Limits of the correlation function of a class of
binary zero-correlation-zone sequences

Takafumi Hayashi
June 6, 2002

Abstract

In this letter we show the estimation of the limits of correlation functions
of a class of zero-correlation-zone sequences that are constructed from a set of
Hadamard sequences.

1 Introduction

Binary sequences are used in various applications, In many applications involving bi-
nary sequences, the sequences are required to be uncorrelated.

For example, a code division multiple accessva) system that is synchronized
approximately is called an approximately synchronizeda (as-cpma). A set of se-
guences having a zero-correlation zone enables fatsamma system without co-
channel interference [1, 2]. Such sequences can also reduce the multifeathoé
anwm-ary as-cpma System without co-channel interference [1]. They also allow for the
use of simple hardware compared witkary sequences.

The generation of binary sequences having a zero-correlation zone has been re-
ported previously [3-7]. There exist two kinds of construction of of binary sequences
with zero-correlation zone. The one construct the sequences from Hadamard sequences
[3]. and the other construct the sequences from mutual orthogonal complementary se-
quences [7]. An advantage of our construction is that various kinds of sets of sequences
can be constructed from Hadamard matrices derived by various methods [8-10].

Usually, a set of zero-correlation-zone sequences are used so that the phase shift
of each pair of the sequences is within the zero-correlation zone. However, when
we design a practical system involving a set of zero-correlation-zone sequences, we
should examine the behavior of the system in the case of a phase shift go out the zero-
correlation zone. We herein show the estimation of the correlation function of the
zero-correlation-zone sequence derived from a set of Hadamard sequences.

*The author is with the Faculty of Computer Science and Engineering of the University of Aizu.



2 Preliminaries

In this section, we briefly introduce the notation and terminology used in this letter.

For integersa andb, leta@ b anda % b denote the quotient and the non negative
remainder ob=b, respectively. For two sequences= [u,]m‘1 andv = [v; ]J iy
[w; v] = [Uo; Ug;: i1 Um1; Vo; Va1 £ 15 V]

We define an operation that generates sequence of lehgitfat2consists of two se-
quencesvg = [vgj]'- o L andwv = [vij]'7}, both of lengthl. We denote this operation

j=0’
c(vo; v1) anditis deflned as follows.

¢ (vo; v1) = [Voo; Vi,0; Vo1; Vi1, Voo; Va2, 11 15 Vou—1; Va-1]: 1)

3 Seguence construction

If we have a set ofi-length Hadamard sequences, we can construct a set of binary se-
quences. For a fixed numberwe can recursively construct a series of $ef§ m) 2“ L
of 2n sequences fan > 0 as follows.

Form = 0, (™)1 is constructed from a set oflength Hadamard sequences,

n
{hi}4. Fist, a set of B- Iength sequences{;g( )}2” 1 is constructed from the set of

n-length Hadamard sequenc(abi}i=0

ForO<i<n;
0] A
o) =|hi hl; (22)
o _[r. 2.
ng.]_ [hiv _hi] . (Zb)

Itis important to note thaiy(”)}z" Lis a set of 2-length Hadamard sequences. It means
thatg™ are mutually orthogonal. Itis also important that egé is composed of even
number Fourier components only and e@tﬁl is composed of odd number Fourier

components only. Consequently, the cross-correlation functigé{“bhndggzl forany
i, j have always zero value for all phase shift.

Here we denote the periodic cross-correlation functiom,ﬁﬂ‘f and gé”) at phase
shift by (), where

2n-1

— (M M
Igrl)S( ) - Z gr i gS(J+ )%2n (3)
j=0

This correlation function satisfies the following equations.

Vr#s D.0=0 (4a)
vr s O () =0 (4b)



Next, {s")21 is constructed frongg™}2%1.

ForO<i<n;
s = c(g5: 95): (52)
sid = ¢ (95 -95h): (5b)
Form> 0, {s("™)21 is constructed frongs™™ )21 as follows.
ForO<i<n;
0 = o™ ), ©a
spur = (55 Vimsgn ) (6b)

4 Properties of Synthesized Sequences

In this section, we show the properties of the sequences from our construction.

For convenience, we use Fan’s notation for the zero-correlation properties of a se-
quence [7]. If a set ok sequencesy; }k‘l of lengthl has a zero-correlation zone, then
this set is said to b&(l; k; w), wherew represents the half-width of the zero-correlation
zone [7].

Theorem 1 (Zero Correlation Zone) The set of sequences from our construct{e ,?m)}izjgl,
is Z(2™2 n; 2n; 2™M), can be formalized as follows.

Vr#svy ;|| <2m om () =0 (7a)
VLY #0;] | <2™ () =o0: (7b)
Here, we denote the periodic cross-correlation functlom,@f") and s(” ™ at phase
shift by o () where
2m2n_1
( ) — (n m) (mm)
e ()= Z Ss(j+ W@z’ ®)

The proof of this theorem is shown in our previous report [3]. This thorem also can be
derived from the Theorem 2 in this letter.
From the definition of the™™, we can have such that

ety _ [Sog I 1%2=0;
il i j%2=1;

I;j@2

dome) i i j%2=0;
T - i j%2=1



Then we can also have that

GEVE) = TPO+ SO
Sl +n = TRIO)+ SR+,
ma ) = S5O+ §02L ()
o @ +D=— S0 () - RN+
i) = SSPO- Sh2L O
Shea@ +1 == T O)+ PR +D:

These correlation function of the sequences satisfy the following equations. For even
number phase shifts, we can have the following equations.

(m,0) _ (no) _ (@] .
2002500 (2 ) = 2ri1 2601 (2) = 2r+0 2500 () + 241 2601 () (10a)
(m,0) (m0) (@] .
2r+0; 2s+1 )= 2r+1; 2s+0 )= 2r+0 25+0( ) - 2r+1; 2s+1( ): (10b)

For odd number phase shifts, we can have the following equations.

(m,0) (m,0) (n) .
200 2500 (2 +1) = = 241 0641 (2 41) = 2r+0 2501 ( )+ a1 2600 (1) (11a)
(m0) _ _ (mo) (n) .
2r+0; 2s+1 (2+1)=- 2r+1; 25+0 (2+1) = 2r+0 2s+1( ) - 2r+1; 2s+0 1) (11b)

We can have the following equations for even number phase shifits $00.

(mm) _ (mm) _ (mm-1) (mm-1) .

2r+0; 2s+0 (2 ) T 2r+1; 2s+1 (2 ) - 2r+0; 25+0( ) + 2r+1; 25+1( ) ’ (123)
; _ _ (nm-1 (mm-1) .

g;f:)); 2s+1 )= (Zr::nl) 2s+0 )= g:fg 2)s+0( ) - 2?3_ 25+1( ): (12b)

We can have the following equations for odd number phase shifta fo0.

m-1 ym-1 .

g:f(]) 2s5+0 (+1)=- 2?311) 2s+1 (2+1) = g:f(]) 2)s+l( )+ g:f]l 2)s+0 +1); (13a)
(mm) (n;m-1) (n;m-1) .

g;fg) 2s+1 (241) =- 2r+1 25+0 (2+1) = 2r+0; 2s+1( ) - 2r+1; 25+0 +1): (13b)

Egs. (10)-(13) are very important for the correlation functions of the proposed se-
guences.
PR (10) (. )
Here, we prove Eq. (10). From the definitia$;”’ can be denoted as(| £; g™]).
It means that

g, (e 1%

WO o e % 2=1;

(n0) _ g(ZT) jo2 if j%2= 0;
2l T\ gl i j%2=1



Therefore, we can get such that

4n-1
(n0) _ (n0) (n0)
2r+0; 2s+0 ()= Z S2r+0;j%5+0;(]+2 )%4n
=0

2n-1 2n-1

_ (m0)  (n0) (n;0) (n;,0)

= Z Sr+02) Ds+0,2j+2 Yoan T Z S +02j+1D5+0,(2j+1+2 %4n
i=0

j=0
1

2n- 2n-1

— (n) (n) (n) (n) .

- (92r+0:1925+0:(j+ )%21) + Z (92r+l:1'925+l:(j+ )%21)' nonumber (l4a)
j=0 j=0

Thus have we proven Egs. (10a). Egs. (10b), (11), (12), and (13) can be derived simi-
larly. From Egs. (4) and (11) we get that

(m0) _ _ (mo) _ ()] — 0
2r+0; 2s+0 (2 +1) = 7 2r+1; 2s+1 (2 +1) - 2r+0; 25+1( ) + 2r+1; 2s+0 +1) - 0’
(15a)
(m0) _ _ (mo) _ (] — 0
2r+0; 2s+1 (2 +1) = 7 2r+1; 2s+0 (2 +1) ~  2r+0; 25+1( ) T 2r+1; 2s+0 +1) =0
(15b)
From Egs. (12), we can get that for> 0,
(mm) _ (hum -0
2r+0; 2s+1 (4 ) —  2r+1; 2s+0 (4 ) =0 (16)
From Eq. (12), we can have such that fior 0,
(n;m) _ (nm _ o (mm-1) _ o (nm-1) —
2r+0; 2s+0 (2'“*1 ) = 2r+1; 2s+1 (2'“*1 ) =2 2r+0; 2s+0 (2"‘ ) =2 2r+1; 2s+1 (2"‘ ) -
_ (n0) _ (m0) .
- 2m 2r+0; 25+0( ) - 2m 2r+1; 2s+1 (2 ) (17)
From Egs. (15) and (17), we can obtain thatror O,
; ; ;0 .
g:fg 25+0 (2r2 +1)) = g:f]l) 2st+1 (2m2 +1)) = 2" g:+()); 25+0 (241)=0; (182)
3 3 m-1 =1 .
S 261 (22 +1) = 5T pero (2 +1) = S0 D0 (on2 +1) = 51 D (e +1)) = O
(18b)

Next, we evaluate the limit off §'0) (2 )|. Since 59)( ) = 5%, (- ), we can assume

> 0 without loss of generality. From Egs. (2) and (14a), we get that

2n-1 2n-1
(m0) _ (n) (n) (n) (n)
2r;2s (2 ) - Z (92r+0;j925+0;(j+ )%21) + Z (92r+l;j925+1;(j+ )%21)
=0 j=0
n- -1 n-1 n- -1 n-1
non non non n n
=23 (hr;jhs(j+ —n)) +2 (hr:ihS:(J+ —n)) +2 ) (hr:ihs(j+ —n)) -2 (hr;jhs(j+ —n))
j=0 j=n- j=0 j=n-
n- -1 n on
=4 (hr;jhs(h— —n)); (193)
=0



2n-1 2n-1
(m,0) _ (n) (n) (n) (n)
r2s1(2) = 2 , (gzr+o;j92s+0;(j+ )%m) - 2 , (92r+1;j925+1:(i+ )%Zn)

j=0 j=0

n- -1 n on n-1 n n n- -1 n n n-1 non
=23 (hr;jhs-(j+ —n)) +2 ) (hr;ihs;(J'+ —n)) -2 ) (hr;ihs-(j+ —n)) +2 ) (hr;jhs-(j+ —n))
=0 j=n- i=0 j=n-
n-1 non
=4y (hr; Psis _n)): (19b)

j=n-

Then we can obtain such that

. n- -1 n on
| 52@)=4| Y (Fihsge o) <411 (202)
-0
1 on
| 52.:@)=4| Y (Reshs) < 401 1 (20b)
i=0
Next, we evaluate the limit of 5'2) (2 )]. We derive the following inequations by
induction ofm. Since §72( ) = I (- ), we can assume > 0 without loss of
generality. From Egs. (20), the following equatiions are satisfiechferO.

’

| @™+ )

<4 |(2mn—

) : (21)
From Egs. (9), we can obtain that

D @) <] SO+ $a, O

2r,2s 2r+1;2s+1
n;m+1 n;m+1 n;m+1 ..
| (2r;23+1) (2 + 1)|S| gr:ZSJ:Ll)( )| + | (2r+l:25)( + 1) |

Then,

Ig;ns;m+l) (2m+1 +2 /)

<] gm0+ §nR.E )
<20 (2"=] ) +21 1(2"-] )

<2| (2™ -27));
D (2™t 4 2 ’+1)|

<| aed @7 + O+ | GHd@" + 7+ 1)
<2 i(2m-] ) +211(2"-] "+ 1)

<2 (2™ =27 +1)):

7’

Finally, we have such that

’

< 2| |(2m+1_

):

E;ns;m+l)(2m+l + /)



Consequently, the following inequations are satisfied for the sequefig8&))2:1
(m=>0).

Yym>0,0<r;s<n-2n< <2n;

| G ) 2™ - | (22a)
o s om ) £ 2™2n— | (22b)

The following inequations is satisfied for the sequences of lengtR 12 {si(”;m)}izjal
(m> 0). From Eq. (16), we get that

Yym>0;r;s<n,-2n< <2n;

o a2 ) =0, (23a)
o psomz ) =0 (23b)

Next, we show an inequation that demonstrate the limits of the correlation function of
the sequences in detalil.

Theorem 2 The following equation is satisfied for the sequences of letrgifs )21
(m>0).

¥Ym>0;,0<r;s<2n, -2n< <2n -2"< ’'<2™
o s 4 ) <21 1(2™ -] 7)) (24)

2r+1; 2s
From this theorem, for = 0, we can obtain that

’

¥ym>0; 0<r;s<2n, -2"< '<2™

(Zr::nl) 25( ’) =0 (25)

5 Conclusion remarks

We evaluated the limits of the correlation function of a class of binary zero-correlation-
zone sequences.

It is useful to investigate the limits of the correation functiuon of binary zero-
correlation-zone sequences. This investigation will contribute to the development of
new applications and will aid the understanding of the theoretical aspects of the se-
guences.
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