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Abstract

In this letter we show the estimation of the limits of correlation functions
of a class of zero-correlation-zone sequences that are constructed from a set of
Hadamard sequences.

1 Introduction

Binary sequences are used in various applications, In many applications involving bi-
nary sequences, the sequences are required to be uncorrelated.

For example, a code division multiple access () system that is synchronized
approximately is called an approximately synchronized (-). A set of se-
quences having a zero-correlation zone enables for an- system without co-
channel interference [1, 2]. Such sequences can also reduce the multi-path effect of
an-ary - system without co-channel interference [1]. They also allow for the
use of simple hardware compared with-ary sequences.

The generation of binary sequences having a zero-correlation zone has been re-
ported previously [3–7]. There exist two kinds of construction of of binary sequences
with zero-correlation zone. The one construct the sequences from Hadamard sequences
[3]. and the other construct the sequences from mutual orthogonal complementary se-
quences [7]. An advantage of our construction is that various kinds of sets of sequences
can be constructed from Hadamard matrices derived by various methods [8–10].

Usually, a set of zero-correlation-zone sequences are used so that the phase shift
of each pair of the sequences is within the zero-correlation zone. However, when
we design a practical system involving a set of zero-correlation-zone sequences, we
should examine the behavior of the system in the case of a phase shift go out the zero-
correlation zone. We herein show the estimation of the correlation function of the
zero-correlation-zone sequence derived from a set of Hadamard sequences.
∗The author is with the Faculty of Computer Science and Engineering of the University of Aizu.
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2 Preliminaries

In this section, we briefly introduce the notation and terminology used in this letter.
For integersa andb, let a� b anda % b denote the quotient and the non-negative

remainder ofa=b, respectively. For two sequences,u = [u j]m−1
j=0 andv = [vj ]n−1

j=0,

[u ; v ] = [u0; u1; : : : ; um−1; v0; v1; : : : ; vn−1]:

We define an operation that generates sequence of length 2l that consists of two se-
quencesv0 = [v0; j] l−1

j=0 andv1 = [v1; j] l−1
j=0, both of lengthl. We denote this operation

c (v0; v1) and it is defined as follows.

c (v0; v1) = [v0;0; v1;0; v0;1; v1;1; v0;2; v1;2; : : : ; v0;l−1; v1;l−1]: (1)

3 Sequence construction

If we have a set ofn-length Hadamard sequences, we can construct a set of binary se-
quences. For a fixed numbern, we can recursively construct a series of sets{s (n;m)

i }2n−1
i=0

of 2n sequences form≥ 0 as follows.
For m = 0, {s (n;0)

i }2n−1
i=0 is constructed from a set ofn-length Hadamard sequences,

{ n
h i}n−1

i=0 . Fist, a set of 2n-length sequences,{g (n)
i }2n−1

i=0 , is constructed from the set of

n-length Hadamard sequences,{ n
h i}n−1

i=0 .

For 0≤ i < n;

g
(n)
2i =

[ n
h i ;

n
h i

]
; (2a)

g
(n)
2i+1 =

[ n
h i ;−

n
h i

]
: (2b)

It is important to note that{g (n)
i }2n−1

i=0 is a set of 2n-length Hadamard sequences. It means
thatg (n)

i are mutually orthogonal. It is also important that eachg
(n)
2i is composed of even

number Fourier components only and eachg
(n)
2i+1 is composed of odd number Fourier

components only. Consequently, the cross-correlation function ofg
(n)
2i andg (n)

2i+1 for any
i, j have always zero value for all phase shift.

Here we denote the periodic cross-correlation function ofg
(n)
r andg (n)

s at phase
shift � by �(n)

r; s (�), where

�(n)
r; s (�) =

2n−1∑
j=0

g(n)
r; j g

(n)
s;( j+�)%2n: (3)

This correlation function satisfies the following equations.

∀r , s; �; �(n)
2r; s (�) = 0; (4a)

∀r; s; �; �(n)
2r; 2s+1 (�) = 0: (4b)
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Next,{s (n;0)
i }2n−1

i=0 is constructed from{g (n)
i }2n−1

i=0 .

For 0≤ i < n;

s
(n;0)
2i = c

(
g

(n)
2i ; g

(n)
2i+1

)
; (5a)

s
(n;0)
2i+1 = c

(
g

(n)
2i ;−g (n)

2i+1

)
: (5b)

Form> 0, {s (n;m)
i }2n−1

i=0 is constructed from{s (n;m−1)
i }2n−1

i=0 as follows.

For 0≤ i < n;

s
(n;m)
2i+0 = c

(
s

(n;m−1)
2i ; s

(n;m−1)
2i+1

)
; (6a)

s
(n;m)
2i+1 = c

(
s

(n;m−1)
2i ;−s (n;m−1)

2i+1

)
: (6b)

4 Properties of Synthesized Sequences

In this section, we show the properties of the sequences from our construction.
For convenience, we use Fan’s notation for the zero-correlation properties of a se-

quence [7]. If a set ofk sequences{v i}k−1
i=0 of lengthl has a zero-correlation zone, then

this set is said to beZ(l; k;w), wherew represents the half-width of the zero-correlation
zone [7].

Theorem 1 (Zero Correlation Zone) The set of sequences from our construction,{s (n;m)
i }2n−1

i=0 ,
is Z(2m+2 n; 2n; 2m), can be formalized as follows.

∀r , s;∀�; |�| ≤ 2m; �(n;m)
r; s (�) = 0; (7a)

∀r;∀� , 0; |�| ≤ 2m; �(n;m)
r; r (�) = 0: (7b)

Here, we denote the periodic cross-correlation function ofs
(n;m)
r ands (n;m)

s at phase
shift � by �(n;m)

r; s (�), where

�(n;m)
r; s (�) =

2m+2 n−1∑
j=0

s(n;m)
r; j s(n;m)

s;( j+�)%(2m+2 n)
: (8)

The proof of this theorem is shown in our previous report [3]. This thorem also can be
derived from the Theorem 2 in this letter.

From the definition of thes (n;m)
i , we can have such that

s(n;m+1)
2i; j =


s(n;m)
i; j�2 if j % 2= 0;

s(n;m)
i; j�2 if j % 2= 1;

s(n;m+1)
2i+1; j =


s(n;m)
i; j�2 if j % 2= 0;

−s(n;m)
i; j�2 if j % 2= 1:
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Then we can also have that

�(n;m+1)
2r;2s (2�) = �(n;m+1)

2r;2s (�) + �(n;m+1)
2r+1;2s+1 (�) ;

�(n;m+1)
2r;2s (2� + 1) = �(n;m+1)

2r;2s+1 (�) + �(n;m+1)
2r+1;2s (� + 1) ;

�(n;m+1)
2r+1;2s+1 (2�) = �(n;m+1)

2r;2s (�) + �(n;m+1)
2r+1;2s+1 (�) ;

�(n;m+1)
2r+1;2s+1 (2� + 1)= − �(n;m+1)

2r;2s+1 (�) − �(n;m+1)
2r+1;2s (� + 1) ;

�(n;m+1)
2r;2s+1 (2�) = �(n;m+1)

2r;2s (�) − �(n;m+1)
2r+1;2s+1 (�) ;

�(n;m+1)
2r;2s+1 (2� + 1) = − �(n;m+1)

2r;2s+1 (�) + �(n;m+1)
2r+1;2s (� + 1) :

These correlation function of the sequences satisfy the following equations. For even
number phase shifts, we can have the following equations.

�(n;0)
2r+0; 2s+0 (2�) = �

(n;0)
2r+1; 2s+1 (2�) = �

(n)
2r+0; 2s+0 (�) + �

(n)
2r+1; 2s+1 (�) ; (10a)

�(n;0)
2r+0; 2s+1 (2�) = �

(n;0)
2r+1; 2s+0 (2�) = �

(n)
2r+0; 2s+0 (�) − �(n)

2r+1; 2s+1 (�) : (10b)

For odd number phase shifts, we can have the following equations.

�(n;0)
2r+0; 2s+0 (2�+1) = −�(n;0)

2r+1; 2s+1 (2�+1) = �(n)
2r+0; 2s+1 (�) + �

(n)
2r+1; 2s+0 (�+1) ; (11a)

�(n;0)
2r+0; 2s+1 (2�+1) = −�(n;0)

2r+1; 2s+0 (2�+1) = �(n)
2r+0; 2s+1 (�) − �(n)

2r+1; 2s+0 (�+1) : (11b)

We can have the following equations for even number phase shifts form> 0.

�(n;m)
2r+0; 2s+0 (2�) = �

(n;m)
2r+1; 2s+1 (2�) = �

(n;m−1)
2r+0; 2s+0 (�) + �

(n;m−1)
2r+1; 2s+1 (�) ; (12a)

�(n;m)
2r+0; 2s+1 (2�) = �

(n;m)
2r+1; 2s+0 (2�) = �

(n;m−1)
2r+0; 2s+0 (�) − �(n;m−1)

2r+1; 2s+1 (�) : (12b)

We can have the following equations for odd number phase shifts form> 0.

�(n;m)
2r+0; 2s+0 (2�+1) = −�(n;m)

2r+1; 2s+1 (2�+1) = �(n;m−1)
2r+0; 2s+1 (�) + �

(n;m−1)
2r+1; 2s+0 (�+1) ; (13a)

�(n;m)
2r+0; 2s+1 (2�+1) = −�(n;m)

2r+1; 2s+0 (2�+1) = �(n;m−1)
2r+0; 2s+1 (�) − �(n;m−1)

2r+1; 2s+0 (�+1) : (13b)

Eqs. (10)-(13) are very important for the correlation functions of the proposed se-
quences.

Here, we prove Eq. (10). From the definition,s(n;0)
2i; j can be denoted asc

([
f

(n)
i ; g

(n)
i

])
.

It means that

s(n;0)
2i+0; j =


g(n)

2i; j�2 if j % 2= 0;

g(n)
2i+1; j�2 if j % 2= 1;

s(n;0)
2i+1; j =


g(n)

2i; j�2 if j % 2= 0;

−g(n)
2i+1; j�2 if j % 2= 1:

4



Therefore, we can get such that

�(n;0)
2r+0; 2s+0 (2�) =

4n−1∑
j=0

s(n;0)
2r+0; j s

(n;0)
2s+0;( j+2�)%4n

=

2n−1∑
j=0

s(n;0)
2r+0;2 j s

(n;0)
2s+0;(2 j+2�)%4n +

2n−1∑
j=0

s(n;0)
2r+0;2 j+1s(n;0)

2s+0;(2 j+1+2�)%4n

=

2n−1∑
j=0

(
g(n)

2r+0; jg
(n)
2s+0;( j+�)%2n

)
+

2n−1∑
j=0

(
g(n)

2r+1; jg
(n)
2s+1;( j+�)%2n

)
: nonumber (14a)

Thus have we proven Eqs. (10a). Eqs. (10b), (11), (12), and (13) can be derived simi-
larly. From Eqs. (4) and (11) we get that

�(n;0)
2r+0; 2s+0 (2�+1) = −�(n;0)

2r+1; 2s+1 (2�+1) = �(n)
2r+0; 2s+1 (�) + �

(n)
2r+1; 2s+0 (�+1) = 0;

(15a)

�(n;0)
2r+0; 2s+1 (2�+1) = −�(n;0)

2r+1; 2s+0 (2�+1) = �(n)
2r+0; 2s+1 (�) − �(n)

2r+1; 2s+0 (�+1) = 0:
(15b)

From Eqs. (12), we can get that form> 0,

�(n;m)
2r+0; 2s+1 (4�) = �

(n;m)
2r+1; 2s+0 (4�) = 0: (16)

From Eq. (12), we can have such that form> 0,

�(n;m)
2r+0; 2s+0 (2m+1�) = �

(n;m)
2r+1; 2s+1 (2m+1�) = 2�(n;m−1)

2r+0; 2s+0 (2m�) = 2�(n;m−1)
2r+1; 2s+1 (2m�) = · · ·

= 2m�(n;0)
2r+0; 2s+0 (�) = 2m�(n;0)

2r+1; 2s+1 (2�) : (17)

From Eqs. (15) and (17), we can obtain that form> 0,

�(n;m)
2r+0; 2s+0

(
2m(2�+1)

)
= �(n;m)

2r+1; 2s+1

(
2m(2�+1)

)
= 2m�(n;0)

2r+0; 2s+0 (2�+1) = 0; (18a)

�(n;m)
2r+0; 2s+1

(
2m(2�+1)

)
= �(n;m)

2r+1; 2s+0

(
2m(2�+1)

)
= �(n;m−1)

2r+0; 2s+0

(
2m(2�+1)

) − �(n;m−1)
2r+1; 2s+1

(
2m(2�+1)

)
= 0:

(18b)

Next, we evaluate the limit of
∣∣∣�(n;0)

2r;2s (2�)
∣∣∣. Since�(n;0)

2r;2s(�) = �
(n;)
2s;2r (−�), we can assume

� ≥ 0 without loss of generality. From Eqs. (2) and (14a), we get that

�(n;0)
2r;2s (2�) =

2n−1∑
j=0

(
g(n)

2r+0; jg
(n)
2s+0;( j+�)%2n

)
+

2n−1∑
j=0

(
g(n)

2r+1; jg
(n)
2s+1;( j+�)%2n

)

= 2
n−�−1∑

j=0

(n
hr; j

n
hs;( j+�−n)

)
+ 2

n−1∑
j=n−�

(n
hr; j

n
hs;( j+�−n)

)
+ 2

n−�−1∑
j=0

(n
hr; j

n
hs;( j+�−n)

)
− 2

n−1∑
j=n−�

(n
hr; j

n
hs;( j+�−n)

)

= 4
n−�−1∑

j=0

(n
hr; j

n
hs;( j+�−n)

)
; (19a)
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�(n;0)
2r;2s+1 (2�) =

2n−1∑
j=0

(
g(n)

2r+0; jg
(n)
2s+0;( j+�)%2n

)
−

2n−1∑
j=0

(
g(n)

2r+1; jg
(n)
2s+1;( j+�)%2n

)

= 2
n−�−1∑

j=0

(n
hr; j

n
hs;( j+�−n)

)
+ 2

n−1∑
j=n−�

(n
hr; j

n
hs;( j+�−n)

)
− 2

n−�−1∑
j=0

(n
hr; j

n
hs;( j+�−n)

)
+ 2

n−1∑
j=n−�

(n
hr; j

n
hs;( j+�−n)

)

= 4
n−1∑

j=n−�

(n
hr; j

n
hs;( j+�−n)

)
: (19b)

Then we can obtain such that

∣∣∣�(n;0)
2r;2s (2�)

∣∣∣ = 4

∣∣∣∣∣∣∣∣
n−�−1∑

j=0

(n
hr; j

n
hs;( j+�−n)

)∣∣∣∣∣∣∣∣
≤ 4 |�| ; (20a)

∣∣∣�(n;0)
2r;2s+1 (2�)

∣∣∣ = 4

∣∣∣∣∣∣∣∣
n−�−1∑

j=0

(n
hr; j

n
hs;( j+�)

)∣∣∣∣∣∣∣∣
≤ 4(n− |�|): (20b)

Next, we evaluate the limit of
∣∣∣�(n;m)

2r;2s (2�)
∣∣∣. We derive the following inequations by

induction ofm. Since�(n;m)
2r;2s(�) = �(n;)2s;2r (−�), we can assume� ≥ 0 without loss of

generality. From Eqs. (20), the following equatiions are satisfied form= 0.
∣∣∣�(n;m)

r;s
(
2m� + �′

)∣∣∣ ≤ 4 |�|
(
2m n− ∣∣∣�′∣∣∣) : (21)

From Eqs. (9), we can obtain that
∣∣∣�(n;m+1)

r;s (2�)
∣∣∣ ≤ ∣∣∣�(n;m+1)

2r;2s (�)
∣∣∣ + ∣∣∣�(n;m+1)

2r+1;2s+1 (�)
∣∣∣ ;∣∣∣�(n;m+1)

2r;2s+1 (2� + 1)
∣∣∣≤ ∣∣∣�(n;m+1)

2r;2s+1 (�)
∣∣∣ + ∣∣∣�(n;m+1)

2r+1;2s (� + 1) :
∣∣∣ :

Then,
∣∣∣∣�(n;m+1)

r;s

(
2m+1� + 2�′

)∣∣∣∣
≤ ∣∣∣�(n;m+1)

2r;2s

(
2m� + �′

)∣∣∣ + ∣∣∣�(n;m+1)
2r+1;2s+1

(
2m� + �′

)∣∣∣
≤ 2 |�|

(
2m− ∣∣∣�′∣∣∣) + 2 |�|

(
2m− ∣∣∣�′∣∣∣)

≤ 2 |�|
(
2m+1 − ∣∣∣2�′∣∣∣) ;∣∣∣∣�(n;m+1)

r;s

(
2m+1� + 2�′ + 1

)∣∣∣∣
≤ ∣∣∣�(n;m+1)

2r;2s+1

(
2m� + �′

)∣∣∣ + ∣∣∣�(n;m+1)
2r+1;2s

(
2m� + �′ + 1

)
:
∣∣∣

≤ 2 |�|
(
2m− ∣∣∣�′∣∣∣) + 2 |�|

(
2m− ∣∣∣�′ + 1

∣∣∣)

≤ 2 |�|
(
2m+1 − ∣∣∣2�′ + 1

∣∣∣) :
Finally, we have such that

∣∣∣∣�(n;m+1)
r;s

(
2m+1� + �′

)∣∣∣∣ ≤ 2 |�|
(
2m+1 − ∣∣∣�′∣∣∣) :
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Consequently, the following inequations are satisfied for the sequences,{s (n;m)
i }2n−1

i=0
(m≥ 0).

∀m≥ 0; 0 ≤ r; s< n;−2n < � ≤ 2n;∣∣∣�(n;m)
2r; 2s (2m+1�)

∣∣∣ ≤ 2m+2 |n− �| ; (22a)∣∣∣�(n;m)
2r+1; 2s+1 (2m+1�)

∣∣∣ ≤ 2m+2 |n− �| : (22b)

The following inequations is satisfied for the sequences of length 2m+2 n, {s (n;m)
i }2n−1

i=0
(m> 0). From Eq. (16), we get that

∀m> 0; r; s< n;−2n < � ≤ 2n;

�(n;m)
2r; 2s+1 (2m+2�) = 0; (23a)

�(n;m)
2r+1; 2s (2m+2�) = 0: (23b)

Next, we show an inequation that demonstrate the limits of the correlation function of
the sequences in detail.

Theorem 2 The following equation is satisfied for the sequences of length4n, {s (n;0)
i }2n−1

i=0
(m> 0).

∀m> 0; 0 ≤ r; s< 2n; − 2n < � ≤ 2n; − 2m < �′ < 2m;∣∣∣�(n;m)
2r+1; 2s (2m+1�+�′)

∣∣∣ ≤ 2 |�|
(
2mn− ∣∣∣�′∣∣∣) : (24)

From this theorem, for� = 0, we can obtain that

∀m> 0; 0 ≤ r; s< 2n; −2m < �′ < 2m;

�(n;m)
2r+1; 2s (�′) = 0: (25)

5 Conclusion remarks

We evaluated the limits of the correlation function of a class of binary zero-correlation-
zone sequences.

It is useful to investigate the limits of the correation functiuon of binary zero-
correlation-zone sequences. This investigation will contribute to the development of
new applications and will aid the understanding of the theoretical aspects of the se-
quences.
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