · · cj2m1

2m1∏
ξ=1

((y + 1)jξ − yjξ).

By the similar dicussion, it is shown that the second term ≡ 0. To calculate
the first term, we use Lemma 3.

Finally,
A2m1,0 ≡ (−1)m1+1ck

2m1
2m1

Cm1

Since 2m1 < km1 = p− 1,(2m1)! ̸≡ 0. Therefore, A2m1,0 ̸≡ 0. This contradicts
the equation (1).

The above logic shows that there exist α, β, γ ∈ Z such that an = ωαn2+βn+γ .
It is clear that {ωβn+γ} is not perfect.

This completes the proof of the theorem.
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3 Transformations of the set of the perfect polyphase
sequences

Let N be a positive integer. Let SN be the set of sequences of length N and PN

be the set of the perfect polyphase sequences of length N . Let ω = e
2πi
N be a

primitive N -th root of unity. Let K = Q(ω) be N -cyclotomic field, i.e. the field
extension of Q by ω. We define transformations of PN , which is described as
ρ, σ, and τ . In the case that the length of sequences is odd prime, it will be shown
that the transformation group generated by ρ, σ and τ, acts PN transitively.

Theorem 2. Let r, s1, s2, t1, t2 be integers such that r, s1 ∈ Z×
N and s2, t1, t2 ∈

ZN . That is, r and s1 are relatively prime to N , and s2,t1 and t2 have no
such restrictions. Let {an}N−1

n=0 be an element of PN . We define the mappings
ρr, σ(s1,s2) and τ(t1,t2) from PN to SN , as follows;

ρr({an}N−1
n=0 ) = {(an)r}N−1

n=0

σ(s1,s2)({an}
N−1
n=0 ) = {as1n+s2}N−1

n=0

τ(t1,t2)({an}
N−1
n=0 ) = {ωt1n+t2 · an}N−1

n=0 ,

where ω = e
2πi
N . Then, these mappings are bijective transformation of PN .

Proof. It is obvious that the images of the mappings consist of the sequences of
the power of ω, i.e. they are polyphase sequences of N -th root of unity.

For the proof of ρr, set bn = (an)
r. Since r is relatively prime to N , the

mapping ω 7−→ ωr induces the homomorphism of K[8]. Let ϕr be this induced
homomorphism. Then, an autocorrelation function of {bn} is calculated as
follows;

ACF ({bn}, l) =

N−1∑
n=0

bn+lbn
∗ =

N−1∑
n=0

bn+l

bn

=

N−1∑
n=0

(
an+l

an

)r

= ϕr

(
N−1∑
n=0

an+l

an

)
= ϕr(ACF ({an}, l))

This shows that {bn} is perfect if {an} is perfect.
For the proof of σ(s1,s2), set bn = as1n+s2 , then

ACF ({bn}, l) =
N−1∑
n=0

bn+lbn
∗ =

N−1∑
n=0

bn+l

bn
=

N−1∑
n=0

as1(n+l)+s2

as1n+s2

=

N−1∑
n=0

a(s1n+s2)+s1l

as1n+s2

Since s1 is relatively prime to N , the mapping n′ = s1n + s2 is a bijective
mapping on Z/NZ, therefore,

ACF ({bn}, l) =
N−1∑
n′=0

an′+s1l

an′
= ACF ({an}, s1l)
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This shows that {bn} is perfect if {an} is perfect.
For the proof of τt1,t2 , set bn = ωt1n+t2an, then

ACF ({bn}, l) =

N−1∑
n=0

bn+lbn
∗ =

N−1∑
n=0

bn+l

bn
=

N−1∑
n=0

ωt1(n+l)+t2an+l

ωt1n+t2an

= ωt1l
N−1∑
n=0

an+l

an
= ωt1lACF ({an}, l)

Since ωt1l ̸= 0, this shows that {bn} is perfect if {an} is perfect.
It is easy to show the following equalities,

ρr◦ρr′ = ρrr′ σ(s1,s2)◦σ(s′1,s
′
2)

= σ(s′1s1,s
′
1s2+s′2)

τ(t1,t2)◦τ(t′1,t′2) = τ(t1+t′1,t2+t′2)

where ◦ is a composition of the mappings. Since ρ1 = σ(1,0) = τ(0,0) = idPN
(the

identity mapping of PN ), all of these mappings are bijective transformations of
PN .

LetG be a transformation group of PN . Since PN is finite, G is a finite group.
Let G0 be a subgroup of G, generated by ρr, σ(s1,s2), τ(t1,t2), where r, s1 ∈ Z×

N

and s2, t1, t2 ∈ ZN .

Theorem 3. Suppose that N is odd prime and set N = p. G0 acts on Pp

transitively. In other words, there is only one point in the quotient space Pp/G0,

i.e. |Pp/G0| = 1. More specifically, for arbitrary element {an}p−1
n=0 ∈ Pp, there

exists an element χ ∈ G0 such that

χ({an}p−1
n=0) =

{
ωn2

}p−1

n=0

where ω = e
2πi
p .

Proof. According to the theorem of the previous section, there exists α ∈ Z×
p

and β, γ ∈ Zp such that

an = ωαn2+βn+γ

Since [α, p] = 1, there exists α′ ∈ Z×
N such that αα′ ≡ 1 mod p. Then

(an)
α′

= ωn2+α′βn+α′γ

Since [2, p] = 1, there exists β′ ∈ ZN such that −2β′ ≡ α′β mod p. Then

(an)
α′

= ω(n−β′)2+α′γ−β′2

Set γ′ = β′2 − α′γ, then

(τ(0,γ′) ◦ σ(1,β′) ◦ ρα′)({an}) =
{
ωn2

}
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Chu sequences are famous perfect polyphase sequences [1, 3]. Let p be an
odd prime number and {an}p−1

n=0 be a Chu sequence of p. an is expressed as
follows;

an = e
πi
p rn(n+1), where [r, p] = 1

Since the coefficients of n2 is not 2πir
p but πir

p , this expression looks slightly

different from our result. But there exist r′ ∈ Z×
p such that rr′ ≡ 2 mod p.

Therefore,

(τ(−2r′,0) ◦ ρr′)({an}) = {ω−2r′n · e
πi
p rr′n(n+1)} =

{
ωn2

}
4 Concluding remarks

A parameterization of the set of perfect polyphase sequence denoted by Pp was
obtained and transitivity of the action of G0 on Pp was proved.

Let {an}p−1
n=0 ∈ Pp be an arbitrary perfect polyphase sequence of odd prime

length p. It was shown that there exist α ∈ Z×
N , β, γ ∈ ZN such that an =

ωαn2+βn+γ , where ω is a p-th root of unity. The proof consists in several steps;

• Since {an} is polyphase, we can find a mapping f : Z/pZ −→ Z/pZ such
that an = ωf(n).

• Find a polynomial F (X) ∈ Z[X] such that f(n) ≡ F (n) mod p

• Obtain the equalities of coefficients of F (X) from perfectness of {an}.

• These equalities contradict that the degree of F (X) is equal to three or
more.

We defined transformations of Pp, which was described as ρr, σ(s1,s2), and τ(t1,t2).
Let G0 be a subgroup of the transformation group of Pp, generated by them.

It was shown that for an arbitrary sequence {an}p−1
n=0 ∈ Pp (including Chu

sequence), there exists an element χ ∈ G0 such that

χ({an}p−1
n=0) = {ωn2

}p−1
n=0

For future research, we would like to point out the definition of polyphase se-
quence. We defined that {an} ∈ SN is polyphase if and only if ”aNn = 1 for all
n”. According to the result obtained by Gabidulin[7], “There are only finitely
many perfect auto-correlation polyphase sequences of prime length.” His in-
tention is that there exist infinitely many perfect polyphase sequences for each
prime but there exit finitely many essentially different perfect polyphase se-
quence for each prime. He defined that the polyphase sequence is a sequence
whose components are on the unit disk in C. Though ei is on the unit disk, there
exists no integer N0 such that (ei)N0 = 1. From this point, we think that the
definition would be corrected. We think that the following expanded definition
is natural; ”there exist an integer N0 such that aN0

n = 1 for all n” Though we
adopt such expanded definition of polyphase sequences, following proposition
may be proved.
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Conjecture. Let P̃p be the set of perfect polyphase sequence of odd prime

length p in the meaning of the expanded definition. Let {an}p−1
n=0 ∈ P̃p There

exist α ∈ Z×
p , β

′, γ′ ∈ Q such that

an = ωαn2+β′n+γ′
, 0 ≤ β′, γ′ < 1,

where ω = e
2πi
p .

Of course the inverse of the conjecture is easily shown, i.e. it is easy to show
that if α ∈ Z×

p , β
′, γ′ ∈ Q, then {ωαn2+β′n+γ′} ∈ P̃p . It is also easy to show

the following theorem.

Theorem 4. Let u1, u2 ∈ Q be rational numbers. τ̃(u1,u2) is a transformation

of P̃p defined as follows;

τ̃(u1,u2)({ãn}) = {ωu1n+u2 · ãn}.

where ω = e
2πi
p . Then, τ̃(u1,u2) is a bijective mapping of P̃p

Let G̃1 be transformation group generated by τ̃(u1,u2). If the conjecture is

correct, it is easily proved that the quotient space P̃p/G̃1 is a finite set although

P̃p is not a finite set. More specifically, the following proposition can be easily
proved.

Conjecture. There are p−1 points in the quotient space P̃p/G̃1, i.e. |P̃p/G̃1| =
p− 1 .

5 Appendix

As an appendix to the article, proofs of the lemmata are described.

5.1 Proof of Lemma 1

Let k be an integer such that 1 ≤ k ≤ p − 1. We define the polynomials
Dk(X) ∈ Z[X] for each k as follows;

Dk(X) = −
∏
l ̸=k

0≤l≤p−1

(X − l)

Dk(X) is a polynomial of which the degree is (p−1) and coefficients are integers,
and satisfies the following equalities;{

Dk(j) ≡ 0 for 1 ≤ j ≤ k − 1 or k + 1 ≤ j ≤ p− 1
Dk(k) ≡ 1

Let f(n) be given by f(n) ≡ rn arbitrarily. Set F (X) as follows;

F (X) =

p−1∑
k=0

rkDk(X)

13



It is obvious that F (n) ≡ rn for all 0 ≤ n ≤ p − 1 and the degree of F (X) is
p− 1 or less. This completes the proof of Lemma 1.

5.2 Proof of Lemma 2

Suppose that 1 ≤ d ≤ p − 1. Let X be an indefinite element and consider
binomial expansion of (X + 1)d+1.

(X + 1)d+1 = Xd+1 +d+1 CdX
d +d+1 Cd−1X

d−1 · · ·+d+1 C1X
1 + 1

Consider the case of X = 1, 2, · · · , p and calculate the sum.

(p+ 1)d+1 − 1− p =d+1 Cd

p∑
X=1

Xd +d+1 Cd−1

p∑
X=1

Xd−1 · · ·+d+1 C1

p∑
X=1

X1

This equality is transformed to the equality of Z/pZ, i.e.

d+1CdB(d) +d+1 Cd−1B(d− 1) · · ·+d+1 C1B(1) ≡ 0

If d ≤ p− 2, the following equality holds for j such that 0 ≤ j ≤ d+ 1,

d+1Cj ̸≡ 0

Then, B(d) ≡ 0 is concluded inductively.
Let x ∈ Z/pZ. If x ̸≡ 0, xp−1 ≡ 1. Therefore,

B(p− 1) ≡
∑

x∈Z/pZ

xp−1 ≡ 0p−1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p−1

≡ −1

Since xp ≡ x for all x ∈ Z/pZ, it is obvious that B(d) ≡ B(d− p+1) for d ≥ p.
Then, we reach the general case.

5.3 Proof of Lemma 3

To calculate the sum, we use the binomial expansion.

∑
y

((y + 1)k − yk)2m1 ≡
∑
y

2m1∑
j=0

2m1Cj(−1)j(y + 1)kj(yk)2m1−j

≡ U + V +W,

where

U ≡
∑
y

m1−1∑
j=0

2m1
Cj(−1)j(y + 1)kj(yk)2m1−j ,

V ≡
∑
y

2m1Cm1(−1)m1(y + 1)km1(yk)2m1−m1 ,

W ≡
∑
y

2m1∑
j=m1+1

2m1Cj(−1)j(y + 1)kj(yk)2m1−j .
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By changing variables, j = 2m1 − j′, y = −1− y′, W is transformed as follows.

W ≡
∑
y′

m1−1∑
j′=0

2m1
C2m1−j′(−1)2m1−j′(−y′)k(2m1−j′)((−1− y′)k)j

′

≡
∑
y′

m1−1∑
j′=0

2m1
Cj′(−1)−j′−kj′+kj′(y′)k(2m1−j′)(1 + y′)kj

′

≡ U

5.3.1 in the case of k ̸ |(p− 1)

Let us consider U . Since k ̸ |(p − 1) , km1 < p − 1. Since 0 ≤ j ≤ m1 − 1,
(y+1)kjyk(2m1−j) is a polynomial in y of degree 2km1 and its degree is evaluated
as follows;

2p− 2 > 2km1 > 2p− 2k > 2p− 2
p− 1

2
= p+ 1.

The degree of the lowest term is k(2m1 − j) and is evaluated as follows;

k(2m1 − j) ≥ k(2m1 − (m1 − 1)) = k(m1 + 1) > p.

So the degree of each term is bigger than p − 1 and smaller than 2(p − 1), i.e.
U = W = 0 because of Lemma 2.

∑
y∈Z/pZ

(
(y + 1)k − yk)

)m1 ≡ 2m1
Cm1

(−1)m1

∑
y

(y + 1)km1ykm1

≡ 2m1
Cm1

(−1)m1

∑
y

km1∑
j=0

km1
Cjy

j+km1

Since p − 1 − km1 < p − 1 − k
(
p
k − 1

)
= k − 1 ≤ km1 and p − 1 − km1 >

p− 1− p = −1, j which satifies j + km1 = p− 1 is uniquely determined in the
range of 0 ≤ j ≤ km1. Therefore∑

y∈Z/pZ

(
(y + 1)k − yk)

)m1 ≡ 2m1Cm1(−1)m1
km1Cp−1−km1(−1)

5.3.2 in the case of k|(p− 1)

Let us consider V . Since yp−1 ≡ 1 for y ̸≡ 0 in Z/pZ,

V ≡ 2m1Cm1(−1)m1

∑
y

(y + 1)km1ykm1

≡ 2m1
Cm1

(−1)m1

∑
y ̸≡0,−1

(y(y + 1))
km1

≡ −2 2m1
Cm1

(−1)m1
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Let us consider U . Since k|(p − 1) , km1 = p − 1. Since 0 ≤ j ≤ m1 − 1,
(y+1)kjyk(2m1−j) is a polynomial in y of degree 2km1 = 2(p−1) and the degree
of the lowest term is k(2m1 − j) and is evaluated as follows;

k(2m1 − j) ≥ k(2m1 − (m1 − 1)) = k(m1 + 1) > p.

Since the terms whose degree are not 2p − 2 are 0 by the summation of y,
U is calculated as follows;

U ≡
m1−1∑
j=0

2m1
Cj(−1)j

∑
y

y2p−2 ≡ −
m1−1∑
j=0

2m1
Cj(−1)j

By changing j = 2m1 − j′,

W ≡ −
2m1∑

j′=m1+1

2m1
C2m1−j′(−1)2m1−j′ ≡ −

2m1∑
j′=m1+1

2m1
Cj′(−1)j

′

Therefore,

U + V +W ≡ −
m1−1∑
j=0

2m1
Cj(−1)j − 2 2m1

Cm1
(−1)m1 −

2m1∑
j=m1+1

2m1
Cj(−1)j

≡ −(1− 1)2m1 − 2m1Cm1(−1)m1

≡ −2m1Cm1(−1)m1

∴
∑

y∈Z/NZ

(
(y + 1)k − yk)

)m1 ≡ (−1)m1+1
2m1

Cm1
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